首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic chondrocytes, which then deposit a mineralized matrix to form calcified cartilage. Chondrocyte hypertrophy and matrix mineralization are associated with expression of type X collagen and the induction of high levels of the bone/liver/kidney isozyme of alkaline phosphatase. To determine what role vitamin C plays in these processes, chondrocytes derived from the cephalic portion of 14-day chick embryo sternae were grown in the absence or presence of exogenous ascorbic acid. Control untreated cells displayed low levels of type X collagen and alkaline phosphatase activity throughout the culture period. However, cells grown in the presence of ascorbic acid produced increasing levels of alkaline phosphatase activity and type X collagen mRNA and protein. Both alkaline phosphatase activity and type X collagen mRNA levels began to increase within 24 h of ascorbate treatment; by 9 days, the levels of both alkaline phosphatase activity and type X collagen mRNA were 15-20-fold higher than in non-ascorbate-treated cells. Ascorbate treatment also increased calcium deposition in the cell layer and decreased the levels of types II and IX collagen mRNAs; these effects lagged significantly behind the elevation of alkaline phosphatase and type X collagen. Addition of beta-glycerophosphate to the medium increased calcium deposition in the presence of ascorbate but had no effect on levels of collagen mRNAs or alkaline phosphatase. The results suggest that vitamin C may play an important role in endochondral bone formation by modulating gene expression in hypertrophic chondrocytes.  相似文献   

2.
In the developing chick embryo tibia type X collagen is synthesized by chondrocytes from regions of hypertrophy and not by chondrocytes from other regions (Capasso, O., G. Tajana, and R. Cancedda, 1984, Mol. Cell. Biol. 4:1163-1168; Schmid, T. M., and T. F. Linsenmayer, 1985, Dev. Biol. 107:375-381). To investigate further the relationship between differentiation of endochondral chondrocytes and type X collagen synthesis we have developed a novel culture system for chondrocytes from 29-31-stage chick embryo tibiae. At the beginning of the culture these chondrocytes are small and synthesize type II and not type X collagen, but when grown on agarose-coated dishes they further differentiate into hypertrophic chondrocytes that synthesize type X collagen. The synthesis of type X collagen has been monitored in cultured cells by analysis of labeled collagens and in vitro translation of mRNAs. When the freshly dissociated chondrocytes are plated in anchorage-permissive dishes, most of the cells attach and dedifferentiate, as revealed by their fibroblastic morphology. Dedifferentiated chondrocytes, after several passages, can still reexpress the differentiated phenotype and continue their development to hypertrophic, type X collagen-synthesizing chondrocytes. Hypertrophic chondrocytes, when plated in anchorage permissive dishes, attach, maintaining the differentiated phenotype, and continue the synthesis of type X collagen.  相似文献   

3.
Chondrocytes isolated from 15-day-old embryonic chick sterna were cultured as monolayers for 7 days in control medium or in medium supplemented with retinoic acid or 5-bromo-2'-deoxyuridine. Control cells exhibited characteristic polygonal morphology and maintained the synthesis of cartilage-specific collagens, i.e. type II, type IX, 1 alpha, 2 alpha, and 3 alpha chains, and 45 K (presumptive type X). Type IX was the second most prevalent collagen and represented 12-15% of the phenotype. When exposed to retinoic acid, chrondrocytes displayed a fibroblast-like morphology and decreased collagen synthesis by day 2. The synthesis of collagen types II and IX declined in parallel along with that of the other cartilage collagens and ceased by day 7. During the same period, the synthesis of collagen types I, III, and V and two unidentified collagen chains was initiated and stimulated. Similar changes in collagen expression were caused by 5-bromo-2'-deoxyuridine but were delayed, beginning after day 4. Type III collagen, however, was never detected in 5-bromo-2'-deoxyuridine or control cultures. Because two different agents and two rates of modulation produced parallel changes in the synthesis of collagen types II and IX, these collagens appear to be coordinately regulated.  相似文献   

4.
5.
Previously it has been shown that the levels of xanthine dehydrogenase in chick liver can be increased by feeding high-protein diets, adenine, and allopurinol (a xanthine dehydrogenase inhibitor). Also, it has been shown that starvation increases the level of xanthine dehydrogenase in chick liver and that unsaturated fatty acids in the diet suppress the levels of xanthine dehydrogenase in the liver. Results reported here show that starvation and high-protein diets enhance the levels of purine nucleoside phosphorylase and that unsaturated fatty acids suppress the level of this enzyme. In contrast with xanthine dehydrogenase, adenine and allopurinol have no effect on purine nucleoside phosphorylase levels. These results suggest that dietary protein and unsaturated fatty acids regulate more than one enzyme involved in the production of uric acid.Levels of xanthine dehydrogenase in the pancreas can be increased by feeding and decreased by starvation or feeding unsaturated fatty acids. None of these procedures has any effect on the level of pancreatic purine nucleoside phosphorylase.  相似文献   

6.
Chondroitin SO4 catabolism in chick embryo chondrocytes   总被引:4,自引:0,他引:4  
An enzyme preparation from cultured chick embryo vertebral chondrocytes attacks chondroitin SO4 oligosaccharides from the nonreducing terminal in a recycling pathway involving the sequential action of a beta-glucuronidase, a 4- or a 6-sulfatase, and a beta-N-acetylgalactosaminidase. The sequence is blocked by saccharo-1,4-lactone, an inhibitor of the beta-glucuronidase, or by 2-acetamido-2-deoxy-D-galactonolactone, an inhibitor of the beta-N-acetylgalactosaminidase. The level of 4-sulfatase activity is low relative to the other activities and limits the rate of catabolism of hybrid oligosaccharide structures containing both 6-sulfated galactosamine residues and 4-sulfated galactosamine residues. This results in the accumulation of shortened oligosaccharides, most of which have galactosamine-4-SO4 residues at their nonreducing terminals. In the presence of the lactone inhibitors, polymeric chondroitin SO4 is broken down by the enzyme preparation to oligosaccharides which are 10 to 15 monosaccharides long, indicating that degradation of chondroitin SO4 chains is initiated by an endoglycosidase which generates oligosaccharide substrates for the recycling exoglycosidase system.  相似文献   

7.
The tropocollagen in the lungs of chicken embryos increases rapidly between the 13th and 16th day of development, then keeps constant levels and equal ones to those of the adult until the birth. The proline hydroxylase activity is highest in the lung of the embryos of 13 days old, diminishes rapidly between the 13th and 16th day, after that moderately but constantly until the birth, when it is equal to the levels found in the adult. The procollagen has a behaviour comparable to the one described for the proline hydroxylase.  相似文献   

8.
9.
10.
11.
Properties of chick embryo chondrocytes grown in serum-free medium   总被引:6,自引:0,他引:6  
Chick embryo tibial chondrocyte growth and activities were compared in serum-free and serum-supplemented media. A basal salts medium containing equal volumes of Ham's F-12 and Dulbecco's modified Eagle's medium was supplemented with 10% fetal calf serum or with a mixture of bovine insulin, transferrin, fibroblast growth factor, dexamethasone, a prostaglandin E1 supplement, and a liposome supplement. Chondrocytes grew at identical rates in both media. Insulin, liposomes, and fibroblast growth factor were required for optimum growth in the serum-free medium, but removal of transferrin, dexamethasone, or prostaglandin E1 had little effect on the growth rate. In the serum-supplemented medium, the chondrocytes synthesized Type II collagen, Mr = 59,000 collagen, and both the large, cartilage-specific and the small ubiquitous proteochondroitin SO4 species typically produced by cultured chondrocytes. In the serum-free medium there was a shift toward synthesis of Type I collagen and a loss of the capacity to synthesize Mr = 59,000 collagen and the cartilage-specific proteochondroitin SO4. The loss of capacity for cartilage-specific proteochondroitin SO4 synthesis began immediately after replacement of the serum with the mixture of defined growth factors and the rate of loss was retarded but not reversed when serum was added back in place of the growth factors. When the serum and the mixture of growth factors were added together to the basal medium at the time of cell plating, the chondrocytes grew rapidly and retained their normal phenotype observed in serum-supplemented cultures. Thus, the serum appears to contain factors which are required for retention of the chondrocyte phenotype in culture over and above those factors necessary for cell growth.  相似文献   

12.
13.
Growth of embryonic chick chondrocytes in dialyzed embryo extract results in both a change in morphology of the cells toward that of a fibroblast and a change in the type of collagen synthesized from the cartilage-specific Type II collagen (chain composition [α1(II)]3) to a mixture of Type I collagen (chain composition [α1(I)]2α2) and the Type I trimer (chain composition [α1(I)]3). Analyses after 6 days of growth in embryo extract show that the synthesis of only Type I collagen and the Type I trimer can be detected. However, on subculturing the cells to a low density and allowing a period of growth without embryo extract, colonies of chondrocytes reappear and the synthesis of Type II collagen apparently resumes. It is suggested that the observed changes represent a “modulation” in cell behavior, this being expressed not only by the morphological changes but also by changes in cell-specific protein synthesis as demonstrated by the changes in the type of collagen synthesized.  相似文献   

14.
15.
16.
17.
18.
1. The absence of creatine was demonstrated enzymically in the hen's-egg yolk and in the albumin contrary to former reports. 2. A comparison of the results obtained by enzymic and colorimetric methods to measure creatine is presented. 3. Creatine phosphate was not detected in the yolk extracts. 4. The content of free arginine enzymically assayed was 15.7mumol in the yolk and 3.38mumol in the albumin. Arginine amounts to practically all of the guanidine compounds in the yolk and one-half of those in the albumin. 5. No glycine amidinotransferase activity was found in the egg-yolk homogenates. 6. The heart of the chick embryo does not receive creatine from the egg and the creatine kinase activity present in this organ starting from the 27th hour of incubation suggests that the enzyme is a constitutive one working probably as an adenosine triphosphatase in a way similar to the kinase isolated from rabbit skeletal muscle. 7. Liver glycine amidinotransferase activity appeared clearly after day 5 of incubation. The specific activity reached a maximum at day 12 and then declined; however, the activity per total mass of liver increased steadily during all the prenatal period. Concomitantly with this steady increase a rise in the creatine content of the whole embryo was observed. An analogous increasing relationship between total liver amidinotransferase activity and liver creatine content was also detected during the postnatal period. 8. Repression of amidinotransferase by creatine cannot be accepted as occurring under physiological conditions since an inverse relationship between the two parameters was not observed. 9. Repression of liver amidinotransferase is observed only when pharmacological concentrations of the exogenous creatine are present in the chick liver.  相似文献   

19.
20.
Alkaline phosphatase activity appears to be altered when chondrocyte cultures are incubated with 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). This study examined whether the hormone-responsive enzyme activity is associated with alkaline phosphatase-enriched extracellular membrane organelles called matrix vesicles. Confluent, third passage cultures of rat costochondral growth cartilage (GC) or resting zone chondrocytes (RC) were incubated with 1,25-(OH)2D3 or 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3) and enzyme specific activity was assayed in the cell layer or in isolated matrix vesicle and plasma membrane fractions. Alkaline phosphatase-specific activity in the matrix vesicles was enriched at least 2-fold over that of the plasma membrane and 10-fold over that of the cell layer. Matrix vesicle alkaline phosphatase was stimulated by 1,25-(OH)2D3 in GC cultures and by 24,25-(OH)2D3 in RC cultures. The cell layer failed to reveal these subtle differences. 1,25-(OH)2D3 increased GC enzyme activity but the effect was one-half that observed in the matrix vesicles alone. No effect of 1,25-(OH)2D3 on enzyme activity of the RC cell layer or of 24,25-(OH)2D3 on either GC or RC cell layers was detected. Thus, response to the metabolites is dependent on chondrocytic differentiation and is site specific: the matrix vesicle fraction is targeted and not the cells per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号