首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】在酿酒酵母中异源表达双孢蘑菇来源的酪氨酸酶基因PPO2,并研究酪氨酸酶在酿酒酵母胞内及胞外的酶学特性。【方法】提取双孢蘑菇总RNA,通过RT-PCR克隆酪氨酸酶基因PPO2,构建表达载体pSP-G1-PPO2,并转化至酿酒酵母进行表达,采用镍亲和层析纯化蛋白并研究其酶学性质。【结果】在酿酒酵母中正确表达了大小为65 kDa的酪氨酸酶蛋白。重组酶能催化底物酪氨酸产生黑色素。体外活性测定表明,酪氨酸酶催化最适温度为45°C,以酪氨酸和多巴为底物时最适pH分别为7.0和8.0。在酿酒酵母中测得底物酪氨酸浓度低于2.5 mg/mL时,黑色素的产量与底物浓度呈现正相关性。【结论】来源于双孢蘑菇的酪氨酸酶基因PPO2在酿酒酵母中成功表达,重组酶具有良好的酶学特性。利用酪氨酸酶产物黑色素的产量与底物浓度呈现正相关性这一特性,可将其作为细胞酪氨酸产量的传感器,为高通量筛选酪氨酸高产菌株提供了思路。  相似文献   

2.
Human interleukin-8 (hIL-8) is a member of interleukin family which functions as a chemotactic factor as well as an angiogenesis mediator. Previously, a study reported that hIL-8 could be purified from inclusion bodies using a prokaryotic expression system, however, the required re-naturation step limits the recovery of fully active protein. In this study, soluble recombinant hIL-8 was expressed as a secreted protein at high level in Pichia pastoris under the control of AOX1 (alcohol oxidase 1) promoter. A simple purification strategy was established to recover rhIL-8 from the fermentation supernatant. The process includes precipitation with 80% saturation ammonium sulfate and CM Sepharose ion exchange chromatography, yielding 30 mg/L purified rhIL-8 at over 95% purity. The obtained rhIL-8 displays high specific activity, stimulating the migration of mouse neutrophils at concentrations as low as 0.25 ng/mL. Our results demonstrate that P. pastoris expression system is an efficient tool for large-scale manufacture of active recombinant hIL-8 for various applications.  相似文献   

3.
The melanin-synthesizing gene operon cloned from Streptomyces castaneoglobisporus HUT6202 consists of two genes, designated tyrC and orf378, which encode apotyrosinase (TYRC) and its activator protein (ORF378), respectively. We have suggested that ORF378 may facilitate the incorporation of Cu(II) into apotyrosinase to express tyrosinase activity. To overproduce ORF378 and TYRC in Escherichia coli BL21(DE3)-pLysS, tyrC, and orf378 were independently but not polycistronically placed under the control of a T7 promoter in a vector, pET-21a(+). His(6)-tagged TYRC and His(6)-tagged ORF378 were simultaneously overproduced in an E. coli strain harboring a plasmid, designated pET-mel2, and the two proteins were co-purified with a Ni(II)-bound affinity column. Gel filtration analysis revealed that the two proteins form a heterodimer complex. The complexed protein was retrieved at a high efficiency (11 mg/L). To obtain an active TYRC, which is a Cu(II)-bound form of tyrosinase, we constructed pET-mel3 that carries orf378 without His(6)-tag and His(6)-tagged tyrC. After the cell-free extract from E. coli harboring pET-mel3 was subjected to Cu(II)-bound affinity column chromatography, His(6)-tagged TYRC, eluted from the column, exhibited the tyrosinase activity. The k(cat) and K(m) values for l-3,4-dihydroxyphenylalanine (l-DOPA) of His(6)-tagged TYRC, which catalyzes the oxidation of l-DOPA to dopaquinone, were 880+/-80s(-1) and 8.1+/-0.9 mM, respectively.  相似文献   

4.
Introduction and expression of foreign genes in bacteria often results accumulation of the foreign protein(s) in inclusion bodies (IBs). The subsequent processes of refolding are slow, difficult and often fail to yield significant amounts of folded protein. RHG1 encoded by rhg1 was a soybean (Glycine max L. Merr.) transmembrane receptor-like kinase (EC 2.7.11.1) with an extracellular leucine-rich repeat domain. The LRR of RHG1 was believed to be involved in elicitor recognition and interaction with other plant proteins. The aim, here, was to express the LRR domain in Escherichia coli (RHG1-LRR) and produce refolded protein. Urea titration experiments showed that the IBs formed in E. coli by the extracellular domain of the RHG1 protein could be solubilized at different urea concentrations. The RHG1 proteins were eluted with 1.0-7.0M urea in 0.5M increments. Purified RHG1 protein obtained from the 1.5 and 7.0M elutions was analyzed for secondary structure through circular dichroism (CD) spectroscopy. Considerable secondary structure could be seen in the former, whereas the latter yielded CD curves characteristic of denatured proteins. Both elutions were subjected to refolding by slowly removing urea in the presence of arginine and reduced/oxidized glutathione. Detectable amounts of refolded protein could not be recovered from the 7.0M urea sample, whereas refolding from the 1.5M urea sample yielded 0.2mg/ml protein. The 7.0M treatment resulted in the formation of a homogenous denatured state with no apparent secondary structure. Refolding from this fully denatured state may confer kinetic and/or thermodynamic constraints on the refolding process, whereas the kinetic and/or thermodynamic barriers to attain the folded conformation appeared to be lesser, when refolding from a partially folded state.  相似文献   

5.
The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-1R). These actions are modulated by a family of six IGF-binding proteins (IGFBP-1-6; 22-31 kDa) that via high affinity binding to the IGFs (KD ∼ 300-700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access. In recent years, IGFBPs have been implicated in a variety of cancers. However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood. A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis. Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in Escherichia coli. Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern. The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E. coli and first structural characterization of a full-length IGFBP.  相似文献   

6.
DNA inserts encoding human interleukin 10 (hIL-10), optimized for codon usage and secondary RNA structure, were purchased from several commercial sources and subcloned into a pMon vector. Despite the optimization, protein expression was nil. We therefore subjected the 5′ segment of the cDNA encoding N-terminal amino acids 2–11 to degenerate PCR in order to create a small library of 130 K theoretical cDNA combinations that would not change the respective amino acid sequence and tested their expression. After screening over 320 colonies 10 hIL-10 clones encoding the original amino acid sequence were identified. Three nucleotide substitutions were sufficient to ensure reasonable protein expression. Subsequently, hIL-10 was expressed in Escherichia coli, refolded and purified to homogeneity, yielding over 95% electrophoretically pure noncovalent homodimeric protein, which was biologically active in MC/9 cells. The yield of recombinant hIL-10 from 10 L of fermentation culture was 60 mg and a protocol for its long-term storage as a carrier-free lyophilized powder at −20° was developed.  相似文献   

7.
Summary Human IL-4 (hIL-4) has been cloned from a human T cell line based on its homology to the murine IL-4 cDNA sequence [36]. We have compared cytoplasmic and extra-cytoplasmic expression of this basic protein inEscherichia coli using various combinations of promoters, replicons and host strains. Strains producing a cytoplasmic product were most successful at heterologous protein expression, producing up to 500 mg/l of an inactive aggregated form of the protein. The biological activity of the protein could be restored by refolding the protein with guanidine hydrochloride and glutathione giving a specific activity identical to that of IL-4 derived from CHO cell lines stably transformed with an hIL-4 expression plasmid. Strains designed to secrete human IL-4 into the periplasmic space produced far less protein (approximately 5 mg/l). However, a significant fraction of this protein was detected in the culture medium. This fraction appeared to be soluble after ultracentrifugation, and demonstrated high specific activity without refolding. Leakage of heterologous protein into the culture medium may be a viable way to recover biologically active products without relying on the denaturation and refolding in vitro that can, at times, yield incorrectly folded gene product.  相似文献   

8.
A significant problem in production of fruit juices for human consumption is auto-clarification, where enzyme catalyzes pectin demethylation resulting in loss of the ‘‘natural” cloudy appearance of juices. To overcome this problem, a plant inhibitor protein which blocks the action of pectin methylesterase has been used. In this paper, expression of recombinant kiwi pectin methylesterase inhibitor (PMEI) was carried out in Escherichia coli, and the target protein was expressed in the form of inclusion bodies. The expression level reached 46% of total cell protein. Then the fusion protein was purified by nickel ion metal affinity chromatography, and the purity was finally up to 98%. After refolding in GSH/GSSG redox system, recombinant PMEI not only could efficiently inhibit PMEs from eight different plants, but could remain effective inhibitor activity in the pH 3.0–10.0 and 20–40 °C. Thus, recombinant PMEI has potential application in the production of fruit juices product industry.  相似文献   

9.
Tryptophan hydroxylase (TPH) from several mammalian species has previously been cloned and expressed in bacteria. However, due to the instability of wild type TPH, most successful attempts have been limited to the truncated forms of this enzyme. We have expressed full-length human TPH in large amounts in Escherichia coli and Pichia pastoris and purified the enzyme using new purification protocols. When expressed as a fusion protein in E. coli, the maltose-binding protein-TPH (MBP-TPH) fusion protein was more soluble than native TPH and the other fusion proteins and had a 3-fold higher specific activity than the His-Patch-thioredoxin-TPH and 6xHis-TPH fusion proteins. The purified MBP-TPH had a V(max) of 296 nmol/min/mg and a K(m) for L-tryptophan of 7.5+/-0.7 microM, compared to 18+/-5 microM for the partially purified enzyme from P. pastoris. To overcome the unfavorable properties of TPH, the stabilizing effect of different agents was investigated. Both tryptophan and glycerol had a stabilizing effect, whereas dithiothreitol, (6R)-5,6,7,8,-tetrahydrobiopterin, and Fe(2+) inactivated the enzyme. Irrespective of expression conditions, both native TPH expressed in bacteria or yeast, or TPH fusion proteins expressed in bacteria exhibited a strong tendency to aggregate and precipitate during purification, indicating that this is an intrinsic property of this enzyme. This supports previous observations that the enzyme in vivo may be stabilized by additional interactions.  相似文献   

10.
In this work, the intein fusion approach was used for expression and purification of cathelicidin-like peptide SMAP-29 from Escherichia coli cultures. To overcome the high toxicity of the antimicrobial peptide against host cells, both C- and N-terminal fusions with Sce VMA intein were evaluated. The fusion of SMAP-29 with the N-terminus of intein had a dramatic lethal effect. In contrast, chimeric constructs harboring SMAP-29 linked to the C-terminus of intein displayed no significant inhibition of bacterial growth. Expression of intein-SMAP fusion protein was then induced in ER2566 E. coli strain by IPTG addition and different experimental conditions were tested in order to optimize the recovery of the soluble protein complex. Peptide purification was carried out by affinity chromatography: the chitin binding domain linked to intein was used to immobilize the chimeric protein on a chitin column and intein-mediated splicing of target peptide was obtained by thiol addition. Microbroth dilution assay showed that recombinant SMAP-29 displayed a high, dose-dependent bactericidal activity. These data demonstrate that the fusion of SMAP-29 with C-intein was able to inactivate the antimicrobial properties of the cathelicidin peptide allowing the expression of fusion protein in the host cell. The intein-mediated purification supplied an effective way to recover the fusion partner in its proper biologically active form.  相似文献   

11.
The B subunit of Escherichia coli heat-labile toxin (LTB) may function as an efficient carrier molecule for the delivery of genetically coupled antigens across the mucosal barrier. We constructed vectors for the expression of LTB and LTBSC proteins. LTBSC is a fusion protein that comprises the amino acid sequence from the C-domain of rat synapsin fused to the C-terminal end of LTB. Both constructions have a coding sequence for a 6His-tag fused in-frame. LTBSC was expressed in E. coli as inclusion bodies. The inclusion bodies were isolated and purified by Ni2+-chelating affinity chromatography under denaturing condition. Purified LTBSC was diluted in several refolding buffers to gain a soluble and biologically active protein. Refolded LTBSC assembled as an active oligomer which binds to the GM1 receptor in an enzyme-linked immunosorbent assay (ELISA). Soluble LTB in the E. coli lysate was also purified by Ni2+-chelating affinity chromatography and the assembled pentamer was able to bind with high affinity to GM1 in vitro. LTBSC and LTB were fed to rats and the ability to induce antigen-specific tolerance was tested. LTBSC inhibited the specific delayed-type hypersensitivity (DTH) response and induced decreased antigen-specific in vivo and in vitro cell proliferation more efficiently than LTB. Thus, the novel hybrid molecule LTBSC when orally delivered was able to elicit a systemic immune response. These results suggest that LTBSC could be suitable for exploring further therapeutic treatment of autoimmune inflammatory diseases involving antigens from central nervous system.  相似文献   

12.
Rotavirus VP8* subunit is the minor trypsin cleavage product of the spike protein VP4, which is the major determinant of the viral infectivity and neutralization. To study the structure-function relationship of this fragment and to obtain type-specific reagents, substantial amounts of this protein are needed. Thus, full-length VP8* cDNA, including the entire trypsin cleavage-encoding region in gene 4, was synthesized and amplified by RT-PCR from total RNA purified from bovine rotavirus strain C486 propagated in MA104 cell culture. The extended VP8* cDNA (VP8ext) was cloned into the pGEM-T Easy plasmid and subcloned into the Escherichia coli expression plasmid pET28a(+). The correspondent 30 kDa protein was overexpressed in E. coli BL21(DE3)pLysS cells under the control of the T7 promoter. The identity and the antigenicity of VP8ext were confirmed on Western blots using anti-His and anti-rotavirus antibodies. Immobilized Ni-ion affinity chromatography was used to purify the expressed protein resulting in a yield of 4 mg of VP8ext per liter of induced E. coli culture. Our results indicate that VP8ext maintained its native antigenicity and specificity, providing a good source of antigen for the production of P type-specific immune reagents. Detailed structural analysis of pure recombinant VP8 subunit should allow a better understanding of its role in cell attachment and rotavirus tropism. Application of similar procedure to distinct rotavirus P serotypes should provide valuable P serotype-specific immune reagents for rotavirus diagnostics and epidemiologic surveys.  相似文献   

13.
A two-plasmid Escherichia coli system for expression of Dr adhesins   总被引:1,自引:1,他引:0  
This paper presents a very efficient expression system for production of Dr adhesins. The system consists of two plasmids. One is the pACYCpBAD-DraC-C-His, which contains the draC gene under the control of the arabinose promoter (pBAD), encoding the DraC usher. The second is the pET30b-syg-DraBE, which contains the draB and draE genes under the control of the T7lac promoter, encoding the DraB chaperone and the DraE adhesin, respectively. Those plasmids have different origin of replication and can therefore coexist in one cell. Since different promoters are present, the protein expression can be controlled. The Dr adhesion expression system constructed opens up a lot of possibilities, and could be very useful in experiments focusing on understanding the biogenesis of Gram-negative bacteria adhesins. For this purpose we showed that the AfaE-III adhesin (98.1% identity between the DraE and the AfaE-III adhesins, with three divergent amino acids within the sequences) was able to pass through the DraC channel in the Escherichia coli BL21(DE3) strain. Immunoblotting analysis and immunofluorescence microscopy showed the presence of AfaE-III on the bacterial cell surface. In addition, the system described can be useful for displaying the immune-relevant sectors of foreign proteins on the bacterial cell. The heterologous epitope sequence of the HSV1 glycoprotein D was inserted into the draE gene in place of the N-terminal region of surface exposed domain 2. Chimeric proteins were exposed on the bacterial surface as evidenced by immunoblotting and immunofluorescence microscopy. The effective display of peptide segments on Dr fimbriae expressed at the bacterial cell surface, can be used for the development of a fimbrial vaccine.  相似文献   

14.
融合了跨膜肽的抗氧化酶可进入细胞,保护细胞免受放射损伤。然而跨膜肽的跨膜能力没有靶向性,其也可把抗氧化酶带入肿瘤细胞进而保护肿瘤细胞,降低放疗的效果。为此,根据多数肿瘤细胞微环境中存在活性基质金属蛋白酶(matrix metalloproteinase,MMP)-2或MMP-9的特点,在细胞跨膜肽R9与人铜、锌超氧化物歧化酶(superoxide dismutase 1,SOD1)和谷胱甘肽S-转移酶(glutathione S-transferase,GST)之间融合MMP-2/9的底物肽X,设计了融合蛋白GST-SOD1-X-R9。该蛋白在肿瘤微环境中可因MMP-2/9酶切底物肽X而失去跨膜肽,从而无法进入肿瘤细胞,进而只能进入正常细胞。全基因合成SOD1-X-R9序列,并将其插入原核表达载体pGEX-4T-1中,得到表达质粒,并实现了GST-SOD1-X-R9融合蛋白的可溶表达。GST-SOD1-X-R9经硫酸铵沉淀和GST亲和层析纯化,分子量约为47 kDa,与理论值一致。纯化的融合蛋白的SOD活性和GST活性分别为2954 U/mg和328 U/mg。GST-SOD1-X-R9的SOD活性或GST活性在生理条件下几乎没有变化。该融合蛋白在溶液中可被胶原酶Ⅳ部分水解。分别建立了2D和3D培养的HepG2细胞模型来检验肿瘤微环境中的MMP-2活力对该蛋白跨膜能力的影响。在2D培养模型中,HepG2的MMP-2活力极低,但在3D培养模型中,随着培养时间的增加,HepG2肿瘤球的体积变大,其胞外MMP-2活力也随之增强。GST-SOD1-X-R9在2D培养的HepG2细胞中具有和GST-SOD1-R9蛋白一样的跨膜效率,但在3D培养的HepG2细胞球中的跨膜能力大大降低。本研究为后续深入研究GST-SOD1-X-R9靶向防护正常细胞的氧化损伤效应奠定了基础。  相似文献   

15.
【背景】玉米赤霉烯酮(Zearalenone,ZEN)是污染最广泛的霉菌毒素之一,对饲料行业和畜牧业造成了巨大的经济损失。目前研究最为广泛的玉米赤霉烯酮降解酶ZHD101因其热稳定性较差,无法满足工业应用上的要求。【目的】为实现玉米赤霉烯酮降解酶在工业上的应用,寻找酶学性质更突出的ZEN降解酶。【方法】基于对Gen Bank数据库的挖掘,发现一个来源于麦氏喙枝孢霉(Rhinocladiella mackenziei CBS 650.93)的Rmzhd基因,构建p ET-46-Rmzhd质粒。利用大肠杆菌表达体系和亲和层析、离子交换纯化体系对蛋白进行表达和纯化,通过高效液相凝胶色谱分析酶学性质。【结果】发现一个新的ZEN水解酶Rm ZHD,RmZHD在pH 8.6和45°C条件下的活性最高,而且具有较高的耐热性。结构分析表明,较高的盐桥数目和溶剂暴露脯氨酸含量可能是造成其高耐热性的原因。【结论】本研究为促进玉米赤霉烯酮降解酶在工业上的应用打下基础。  相似文献   

16.
为增强调宁蛋白对平滑肌收缩的抑制作用,用PCR重叠延长法使调宁蛋白基因中编码第184位苏氨酸的ACT突变为编码丙氨酸的GCC,将此PCR的突变产物装入到质粒载体pAED4后,转化至E.coli BL21(DE3)中, 构建的重组转化子用酶切和测序鉴定.诱导含有重组转化子的E.coli获得高效表达,经SDS-PAGE和蛋白质印迹鉴定后,采用反复冻融法及葡聚糖凝胶层析柱分离,初步纯化出调宁蛋白突变体T184A.  相似文献   

17.
Pravastatin, an important cholesterol lowering drug, is currently produced by hydroxylation of mevastatin (ML-236B) with Streptomyces carbophilus, in which the enzyme P450sca-2 plays a key role. Little information on the recombinant expression of this enzyme is available. As it is of industrial interest to develop an alternative simplified enzymatic process for pravastatin, as a first step, further study on the heterologous expression of this enzyme is warranted. We report here, for the first time, the purification, and characterization of P450sca-2 expressed in Escherichia coli. A synthetic gene encoding P450sca-2 was designed to suit the standard codon usage of E. coli. Expression of P450sca-2 in E. coli under optimized conditions yielded about 100 nmol purified active P450sca-2 per liter. Directed evolution was further carried out to improve the soluble expression level. In the absence of a facile and sensitive assay, green fluorescent protein (GFP) was used as a reporter to enable high-throughput screening. After three rounds of evolution by error-prone PCR and DNA shuffling, six almost totally soluble mutants were obtained, with the soluble expression levels dramatically improved by about 30-fold. For six most frequently occurring mutations, the corresponding single mutants were created to dissect the effects of these mutations. A single mutation, P159A, was found to be responsible for most of the enhanced solubility observed in the six mutants, and the corresponding single mutant also retained the hydroxylation activity. Our study provides a foundation for future work on improving functional expression of P450sca-2 in E. coli.  相似文献   

18.
Rat bone morphogenetic protein-4 (rBMP-4) cDNA was cloned from rat osteoblasts by RT-PCR and expressed in E. coli. Monomeric, dimeric and polymeric forms of recombinant rat BMP-4 (rrBMP-4) were obtained from inclusion bodies after solubilization with urea. The dimer was separated from the remaining polymer and host cell contaminants using size exclusion chromatography. Furthermore, purified rrBMP-4 was stabilized at low urea concentration (40 mm) and at pH 8.5 through the addition of bovine serum albumin. Both, rrBMP-4 dimer and polymer were biologically active as tested by the induction of alkaline phosphatase activity in MC3T3-E1 cells.  相似文献   

19.
Purification and Properties of a Ribonuclease from Cowpea Cotyledons   总被引:3,自引:0,他引:3  
The isolation and characterisation of cotyledonary ribonucleases (RNase; EC 3.1.27.1), are basic steps to understand the physiology and biochemistry of RNA turnover and mobilisation during seed germination and seedling establishment, as well as how environmental stresses affect them. RNase was isolated and purified 928-fold, to apparent electrophoretic homogeneity from 5-d-old seedlings of Vigna unguiculata. It is a protein with an apparent molecular mass of 16 kDa having three major isoforms. Its optimum pH is 5.8, which decreases to 5.2 in presence of KCl. It has an apparent Km of 0.80 mg RNA cm-3 and retains 40 % of its activity when heated to 80 °C. It is completely inhibited by Cu2+, Hg2+ and Zn2+ and is almost insensitive to Mg2+, Ca2+- and EDTA. Urea, Fe2+, Co2+ and 2-mercaptoethanol partially inhibit its activity. Its amino acid composition shows a resem lance to that of other plant RNases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Over-expression and purification of soluble and functional proteins remain critical challenges for many aspects of biomolecular research. To address this, we have developed a novel protein tag, HaloTag7, engineered to enhance expression and solubility of recombinant proteins and to provide efficient protein purification coupled with tag removal. HaloTag7 was designed to bind rapidly and covalently with a unique synthetic linker to achieve an essentially irreversible attachment. The synthetic linker may be attached to a variety of entities such as fluorescent dyes and solid supports, permitting labeling of fusion proteins in cell lysates for expression screening, and efficient capture of fusion proteins onto a purification resin. The combination of covalent capture with rapid binding kinetics overcomes the equilibrium-based limitations associated with traditional affinity tags and enables efficient capture even at low expression levels. Following immobilization on the resin, the protein of interest is released by cleavage at an optimized TEV protease recognition site, leaving HaloTag7 bound to the resin and pure protein in solution. Evaluation of HaloTag7 for expression of 23 human proteins in Escherichia coli relative to MBP, GST and His6Tag revealed that 74% of the proteins were produced in soluble form when fused to HaloTag7 compared to 52%, 39% and 22%, respectively, for the other tags. Using a subset of the test panel, more proteins fused to HaloTag7 were successfully purified than with the other tags, and these proteins were of higher yield and purity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号