首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ascorbate free-radical reduction by glyoxysomal membranes   总被引:5,自引:2,他引:3       下载免费PDF全文
Glyoxysomal membranes from germinating castor bean (Ricinus communis L. cv Hale) endosperm contain an NADH dehydrogenase. This enzyme can utilize extraorganellar ascorbate free-radical as a substrate and can oxidize NADH at a rate which can support intraglyoxysomal demand for NAD+. NADH:ascorbate free-radical reductase was found to be membrane-associated, and the activity remained in the membrane fraction after lysis of glyoxysomes by osmotic shock, followed by pelleting of the membranes. In whole glyoxysomes, NADH:ascorbate free-radical reductase, like NADH:ferricyanide reductase and unlike NADH:cytochrome c reductase, was insensitive to trypsin and was not inactivated by Triton X-100 detergent. These results suggest that ascorbate free-radical is reduced by the same component which reduces ferricyanide in the glyoxysomal membrane redox system. NADH:ascorbate free-radical reductase comigrated with NADH:ferricyanide and cytochrome c reductases when glyoxy-somal membranes were solubilized with detergent and subjected to rate-zonal centrifugation. The results suggest that ascorbate free-radical, when reduced to ascorbate by membrane redox system, could serve as a link between glyoxysomal metabolism and other cellular activities.  相似文献   

2.
This report concerns development of a cell-free system from rat liver to study transport of membrane constituents from the Golgi apparatus to the plasma membrane. Highly purified Golgi apparatus as donor and a mixture of sheets and vesicles as plasma membrane acceptor fractions were combined to analyze requirements for lipid and protein transport. In the reconstituted system, the Golgi apparatus donor was in suspension. To measure transfer, membrane constituents of the donor membranes were radiolabeled with [3H]acetate (lipids) or [3H]leucine (proteins). The plasma membrane vesicles were used as the acceptor and were unlabeled and immobilized on nitrocellulose for ease of recovery and analysis. The reconstituted cell-free transfer was dependent on temperature, but even at 37 degrees C, the amount of transfer did not increase with added ATP, was not specific for any particular membrane fraction or subfraction nor was it facilitated by cytosol. ATP was without effect both in the presence or absence of a cytosolic fraction capable of the support of cell-free transfer in other systems. In contrast to results with ATP, NADH added to the reconstituted system resulted in an increased amount of transfer. A further increase in transfer was obtained with NADH plus a mixture of ascorbate and dehydroascorbate to generate ascorbate free radical. The transfer of labeled membrane constituents from the Golgi apparatus to the plasma membrane supported by NADH plus ascorbate radical was stimulated by a cytosol fraction enriched in less than 10 kDa components. This was without effect in the absence of NADH/ascorbate radical or with ATP as the energy source. Specific transfer was inhibited by both N-ethylmaleimide and GTP gamma S. The findings point to the possibility of redox activities associated with the trans region of the Golgi apparatus as potentially involved in the transport of membrane vesicles from the Golgi apparatus to the cytoplasmic surface of the plasma membrane.  相似文献   

3.
Addition of vanadate, stimulated oxidation of NADH by rat liver microsomes. The products were NAD+ and H2O2. High rates of this reaction were obtained in the presence of phosphate buffer and at low pH values. The yellow-orange colored polymeric form of vanadate appears to be the active species and both ortho- and meta-vanadate gave poor activities even at mM concentrations.The activity as measured by oxygen uptake was inhibited by cyanide, EDTA, mannitol, histidine, ascorbate, noradrenaline, adriamycin, cytochrome c, Mn2+, superoxide dismutase, horseradish peroxidase and catalase. Mitochondrial outer membranes possess a similar activity of vanadate-stimulated NADH oxidation. But addition of mitochondria and some of its derivative particles abolished the microsomal activity. In the absence of oxygen, disappearance of NADH measured by decrease in absorbance at 340 nm continued at nearly the same rate since vanadate served as an electron acceptor in the microsomal system. Addition of excess catalase or SOD abolished the oxygen uptake while retaining significant rates of NADH disappearance indicating that the two activities are delinked. A mechanism is proposed wherein oxygen receives the first electron from NAD radical generated by oxidation of NADH by phosphovanadate and the consequent reduced species of vanadate (Viv) gives the second electron to superoxide to reduce it H2O2. This is applicable to all membranes whereas microsomes have the additional capability of reducing vanadate.  相似文献   

4.
Nicotinamide adenine dinucleotide (NAD+) has been covalently attached to alginic acid using carbodiimide coupling, thereby producing a macromolecular adduct of NAD, which can be rendered either soluble or insoluble by adjustment of pH. It was found that this NAD+ · alginic acid complex was enzymatically active, and also that the oxidized form could be electrochemically reduced without loss in enzymatic activity. This NAD+ adduct has now also been polarographically characterized as to its two-step reduction waves, which are slightly shifted toward more cathodic potential as compared to free NAD+. When controlled electrolysis was conducted to reduce the bound NAD+ at the cathode, the NADH so formed by electrochemical action was found to be again oxidizable either enzymatically or electrochemically without loss in co-enzymic function. The NADH adduct produced by electrochemical reduction of the NAD+ adduct has also been characterized by voltammetry.  相似文献   

5.

Background

The ratio of NAD+/NADH is a key indicator that reflects the overall redox state of the cells. Until recently, there were no methods for real time NAD+/NADH monitoring in living cells. Genetically encoded fluorescent probes for NAD+/NADH are fundamentally new approach for studying the NAD+/NADH dynamics.

Methods

We developed a genetically encoded probe for the nicotinamide adenine dinucleotide, NAD(H), redox state changes by inserting circularly permuted YFP into redox sensor T-REX from Thermus aquaticus. We characterized the sensor in vitro using spectrofluorometry and in cultured mammalian cells using confocal fluorescent microscopy.

Results

The sensor, named RexYFP, reports changes in the NAD+/NADH ratio in different compartments of living cells. Using RexYFP, we were able to track changes in NAD+/NADH in cytoplasm and mitochondrial matrix of cells under a variety of conditions. The affinity of the probe enables comparison of NAD+/NADH in compartments with low (cytoplasm) and high (mitochondria) NADH concentration. We developed a method of eliminating pH-driven artifacts by normalizing the signal to the signal of the pH sensor with the same chromophore.

Conclusion

RexYFP is suitable for detecting the NAD(H) redox state in different cellular compartments.

General significance

RexYFP has several advantages over existing NAD+/NADH sensors such as smallest size and optimal affinity for different compartments. Our results show that normalizing the signal of the sensor to the pH changes is a good strategy for overcoming pH-induced artifacts in imaging.  相似文献   

6.
Dihydrolipoamide dehydrogenase is a flavoenzyme that reversibly catalyzes the oxidation of reduced lipoyl substrates with the reduction of NAD+ to NADH. In vivo, the dihydrolipoamide dehydrogenase component (E3) is associated with the pyruvate, α-ketoglutarate, and glycine dehydrogenase complexes. The pyruvate dehydrogenase (PDH) complex connects the glycolytic flux to the tricarboxylic acid cycle and is central to the regulation of primary metabolism. Regulation of PDH via regulation of the E3 component by the NAD+/NADH ratio represents one of the important physiological control mechanisms of PDH activity. Furthermore, previous experiments with the isolated E3 component have demonstrated the importance of pH in dictating NAD+/NADH ratio effects on enzymatic activity. Here, we show that a three-state mechanism that represents the major redox states of the enzyme and includes a detailed representation of the active-site chemistry constrained by both equilibrium and thermodynamic loop constraints can be used to model regulatory NAD+/NADH ratio and pH effects demonstrated in progress-curve and initial-velocity data sets from rat, human, Escherichia coli, and spinach enzymes. Global fitting of the model provides stable predictions to the steady-state distributions of enzyme redox states as a function of lipoamide/dihydrolipoamide, NAD+/NADH, and pH. These distributions were calculated using physiological NAD+/NADH ratios representative of the diverse organismal sources of E3 analyzed in this study. This mechanistically detailed, thermodynamically constrained, pH-dependent model of E3 provides a stable platform on which to accurately model multicomponent enzyme complexes that implement E3 from a variety of organisms.  相似文献   

7.
Chemiosmotic coupling mechanisms operate in the electron transfer reactions from: nitrite to O2, NO2 to NAD+, ascorbate to O2, NADH to O2, and NADH to NO3 . The enzyme systems catalyzing these reactions are named NO2 :O2 oxidoreductase, ATP-dependent NO2 :NAD+ oxidoreductase, ascorbate:O2 oxidoreductase, NADH:O2 oxidoreductase, and NADH:NO3 oxidoreductase, respectively. All of the oxidoreduction reactions are exergonic with the exception of the ATP-dependent NO2 :NAD+ oxidoreductase system, which involves reversed electron flow against the thermodynamic gradients. The mechanism for nitrite oxidation was found to be quite different from that of ascorbate oxidation; both systems were insensitive, however, to rotenone, amytal, antimycin A, and 2-n-heptyl 4-hydroxyquinolineN-oxide. These compounds, on the other hand, severely inhibited the electron transfer reactions catalyzed by NADH:O2 oxidoreductase, NADH:NO3 oxidoreductase, and the ATP-dependent NO2 :NAD+ oxidoreductase, indicating a common pathway of electron transport in these oxidoreductase systems. Cyanide inhibited all systems except the NADH:NO3 oxidoredctase. The uncoupler carbonyl cyanide-m-chlorophenyl hydrazone strongly inhibited NO2 :O2 oxidoreductase and ATP-dependent NO2 :NAD+ oxidoreductase, which indicates the involvement of energy-linked reactions in both systems; the uncoupler caused a marked stimulation of the NADH:O2 oxidoreductase and NADH:NO3 oxidoreductase without affecting the ascorbate:O2 oxidoreductase activities.  相似文献   

8.
Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyze substrate oxidation and, as such, it plays a key role in various biological processes such as aging, cell death, and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD+]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labeled metabolic bioprobe of free cytosolic [NAD+]/[NADH] by combining a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD+]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/[lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD+]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD+]/[NADH] ratio, the bioprobe will enable better understanding of the origin of diverse pathological states of the cell as well as monitor cellular consequences of diseases and/or treatments.  相似文献   

9.
The proton magnetic resonance spectra of the dihydronicotinamide ring of αNADH3 and the nicotinamide ring of αNAD+ are reported and the proton absorptions assigned. The absolute assignment of the C4 methylene protons of αNADH is based on the generation of specifically deuterium-labeled (pro-S) B-deuterio-αNADH from enzymatically prepared B-deuterio-βNADH. The C4 proton absorption of αNAD+ is assigned by oxidation of B-deuterio-αNADH by the A specific, yeast alcohol dehydrogenase to yield 4-deuterio-αNAD+.The epimerization of either αNADH or βNADH yields an equilibrium ratio of approximately 9:1 βNADH to αNADH. The rate of epimerization of αNADH to βNADH at 38 °C in 0.05, pH 7.5, phosphate buffer is 3.1 × 10?3 min?1, corresponding to a half-life of 4 hr. Four related dehydrogenases, yeast and horse liver alcohol dehydrogenase and chicken M4 and H4 lactate dehydrogenase, are shown to oxidize αNADH to αNAD+ at rates three to four orders of magnitude slower than for βNADH. By using specifically labeled B-deuterio-αNADH the enzymatic oxidation by yeast alcohol dehydrogenase has been shown to occur with the identical stereospecificity as the oxidation of βNADH. The nonenzymatic epimerization of αNADH to βNADH and the enzymatic oxidation αNADH are discussed as a possible source of αNAD+in vivo.  相似文献   

10.
The kinetic mechanism of betaine aldehyde dehydrogenase from leaves of the plant Amaranthus hypochondriacus is ordered with NAD+ adding first. NADH is a noncompetitive inhibitor against NAD+, which was interpreted before as evidence of an iso mechanism, in which NAD+ and NADH binds to different forms of free enzyme. With the aim of testing the proposed kinetic mechanism, we have now investigated the ability of NADH to form different complexes with the enzyme. By initial velocity and equilibrium binding studies, we found that the steady-state levels of E.glycine betaine are negligible, ruling out binding of NADH to this complex. However, NADH readily bind to E.betaine aldehyde, whose levels most likely are kinetically significant given its low dissociation constant. Also, NADH combined with E.NADH and E.NAD+. Finally, NADH was not able to revert the hydride transfer step, what suggest that there is no acyl-enzyme intermediate, i.e. the release of the reduced dinucleotide takes place after the deacylation step. Although formation of the complex E.NAD+.NADH would produce an uncompetitive effect in the inhibition of NADH against NAD+, the iso mechanism cannot be conclusively discarded.  相似文献   

11.
The crystal structure of the NADH:quinone oxidoreductase PA1024 has been solved in complex with NAD+ to 2.2 Å resolution. The nicotinamide C4 is 3.6 Å from the FMN N5 atom, with a suitable orientation for facile hydride transfer. NAD+ binds in a folded conformation at the interface of the TIM‐barrel domain and the extended domain of the enzyme. Comparison of the enzyme‐NAD+ structure with that of the ligand‐free enzyme revealed a different conformation of a short loop (75–86) that is part of the NAD+‐binding pocket. P78, P82, and P84 provide internal rigidity to the loop, whereas Q80 serves as an active site latch that secures the NAD+ within the binding pocket. An interrupted helix consisting of two α‐helices connected by a small three‐residue loop binds the pyrophosphate moiety of NAD+. The adenine moiety of NAD+ appears to π–π stack with Y261. Steric constraints between the adenosine ribose of NAD+, P78, and Q80, control the strict specificity of the enzyme for NADH. Charged residues do not play a role in the specificity of PA1024 for the NADH substrate.  相似文献   

12.
Lactate dehydrogenase (EC 1.1.1.27) catalyzes the NAD-dependent oxidation to (oxalate) and reduction (to glycollate) of glyoxylate. The kinetics of this disproportionation are in accord with the usual reaction pathway of lactate dehydrogenase:substrate inhibition with appropriate pH dependence occurs; a steady state in the ratio of NADH to NAD+ is set up during the reaction, has the expected dependence on pH, and is independent of the initial glyoxylate, coenzyme, and enzyme concentration. At pH 7 the lactate dehydrogenase-NADH complex is about fivefold more likely to react with and reduce glyoxylate (at a concentration of 100 mm) than to dissociate to produce free NADH, and the ratio of the fraction of the enzyme-NADH complex which dissociates to the fraction which reacts with and reduces glyoxylate varies with glyoxylate concentration and with pH in a manner in agreement with the normal reaction pathway of the enzyme. With all concentrations of glyoxylate and over the pH range 7–9.6 both free (not enzyme bound) NAD+ and free NADH are formed in the steady state of the disproportionation. From these results it is apparent that lactate dehydrogenase, like alcohol dehydrogenase (EC 1.1.1.1), catalyzes a disproportionation within the bounds of its normal kinetic reaction pathway.  相似文献   

13.
In this article we compare the kinetic behavior toward pyridine nucleotides (NAD+, NADH) of NAD+-malic enzyme, pyruvate dehydrogenase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and glycine decarboxylase extracted from pea (Pisum sativum) leaf and potato (Solanum tuberosum) tuber mitochondria. NADH competitively inhibited all the studied dehydrogenases when NAD+ was the varied substrate. However, the NAD+-linked malic enzyme exhibited the weakest affinity for NAD+ and the lowest sensitivity for NADH. It is suggested that NAD+-linked malic enzyme, when fully activated, is able to raise the matricial NADH level up to the required concentration to fully engage the rotenone-resistant internal NADH-dehydrogenase, whose affinity for NADH is weaker than complex I.  相似文献   

14.
Conformation of coenzyme fragments when bound to lactate dehydrogenase   总被引:7,自引:0,他引:7  
The conformations of adenosine, 5′-AMP and 5′-ADP when bound to dogfish M4 lactate dehydrogenase at pH 7.8 or greater have been determined at 2.8 Å resolution to investigate the events on coenzyme binding. The coenzyme fragments AMP and ADP induce a conformational change in lactate dehydrogenase at pH values less than 6.0 in the same way as do NAD+, NADH or ADPR at any pH value. The structure of NAD+ when bound to lactate dehydrogenase had previously been determined at 5.0 Å resolution. The structures of the bound adenosine, AMP, ADP and NAD+ are compared with the preliminary structure of NAD in a 3.0 Å resolution map of the ternary complex LDH-NAD—pyruvate. Small but significant changes in the binding of the phosphates could be important in the folding of the protein loop over the substrate binding pocket.  相似文献   

15.
Synaptic plasma membranes (SPMV) decrease the steady state ascorbate free radical (AFR) concentration of 1 mM ascorbate in phosphate/EDTA buffer (pH 7), due to AFR recycling by redox coupling between ascorbate and the ubiquinone content of these membranes. In the presence of NADH, but not NADPH, SPMV catalyse a rapid recycling of AFR which further lower the AFR concentration below 0.05 μM. These results correlate with the nearly 10-fold higher NADH oxidase over NADPH oxidase activity of SPMV. SPMV has NADH-dependent coenzyme Q reductase activity. In the presence of ascorbate the stimulation of the NADH oxidase activity of SPMV by coenzyme Q1 and cytochrome c can be accounted for by the increase of the AFR concentration generated by the redox pairs ascorbate/coenzyme Q1 and ascorbate/cytochrome c. The NADH:AFR reductase activity makes a major contribution to the NADH oxidase activity of SPMV and decreases the steady-state AFR concentration well below the micromolar concentration range.  相似文献   

16.
Michel Neuburger  Roland Douce 《BBA》1980,589(2):176-189
Mitochondria isolated from spinach leaves oxidized malate by both a NAD+-linked malic enzyme and malate dehydrogenase. In the presence of sodium arsenite the accumulation of oxaloacetate and pyruvate during malate oxidation was strongly dependent on the malate concentration, the pH in the reaction medium and the metabolic state condition.Bicarbonate, especially at alkaline pH, inhibited the decarboxylation of malate by the NAD+-linked malic enzyme in vitro and in vivo. Analysis of the reaction products showed that with 15 mM bicarbonate, spinach leaf mitochondria excreted almost exclusively oxaloacetate.The inhibition by oxaloacetate of malate oxidation by spinach leaf mitochondria was strongly dependent on malate concentration, the pH in the reaction medium and on the metabolic state condition.The data were interpreted as indicating that: (a) the concentration of oxaloacetate on both sides of the inner mitochondrial membrane governed the efflux and influx of oxaloacetate; (b) the NAD+/NADH ratio played an important role in regulating malate oxidation in plant mitochondria; (c) both enzymes (malate dehydrogenase and NAD+-linked malic enzyme) were competing at the level of the pyridine nucleotide pool, and (d) the NAD+-linked malic enzyme provided NADH for the reversal of the reaction catalyzed by the malate dehydrogenase.  相似文献   

17.
Glutamate dehydrogenase, GDH (l-glutamate: NAD+ oxidoreductase (deaminating) EC 1.4.1.2) was purified from the plant fraction of lupin nodules and the purity of the preparation established by gel electrophoresis and electrofocusing. The purified enzyme existed as 4 charge isozymes with a MW of 270000. The subunit MW, as determined by dodecyl sulphate electrophoresis, was 45 000. On the basis of the results of the MW determinations a hexameric structure is proposed for lupin-nodule GDH. The pH optima for the enzyme were pH 8.2 for the amination reaction and pH 8.8 for the deamination reaction. GDH from lupin nodules showed a marked preference for NADH over NADPH in the amination reaction and used only NAD+ for the deamination reaction. Pyridoxal-5′-P and EDTA inhibited activity. The enzyme displayed Michaelis-Menten kinetics with respect to all substrates except NAD+. When NAD+ was the varied substrate, there was a deviation from Michaelis-Menten behaviour towards higher activity at high concentrations of NAD+.  相似文献   

18.
19.
Coated vesicles were isolated from rat liver in about 80% fraction purity as determined from electron microscopy and analyses of marker enzymes and compared with Golgi apparatus and other membrane fractions isolated in parallel. The fractions were enriched in NADH-monodehydroascorbate reductase, ascorbate oxidase and ascorbic acid. The NADH-monodehydroascorbate reductase and ascorbate oxidase of the Golgi apparatus and coated vesicles differed from that of the endoplasmic reticulum in being inhibited by the sodium selective ionophore, monensin, at physiological concentrations while these activities were stimulated by ethylenediaminetetraacetic acid in coated vesicles but not in Golgi apparatus. Activities of both coated vesicles and Golgi apparatus fractions depleted in the coat protein, clathrin, were activated by the addition of clathrin-rich supernatant fractions. The results are discussed in the context of monodehydroascorbate as an acceptor for electron transport-mediated transfer of electrons from NADH by coated vesicles as part of a possible mechanism to drive membrane translocations or to acidify the interiors of vesicles.  相似文献   

20.
Malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37) has been purified about 480-fold from crude extract of the facultative phototrophic bacterium, Rhodopseudomonas capsulata by only two purification steps, involving Red-Sepharose affinity chromatography. The enzyme has a molecular mass of about 80 kDa and consists of two subunits with identical molecular mass (35 kDa). The enzyme is susceptible to heat inactivation and loses its activity completely upon incubation at 40°C for 10 min. Addition of NAD+, NADH and oxaloacetate, but not l-malate, to the enzyme solution stabilized the enzyme. The enzyme catalyzes exclusively the oxidation of l-malate, and the reduction of oxaloacetate and ketomalonate in the presence of NAD+ and NADH, respectively, as the coenzyme. The pH optima are around 9.5 for the l-malate oxidation, and 7.75–8.5 and 4.3–7.0 for the reduction of oxaloacetate and ketomalonate, respectively. The Km values were determined to be 2.1 mM for l-malate, 48 μM for NAD+, 85 μM for oxaloacetate, 25 μM for NADH and 2.2 mM for ketomalonate. Initial velocity and product inhibition patterns of the enzyme reactions indicate a random binding of the substrates, NAD+ and l-malate, to the enzyme and a sequential release of the products: NADH is the last product released from the enzyme in the l-malate oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号