首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Phytochemistry》1987,26(5):1311-1315
The incorporation of [14C]acetate into fatty acids in a plasma membrane enriched fraction from mature soybean root (Glycine max) was studied by time-course experiments. Mature sections of 4-day-old dark-grown soybean roots were incubated with [1-14C]acetate, 1 mM sodium acetate and 50 μ/ml chloramphenicol. Plasma membrane vesicles were isolated at pH 7.8 and in the presence of 5 mM EDTA, 5 mM EGTA and 10 mM NaF. Lipid extracts analysed for phospholipid class and acyl chain composition revealed that relatively long incubation times did not alter the phospholipid composition of the plasma membrane enriched fraction. Radioactivity was incorporated into all the phospholipid classes proportional to their concentration in the membrane fraction. The distribution of 14C within the fatty acids of phosphatidylcholine and phosphatidylethanolamine differed from the respective fatty acid compositions and changed with time. Radioactivity also appeared more rapidly in the unsaturated acyl groups of phosphatidylcholine when compared with phosphatidylethanolamine. The rate and pattern of fatty acid incorporation into phosphatidylcholine differed from that for phosphatidylethanolamine.  相似文献   

2.
1. Measurements were made of milk yield, mammary blood flow and arteriovenous differences of each plasma lipid fraction, and their specific radioactivities, during the infusion of [U-14C]stearate, [U-14C]oleate, [U-14C]palmitate and [1-14C]acetate into fed lactating goats. 2. Entry rates of fatty acids into the circulation were 4·2mg./min./kg. body wt. for acetate, and 0·18, 0·28 and 0·42mg./min./kg. for stearate, oleate and palmitate respectively. Acetate accounted for 23% of the total carbon dioxide produced by the whole animal, and contributed to the oxidative metabolism of the mammary gland to about the same extent. Corresponding values for each of the long-chain acids were less than 1%. 3. There were no significant arteriovenous differences of phospholipids, sterols or sterol esters, and their fatty acid composition showed no net changes during passage through the mammary gland. 4. There were large arteriovenous differences of plasma triglycerides, and their fatty acid composition showed marked changes across the gland. The proportions of palmitate and stearate fell, and that of oleate increased. 5. Arteriovenous differences of plasma free fatty acids (FFA) were small and variable, but a large fall in the specific radioactivity of each of the long-chain acids examined indicated substantial uptake of plasma FFA, accompanied by roughly equivalent FFA release from mammary tissue. The uptake of FFA was confirmed by the extensive transfer of radioactivity into milk. The FFA of milk were similar in composition and radioactivity to the milk triglyceride fatty acids, and quite unlike plasma FFA. 6. The formation of large amounts of oleic acid (18–21 mg./min.) from stearic acid was demonstrated. 7. During the terminal stages of the [14C]acetate infusion, milk triglyceride fatty acids of chain length C4–C14 showed specific radioactivities that were 75–90% of that of blood acetate, and that of palmitate was roughly one-quarter of this value. Oleate and stearate were unlabelled. 8. The results confirmed that milk fatty acids of chain length C4–C14 arise largely from blood acetate, and palmitate is derived partly from acetate and partly from plasma triglyceride, the latter fraction being almost the sole precursor of oleate and stearate.  相似文献   

3.
The present study was undertaken to assess whether chronic exposition to cadmium (Cd, 0.133 mM per liter for 2 months) through drinking water may affect the lipid contents in the pituitary anterior lobe (PAL) of adult male Wistar rats. As compared to metal non-exposed controls, PALs exposed to cadmium showed an increase in total phospholipid contents, which was associated to an increase of the incorporation of [1–14C]-methyl choline into phosphatidylcholine and of [U–14C]-glucose into total phospholipids. The incorporation of [1–14C]-methyl choline into sphingomyelin was not changed. Incorporation of [1–14C]-acetate into total fatty acids also increased but incorporation of [1–14C]-acetate into cholesterol did not change. The activity of phospholipase D decreased both in PALs from Cd exposed rats and in PAL dispersed cells treated with Cd in the culture medium from Cd non-exposed rats. In PALS from Cd exposed rats, a decrease of serum prolactin and growth hormone concentrations was determined. The results shown that cadmium modifies the lipid contents of pituitary gland and directly or indirectly the levels of prolactin and growth hormone in serum.  相似文献   

4.
The synthesis of fatty acids and lipids in Nannochloropsis sp. was investigated by labeling cells in vivo with [14C]-bicarbonate or [14C]-acetate. [14C]-bicarbonate was incorporated to the greatest extent into 16:0, 16:1, and 14:0 fatty acids, which are the predominant fatty acids of triacylglycerols. However, more than half of the [14C]-acetate was incorporated into longer and more desaturated fatty acids, which are constituents of membrane lipids. [14C]-acetate was incorporated most strongly into phosphatidylcholine, which rapidly lost label during a 5-h chase period. The label associated with phosphatidylethanolamine also decreased during the chase period, whereas label in other membrane lipids and triacylglycerol increased. The dynamics of labeling, along with information regarding the acyl compositions of various lipids, suggests that 1) the primary products of chloroplast fatty acid synthesis are 14:0, 16:0, and 16:1; 2) C20 fatty acids are formed by an elongation reaction that can utilize externally supplied acetate; 3) phosphatidylcholine is a site for desaturation of C18 fatty acids; and 4) phosphatidylethanolamine may be a site for desaturation of C20 fatty acids.  相似文献   

5.
The effects of gentamicin on phospholipid levels and metabolism and the uptake of phosphatidylcholine (PC) adsorbed to low-density lipoprotein (LDL) were investigated in cultured human proximal tubular (PT) cells. Cells incubated with gentamicin (0.3 mM) for one to 21 days had a similar increase in the cell number and protein as compared to control cells. However, the cellular levels of phosphatidylcholine (PC) and sphingomyelin (SM), but not other phospholipids, increased in a time-dependent manner. Incubation of gentamicin (0.3 to 3.0 mM) resulted in a concentration-dependent increase in the cellular levels of PC (50% to 320%) and SM (20% to 40%). Gentamicin stimulated the incorporation of [14C]-acetate into diacylglycerol, PC, and SM in the order of 300%, 66%, and 20%, respectively, but not into lysophosphatidylcholine (LPC). Similarly, gentamicin stimulated the incorporation of [14C]-choline into PC and SM in the order of 300% and 172%, respectively, but not into LPC as compared to control cells. In addition, gentamicin also stimulated the incorporation of [14C]-choline into cytidine diphosphocholine (CDP-choline). However, the endocytosis of [14C]-PC-LDL was lower in cells incubated with gentamicin than in control cells. Thus, exogenously derived PC on LDL does not contribute to the increased cellular levels of PC in PT cells incubated with gentamicin. The activity of cytidine triphosphate (CTP):phosphocholine cytidyltransferase was moderately lower in cells incubated with gentamicin as compared to control. By contrast, the activity of phospholipase A1 and phospholipase C was twofold lower in cells incubated with gentamicin for 21 days as compared to control. Thus, increased incorporation of [14C]-acetate and [14C]-choline into PC in cells incubated with gentamicin may not only be due to increased endogenous synthesis but to decreased catabolism of newly synthesized PC. We conclude that gentamicin impairs the lysosomal catabolism of PC, leading to its accumulation in PT cells. This phenomenon may be an indication of gentamicin-induced nephrotoxicity in man.  相似文献   

6.
J. J. MacCarthy  P. K. Stumpf 《Planta》1980,147(5):389-395
Cell suspension cultures of Catharanthus roseus G. Don, Glycine max (L.) Merr. and Nicotiana tabacum L. were incubated with [14C]acetate, [14C]oleic acid and [14C]linoleic acid at five different temperatures ranging from 15 to 35° C. When the incubation temperature was increased, [14C]acetate was incorporated preferentially into [14C]palmitate, with a concomitant drop in [14C]oleate formation. Between 15 and 20° C, [14C]oleic acid accumulated in C. roseus cells. In all cultures, optimum desaturation of [14C]oleic acid to [14C]linoleic acid occurred between 20 and 25° C, and in G. max this was also the optimal range for desaturation of [14C]linoleic acid to [14C]linolenic acid. Elongation of [14C]palmitic acid was inhibited when cultures grown at 15° C for 25 h were subsequently incubated with [14C]acetate at 25° C. [14C]oleic acid accumulated in G. max and C. roseus cultures grown at 35° C for 25 h and subsequently incubated at 25° C. Desaturation of [14C]oleic acid increased up to 25° C, but then decreased or leveled off depending on the cell line and on the temperature prior to incubation.  相似文献   

7.
The incorporation of [14C]-acetate, [14C]-mevalonate and [14C]-desmosterol into cholesterol in the muscle mitochondria of the brown shrimpPenaeus aztecus (Ives) is more as compared to that in hepatopancreas. [14C]-Desmosterol is more efficiently incorporated into cholesterol in comparison with [14C]-acetate. The muscle mitochondria from males incorporated more [14C]-mevalonate into cholesterol than those from females, while the converse is true in the hepatopancreatic mitochondria.  相似文献   

8.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

9.
We have investigated pathways of lipid metabolism in boar spermatozoa sperm cells incubated for up to 3 days with [14C]palmitic acid, [14C]glycerol, [14C]choline, or [14C]arachidonic acid or incorporated these precursors into diglycerides and/or phospholipids. When spermatozoa were incubated with [14C]palmitic acid or [14C]glycerol, there was first an incorporation into phosphatidic acid, followed by labelling of 1,2-diacylglycerol (DAG) and then phosphatidyl-choline (PC). This indicates that the de novo pathway of phospholipid synthesis is active in these cells. However, not all DAG was converted to PC. A pool of di-saturated DAG, which represented a considerable proportion of the high basal levels of DAG, accumulated the majority of label. Another DAG pool, containing saturated fatty acids in position 1 and unsaturated fatty acids in position 2 and representing the remaining basal DAG, was in equilibrium with PC. When spermatozoa were incubated with [14C]arachidonic acid, there was a considerable incorporation of label into PC, which indicates the presence of an active deacylation/reacylation cycle. The behaviour of certain lipid pools varied depending on the temperature at which spermatozoa were incubated. For example, in the presence of [14C]palmitic acid or [14C]arachidonic acid, there was more incorporation of label into PC when spermatozoa were incubated at 25°C than when incubated at 17°C. Taken together, these results indicate that spermatozoa have an active lipid synthetic capacity. It may therefore be possible to design methods to evaluate the metabolic activity of boar spermatozoa based on the incorporation of lipid precursors under standardized conditions. Mol. Reprod. Dev. 47:105–112, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
(1) Human platelets were incubated with high density lipoproteins (HDL) doubly labelled with either free [14C]arachidonate/[3H]arachidonoylphosphatidylcholine or free [14C]oleate/[3H]oleoylphosphatidylcholine. Whereas [14C]arachidonate was incorporated at a 10–15 times higher rate than [14C]oleic acid, the exchange of both species of phosphatidylcholine occurred to the same extent. In both cases, free 3H-labelled fatty acids were generated during the labelling procedure, indicating phospholipase A2 hydrolysis. A redistribution of radioactivity to other phospholipids was noted after exchange of [3H]arachidonoylphosphatidylcholine only. (2) The exchange of phosphatidylcholine to platelets was confirmed using [14C]choline-labelled dipalmitoyl- and 1-palmitoyl-2-arachidonoylphosphatidylcholines. (3) Non-lytic degradation of platelet phospholipids by phospholipases revealed that free fatty acids were incorporated at the inside of the cells, whereas exchange was taking place on the platelet outer surface. However, 2-arachidonoylphosphatidylcholine displayed a more rapid movement towards the cell inside. The above findings suggest a topological asymmetry for the two pathways (acylation and exchange) of fatty acid renewal in platelets. The possible mechanisms and physiological relevance of the translocation of the external arachidonic acid pool across the membrane are discussed.  相似文献   

11.
The understanding of the biosynthetic pathway of 6-pentyl-α-pyrone in Trichoderma species was achieved by using labelled linoleic acid or mevalonate as a tracer. Incubation of growing cultures of Trichoderma harzianum and T. viride with [U-14C]linoleic acid or [5-14C]sodium mevalonate revealed that both fungal strains were able to incorporate these labelled compounds (50 and 15%, respectively). Most intracellular radioactivity was found in the neutral lipid fraction. At the initial time of incubation, the radioactivity from [14C]linoleic acid was incorporated into 6-pentyl-α-pyrone more rapidly than that from [14C]mevalonate. No radioactivity incorporation was detected in 6-pentyl-α-pyrone when fungal cultures were incubated with [1-14C]linoleic acid. These results suggested that β-oxidation of linoleic acid was a probable main step in the biosynthetic pathway of 6-pentyl-α-pyrone in Trichoderma species.  相似文献   

12.
1. Lipogenesis in vivo has been studied in mice given a 250mg. meal of [U-14C]glucose (2·5μc) or given an intraperitoneal injection of 25μg. of [U-14C]glucose (2·0μc). 2. The ability to convert a [U-14C]glucose meal into fatty acid was not significantly depressed by 6–7hr. of starvation. In contrast, incorporation of 14C into fatty acid in the liver after the intraperitoneal dose of [14C]glucose was depressed by 80% and by more than 90% by 1 and 2hr. of starvation respectively. Carcass fatty acid synthesis from the [U-14C]glucose meal was not depressed by 12hr. of starvation, whereas from the tracer dose of [U-14C]glucose the depression in incorporation was 80% after 6hr. of starvation. 3. Re-feeding for 3 days, after 3 days' starvation, raised fatty acid synthesis and cholesterol synthesis in the liver fivefold and tenfold respectively above the levels in non-starved control mice. These increases were associated with an increased amount of both fatty acid and cholesterol in the liver. 4. After 18hr. of starvation incorporation of a [U-14C]glucose meal into carcass and liver glycogen were both increased threefold.  相似文献   

13.
Acylgalactosylceramide (AGC) synthesis was measured in vivo, and in a cell free system. 24 hours post-injection of [3H]palmitic acid into rat brain, more than 60% of the AGC radioactivity was associated with an ester linkage. Isolated rat myelin was incubated in the presence of [14C]palmitic acid, 2mM ATP, 50 M CoA and 10 mM MgCl2 and acylation of myelin cerebrosides occurred at a linear rate for at least 60 min. Incubation of isolated myelin under standard conditions with [3H] cerebrosides and [14C]palmitic acid produced double labeled AGC. Labeling of AGC was maximum at pH 7.5 and 37°C and appeared to be enzyme mediated inasmuch as it was reduced by myelin incubation with trypsin and drastically reduced by preheating the myelin for 5 min at 80°C. Omission of ATP, CoA, MgCl2 or all three did not reduce fatty acid incorporation into AGC when compared to the values in the complete system. Addition of Triton X100 or Sodium Dodecyl Sulfate had little or no effect on the acylation of cerebrosides. Pulse chase experiments indicated that the reaction involved the net addition of fatty acid to the cerebrosides, rather than a rapid fatty acid exchange.  相似文献   

14.
Wheat leaves were labelled with [l-14C]-glycerol or [l-14C]-acetateand chase experiments performed in the dark or under light.In plastids, both in the dark and under light, the results indicatea transfer of [l-14C]-glycerol from phospholipids to galactolipidsand of [l-14C]-acetate from phosphatidylcholine (PC) to monogalactosyldiacylglycerol (MGDG). They also argue for a transfer of [l-14C]-glyceroland [1-14C]-acetate from phosphatidylcholine (PC) to phosphatidylethanolamine(PE) in extraplastidial membranes. During chase experimentsin the dark, the chloroplasts accumulated higher amounts ofradioactive precursor in saturated fatty acids. In the darkor under light, oleoyl-PC labelling equally decreased in plastids,but decreased much more under light in extraplastidial membranes.Light enhanced polyunsaturated fatty acid synthesis, mainlyin MGDG, PC, PE and plastidial phosphatidylglycerol (PG). In the dark or under light, all glycerolipids were labelledwhen purified plastids were incubated with [l-14C]-acetate.Light stimulated the incorporation of the label in palmitoyl-MGDG,PG and sulfoquinovosyldiacylglycerol (SL) and also the transferof oleate from PC to MGDG. Only under light and when extraplastidialmembranes were added to isolated plastids, linoleoyl-MGDG, PGand PC were slightly labelled. These results argue for a stimulating effect of light on glycerolipidsynthesis in wheat leaf chloroplasts, on the transfer of oleatefrom PC to MGDG and on the desaturase activity. (Received March 8, 1986; Accepted September 26, 1986)  相似文献   

15.
Heterotrophic cell suspension cultures of soya (Glycine max) and photomixotrophic cell suspension cultures of rape (Brassica napus) were incubated with cis-9-[1-14C]octadecenol for 3–48 h. It was found that under aerobic conditions large proportions of the alcohol are oxidized to oleic acid, which is incorporated predominantly into phospholipids, whereas up to 30% of the substrate is esterified to wax esters. This is true for both the heterotrophic and the photomixotrophic cell suspension cultures, but the metabolic rates are much higher in the latter. Under anaerobic conditions only small proportions of the radioactively labeled alcohol are oxidized to oleic acid, whereas a major portion of the alcohol is esterified to wax esters both in heterotrophic and photomixotrophic cultures. Incubations of homogenates of photomixotrophic rape cells with labeled cis-9-octadecenol showed that pH 6 is optimum for the formation of wax esters. This monounsaturated alcohol is preferred as a substrate over saturated longchain alcohols, whereas short-chain alcohols, cholesterol, and glycerol are not acylated. Incubations of an enzyme concentrate from a homogenate of rape cells with unlabeled cis-9-octadecenol and [1-14C]oleic acid, or [1-14C]stearoyl-CoA, or di[1-14C]palmitoyl-sn-glycero-3-phosphocholine showed that acylation of the longchain alcohol proceeds predominantly through acyl-CoA. Direct esterification of the alcohol with fatty acid as well as acyl transfer from diacylglycerophosphocholine could be demonstrated to occur to a much smaller extent.  相似文献   

16.
Göran Sandberg 《Planta》1984,161(5):398-403
Combined gas chromatography-mass spectrometry has been used to identify indole-3-ethanol (IEt) in a purified extract from needles of Pinus sylvestris L. Quantitative estimates obtained by high-performance liquid chromatography with fluorescence detection, corrected for samples losses occurring during purification, indicate that Pinus needles contain 46±4 ng g-1 IEt. This compares with 24.5±6.5 ng g-1 indole-3-acetic acid (IAA) and 2.3±0.4 ng g-1 indole-3-carboxylic acid (ICA) (Sandberg et al. 1984, Phytochemistry, 23, 99–102). Metabolism studies with needles incubated in a culture medium in darkness revealed that both [3-14C]-tryptophan and [2-14C]tryptamine mine are converted to [14C]IEt. It was also shown that [3-14C]IEt acted as a precursor of [14C]IAA. The observed metabolism appears to be enzymic in nature. The [2-14C]IAA was not catabolised to [14C]ICA in detectable quantities implying that, at best, only a minor portion of the endogenous ICA pool in the Pinus needles originates from IAA.Abbreviations DEAE diethylaminoethyl - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - ICA indole-3-carboxylic acid - IEt indole-3-ethanol - PVP polyvinylpyrrolidone  相似文献   

17.
The biosynthesis of myo-inositol (MI) and its role as a precursor of cell-wall polysaccharides was studied in supension cultures of wild carrot (Daucus carota L.) cells. Suspension cultures, grown in the presence or absence of 2,4-dichlorophenoxyacetic acid for 7 and 14d were incubated with [U-14C]glucose and [2-3H]MI in the presence of different concentrations of unlabeled MI. Synthesis of [14C]MI from [U-14C]glucose occurred under all conditions. The amount of MI synthesized from glucose was sharply reduced when 10 mM MI was provided in the medium. Substantial quantities of 3H were incorporated in arabinose, xylose and galacturonic acid isolated and purified from the cell-wall polysaccharides of the cell cultures in various stages of growth or embryogenesis. No 3H was present in the glucose or galactose units of cell-wall polysaccharides. At the four stages of growth and states of development of the carrot cultures used, the MI oxidation pathway contributed to the synthesis of pentosyl and galacturonosyl units of the cell wall. However, the data indicate that the contribution of the MI oxidation pathway to pentosyl and galacturonosyl units is small.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MI myo-inositol  相似文献   

18.
In recent studies using intact chloroplasts of spinach (Spinacia oleracea L.) to investigate the accumulation of acetyl-CoA produced by the activity of either acetyl-CoA synthetase (EC 6.2.1.1) or the pyruvate-dehydrogenase complex, this product was not detectable. These results in combination with new information on the physiological levels of acetate and pyruvate in spinach chloroplasts (H.-J. Treede et al. 1986, Z. Naturforsch. 41 C, 733–740) prompted a reinvestigation of the incorporation of [1-14C] acetate and [2-14C] pyruvate into fatty acids at physiological concentrations.The K m for the incorporation into fatty acids was about 0.1 mM for both metabolites and thus agreed with the values obtained by H.-J. Treede et al. (1986) for acetyl-CoA synthetase and the pyruvate dehydrogenase complex. However, acetate was incorporated with a threefold higher V max. Saturation for pyruvate incorporation into the fattyacid fraction was achieved only at physiological pyruvate concentrations (<1.0 mM). The diffusion kinetics observed at higher concentrations may be the result of contamination with derivates of the labeled substrate. Competition as well as double-labeling experiments with [3H]acetate and [2-14C]pyruvate support the notion that, at least in spinach, chloroplastic acetate is the preferred substrate for fatty-acid synthesis when both substrates are supplied concurrently (P.G. Roughan et al., 1979 b, Biochem. J. 184, 565–569).Experiments with spinach leaf discs confirmed the predominance of fatty-acid incorporation from acetate. Radioactivity from [1-14C]acetate appeared to accumulate in glycerolipids while that from [2-14C]pyruvate was apparently shifted in favor of the products of prenyl metabolism.Abbreviations Chl chlorophyll - TLC thin-layer chromatography  相似文献   

19.
Bolton  P.  Harwood  J. L. 《Planta》1978,138(3):223-228
Fatty acid synthesis was studied in successive leaf sections from the base to the tip of developing barley (Hordeum vulgare L.), maize (Zea mays L.), rye grass (Lolium perenne L.) and wheat (Triticum aestivium L.) leaves. The basal regions of the leaves had the lowest rates of fatty acid synthesis and accumulated small amounts of very long chain fatty acids. Fatty acid synthesis was highest in the middle leaf sections in all four plants. Linolenic acid synthesis from [1-14C]acetate was highest in the distal leaf sections of rye grass. The labelling of the fatty acids of individual lipids of rye grass was examined and it was found that [14C]linolenic acid was highest in the galactolipids. Synthesis of this acid in the galactolipids was most active in leaf segment C. Only traces of [14C]linolenic acid were ever found in phosphatidylcholine and it is concluded that this phospholipid cannot serve as a substrate for linoleic acid desaturation in rye grass. The synthesis of fatty acids was sensitive to arsenite, fluoride and the herbicide EPTC. The latter was only inhibitory towards those leaf segments which made very long chain fatty acids. Formation of fatty acids from [1-14C]acetate was also studied in chloroplasts prepared from successive leaf sections of rye grass. Chloroplasts isolated from the middle leaf sections had the highest activity. Palmitic and oleic acids were the main fatty acid products in all chloroplast preparations. Linolenic acid synthesis was highest in chlorplasts isolated from the distal leaf sections of rye grass.  相似文献   

20.
The regulation exerted by ammonium and other nitrogen sources on amino acid utilization was studied in swollen spores of Penicillium chrysogenum. Ammonium prevented the L-lysine, L-arginine and L-ornithine utilization by P. chrysogenum swollen spores seeded in complete media, but not in carbon-deficient media. Transport of L-[14C]lysine into spores incubated in presence of carbon and nitrogen sources was fully inhibited by ammonium ions (35 mM). However, in carbon-derepressed conditions (growth in absence of sugars, with amino acids as the sole carbon source) L-[14C]lysine transport was only partially inhibited. Competition experiments showed that L-lysine (1 mM) inhibits the utilization of L-arginine, and vice versa, L-arginine inhibits the L-lysine uptake. High concentrations of L-ornithine (100 mM) prevented the L-lysine and L-arginine utilization in P. chrysogenum swollen spores. In summary, ammonium seems to prevent the utilization of basic amino acids in P. chrysogenum spores by inhibiting the transport of these amino acids through their specific transport system(s), but not through the general amino acid transport system that is operative under carbon-derepression conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号