首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evidence is presented for the passive release of monoclonal antibodies (MCAB) from hybridoma cells grown in either batch or continuous-flow culture. This release is promoted at room temperature. Passively released MCAB is indistinguishable from that released by actively growing cells, as judged by SDS-polyacrylamide gel electrophoresis. The significance of these observations in relation to the continuous culture of hybridoma cells is discussed.Maximum MCAB content of TB/C3 hybridoma cells is about 55pg per cell, any additional MCAB produced is secreted.Abbreviations MCAB monoclonal antibodies - PBS phosphate buffered saline - RT room temperature - SDS sodium dodecyl sulphate  相似文献   

2.
The purpose of this study was to investigate hybridoma growth and monoclonal antibody formation in a flat sheet membrane bioreactor. The effects of several different molecular weight cutoff membranes on growth and antibody formation were investigated. Nutrient and toxic product diffusion through the membranes were quantified, and the kinetic and physical constants of the system were determined.  相似文献   

3.
An industrial scale reactor concept for continuous cultivation of immobilized animal cells (e.g. hybridoma cells) in a radial-flow fixed bed is presented, where low molecular weight metabolites are removed via dialysis membrane and high molecular products (e.g. monoclonal antibodies) are enriched. In a new nutrient-split feeding strategy concentrated medium is fed directly to the fixed bed unit, whereas a buffer solution is used as dialysis fluid. This feeding strategy was investigated in a laboratory scale reactor with hybridoma cells for production of monoclonal antibodies. A steady state monoclonal antibody concentration of 478 mg l-1 was reached, appr. 15 times more compared to the concentration reached in chemostat cultures with suspended cells. Glucose and glutamine were used up to 98%. The experiments were described successfully with a kinetic model for immobilized growing cells. Conclusions were drawn for scale-up and design of the large scale system.Abbreviations: cGlc – glucose concentration, mmol l-1; cGln – glutamine concentration, mmol l-1; cAmm – ammonia concentration, mmol l-1; cLac – lactate concentration, mmol l-1; cMAb – MAb concentration, mg l-1; D – dilution rate, d-1; Di – dilution rate in the inner chamber of the membrane dialysis reactor, d-1; D0 – dilution rate in the outer chamber of the membrane dialysis reactor, d-1; q*FB,Glc – volume specific glucose uptake rate related to the fixed bed volume, mmol lFB -1 h-1; q*FB,Gln – volume specific glutamine uptake rate related to the fixed bed volume, mmol lFB -1 h-1.  相似文献   

4.
The monoclonal-antibody production of an immobilized hybridoma cell line cultivated in a fluidized-bed reactor was monitored on-line for nearly 900 h. The monoclonal antibody concentration was determined by an immuno affinity-chromatography method (ABICAP). Antibodies directed against the product, e.g. IgG, were immobilized on a micro-porous gel and packed in small columns. After all IgG present in the sample was bound to the immobilized antibodies, unbound proteins were removed by rinsing the column. Elution of the bound antibodies followed and the antibodies were determined by fluorescence. The analytical procedure was automated with a robotic device to enable on-line measurements. The correlation between the on-line determined data and antibody concentrations measured by HPLC was linear. A sampling system was constructed, which was based on a pneumatically actuated in-line membrane valve integrated into the circulation loop of the reactor. Separation of the cells from the sample stream was achieved by a depth filter made of glass-fibre, situated outside the reactor. Rapid obstruction of the filter by cells or cell debris and contamination of the sample system was avoided by intermittent rinsing of the sample system with a chemical solution. The intermittent rinsing of the filter, which had a surface of 4.8 cm2, resulted in an operational capacity of up to 40 samples (1.0 l total sample volume). Both the sampling system and the analytical device functioned without failure during this long-term culture. The culture temperature was varied between 34 and 40 °C. Raising the temperature from 34 up to 37 °C resulted in a simultaneous increase of growth and specific antibody production rate. Specific metabolic rates of glucose, lactate, glutamine and ammonium stayed constant in this temperature range. A further enhancement of temperature up to 40 °C had a negative effect on the growth rate, whereas the specific monoclonal antibody production rate showed a small increase. The other specific metabolic rates also increased in the temperature range between 38 to 40 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We are interested in determining the range of variants present in a cell population that can actually be isolated. We have used subcloning and sublining to search for variants with increased antibody stability, increased cell line stability to freezing and defrosting, increased cell population viability, increased antibody production and the ability to grow in simpler media. This paper presents the case histories of several different hybridoma cell lines which required some property changed before they became production ready clones. We found that switching the class of an antibody from IgG3 to IgG1 did increase its stability, decrease its tendency to aggregate and allowed it to be used in a commercial diagnostic kit. We could isolate subclones that produced twice the level of antibody with a frequency of 1–3%. It was straight forward to isolated clones that were stable to freezing and defrosting or grew in a simpler media. We were not successful in increasing the maximum viability of a cell line. In conclusion, we have found that any population of hybridoma cells has natural variants with significantly enhanced properties that can be isolated.  相似文献   

6.
A coiled tube membrane reactor was developed for the cultivation of mouse-mouse hybridoma cells producing monoclonal antibodies. The cell and antibody concentrations obtained in the membrane reactor were higher than that obtained in a batch spinner flask without a membrane. A mathematical model has been developed to describe the membrane transport coupled growth and product formation, and the physical and kinetic constants of the system were determined.  相似文献   

7.
As the interest in weak-affinity antibodies has been widened by their introduction to various analytical techniques such as HPLC, capillary electrophoresis and biosensors, there has been a need for new screening/monitoring methods. In this study, weak-affinity chromatography was adopted to screen/monitor directly for monoclonal antibodies in ascites. Monoclonal antibodies against a carbohydrate antigen (maltohexaose) were used to evaluate this approach. In short, malthohexaose was immobilized on an HPLC support in such a configuration to allow, during HPLC, retardation of weak monoclonal antibodies. Based on the retention, the affinity or the avidity, as determined by the presence of multiple binding of the monoclonal antibody towards antigen, can be estimated. In this way it is possible to select clones of hybridomas that produce desired weak monoclonal antibodies. Adjustments in temperature (10-20 degrees C) were used to moderate the retention and hence affinity of the weak monoclonal antibodies during chromatography.  相似文献   

8.
Summary The performance of an external loop air-lift bioreactor was investigated by assessing the inter-relationships between various hydrodynamic properties and mass transfer. The feasibility of using this bioreactor for the production of monoclonal antibodies by mouse hybridoma cells immobilized in calcium alginate gel beads and alginate/poly-l-lysine microcapsules was also examined. When the superficial gas velocity, V g , in the 300 ml reactor was varied from 2 to 36 cm/min, the average liquid velocity increased from 3 to 14 cm/sec, the gas hold-up rose from 0.2 to 3.0%, and the oxygen mass transfer coefficient, k L a, increased from 2.5 to 18.1 h-1. A minimum liquid velocity of 4 cm/s was required to maintain alginate gel beads (1000 m diameter, occupying 3% of reactor volume) in suspension. Batch culture of hybridoma cells immobilized in alginate beads followed logarithmic growth, reaching a concentration of 4×107 cells/ml beads after 11 days. Significant antibody production did not occur until day 9 into the culture, reaching a value of 100 g/ml of medium at day 11. On the other hand, bioreactor studies with encapsulated hybridoma cells gave monoclonal antibody concentrations of up to 800 g/ml capsules (the antibody being retained within the semipermeable capsule) and maximum cell densities of 2×108 cells/ml capsule at day 11. The volumetric productivities of the alginate gel immobilized cell system and the encapsulated cell system were 9 and 3 g antibody per ml of reactor volume per day, respectively. The main advantage of the bioreactor system is its simple design, since no mechanical input is required to vary the hydrodynamic properties.  相似文献   

9.
Six monoclonal antibodies, three each of human IgG1 and IgG2 subclasses, were obtained from human-mouse hybridomas. Structural study of their asparagine-linked sugar chains was performed to elucidate the regulatory mechanism of secreted monoclonal IgG glycosylation. The sugar moieties were quantitatively released as oligosaccharides from the polypeptide backbone by hydrazinolysis. They were converted into radioactive oligosaccharides by NaB3H4 reduction after N-acetylation. Structural study of each oligosaccharide by lectin affinity column chromatography, sequential exoglycosidase digestion, and methylation analysis indicated that almost all of them were biantennary complex-type sugar chains containing Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4 (+/- Fuc alpha 1----6)GlcNAc as core structures. Bisecting N-acetylglucosamine residue, which is present in human IgG but not in mouse IgG, could not be detected at all. The molar ratio of each oligosaccharide from the six IgG samples was different. However, no subclass specificity was detected except that all IgG1 contained neutral, mono-, and disialylated sugar chains, whereas IgG2 did not contain disialylated ones. The molar ratio of N-acetylneuraminic acid to N-glycolylneuraminic acid was also different for each IgG. All six IgGs contained monoantennary complex-type and high mannose-type oligosaccharides which had never been detected in serum IgGs of various mammals so far investigated. These results indicated that the processing of asparagine-linked sugar chains of IgG is less complete in human-mouse hybridoma than in human or mouse B cells, and that the glycosylation machinery of the mouse cells is dominant in the hybrid cells.  相似文献   

10.
To achive the coarse purification of a monoclonal antibody from whole hybridoma fermentation broth a fluidized bed cation exchange process was used. The procedure consisted of application of the crude sample and washing of the bed in a fluidized mode and elution in a fixed bed mode. A completely clarified eluate was obtained with purification factors between 4 and 8 and a concentration of the desired product (monoclonal antibody) by a factor of more than 3 was achived. Thus, a combination of the three early steps of the downstream process clarification, concentration and coarse purification was possible. Two different materials were tested: a commercially available agarose-based matrix (Stream-line-SP), and a self-derivatized material based on controlled-pore glass (Bioran). Initial experiments were performed to describe the fluidization of the glass material. Comparison with the agarose material showed several differences, the agarose matrix allowing liquid flow closer to plug flow than the glass material. Increased backmixing in the liquid phase was detected when fluidizing the glass adsorbent compared with the agarose-based matrix. Despite this fact, comparison of the two materials with respect to antibody binding and elution demonstrated a similar performance. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
An attempt has been made to mathematically describe and analyze monoclonal antibody (MAB) productivity of hybridoma cells, with particular emphasis on continuous cultures under unsteady-state conditions. A simple and unstructured general kinetic model that takes account of productivity loss during long-term cultivation, cell proliferation, and the effects of nutrients and toxic products is proposed. The model is verified with data of continuous culture from five different cell lines under a wide range of experimental conditions. Analysis of these results showed that for a reliable assessment of effects of different factors and for comparison of kinetic data on MAB production it is important to consider possible loss of MAB productivity, the time dependence of which can be modeled by an exponential function plus a constant term. Variations of nutrient concentration, particularly that of glucose, glutamine, and serum, can significantly alter MAB production under certain conditions. These effects can be described in terms of saturation kinetic and/or noncompetitive inhibition kinetics. (c) 1996 John Wiley & Sons, Inc.  相似文献   

12.
Hybridoma cultures are routinely used as a source for monoclonal antibody (mAb) production necessary for preclinical evaluation. However, these cultures typically have low volumetric and specific productivities. In this article, we examined the use and the timing of addition of dimethyl sulfoxide (DMSO) as a medium additive to improve mAb production in our hybridoma clone 19 (c19) cultures. From shake flask studies, we defined the optimal DMSO concentration and time of addition for improved productivity. This timing coordinated with high cell viability and density. Hybridoma cultures treated with DMSO up to 0.3% (v/v) possessed cell densities and viabilities comparable to untreated control. We demonstrated that 0.2% (v/v) DMSO added to shake flask cultures at their maximal viable cell densities resulted in a 2-fold increase in specific mAb production. This procedure was scaleable up to 20 L Cellbags (Wave Bioreactors) with similar titer improvement. Moreover, DMSO treatment did not affect the bioactivity or glycosylation profiles of the mAb.  相似文献   

13.
Cytochemical and ultrastructural features of mouse hybridomas and also of the parental cells--myeloma P3-X63-Ag8.653 and spleen cells of the Balb/c mice immunized with cell line RPMI-1788 have been studied. Differences in cytomorphological signs and activity of acid phosphatase, acid nonspecific esterase, nonspecific-alpha-naphthyl acetate esterase were shown in hybrid cell lines secreting and not secreting monoclonal antibodies.  相似文献   

14.
15.
The number of Hybridomes obtained from various sources rapidly increases at present. Clones producing monoclonal antibodies to influenza virus A/USSR/090/77 and to VEE-230 are generated in the laboratory of the Institute of Virology (Academy of Sciences of the USSR). The present work is devoted to the study of Hybridome karyotype by means of C-method for chromosome staining with the aim to reveal specific characteristics of these lines. Results of the investigation have shown that the count of chromosomes together with an examination of their C-staining picture permit proving a hybrid nature of the clones and identifying various Hybridomes by chromosome markers.  相似文献   

16.
In searching for ways to manipulate heterogeneous hybridoma cell cultures (ATCC HB124) to obtain increased production of monoclonal antibodies (IgG2a), we have selected for a higher secreting but slower growing subpopulation using the level of fluorescent surface-associated antibodies and a fluorescence-activated cell sorter. Cell surface fluorescence was found to be correlated with specific antibody secretion rate over the short term but not with intracellular antibody content. Also, the specific secretion rate of a heterogeneous population of hybridoma cells grown in batch culture has been shown to be inversely correlated with an increase in either the initial cell concentration or the medium antibody concentration. Several experiments suggest that an upper limit exists for medium antibody concentration, above which antibody is degraded at the same rate at which it is produced. Should other cell lines behave similarly, strategies for overproduction of monoclonal antibodies suggested herein could be profitably used in industry.  相似文献   

17.
Summary Mouse hybridoma cells were succesfully cultivated for more than 640 hours in the interparticle spaces of a tubular reactor packed with spherical glass beads. The maximum monoclonal antibody (MAb) concentration attained was 110 mg/l and a viable cell density in the order of 1 × 107 cells/ml was achieved. A productivity per reactor void volume of 5.2 mg MAb/hr/l was obtained, which is comparable to the best systems currently in use.  相似文献   

18.
A fixed bed perfusion system for hybridoma cell immobilization is presented. The system consists of a culturing vessel (300 ml total volume) in which polyurethane (PU) sponges in the form of small cubes of about 5 mm sides are packed. Cells are immobilized by physical entrapment in the foam matrix. By entrapment of the cells in the pores of the matrix high cell concentration can be maintained in a mechanically protected environment. Medium is continuously circulated by an airlift pump mounted in the cell-free chamber (700 ml total volume).Medium flow rate, feeding rate, dissolved oxygen, pH, nutrient uptake and waste product formation can be easily monitored and controlled. Steady state conditions are established with medium dilution rates of 1.0–1.5 reactor volume per day. The steady state is characterized by a constant cell density, constant culture volume and constant glucose and lactate levels. Cell-free supernatant is collected continuously in a cold room adjacent to the 37°C culture room. Monoclonal antibodies (MAb) are produced at a concentration of 150–200 g/ml for several weeks. An important feature of the system is the capacity to maintain a population of cells after the growth phase in a non-proliferating state for extended time periods expressing high titers of MAb.Abbreviations DO Dissolved Oxygen - FBS Fetal Bovine Serum - FBR Fixed Bed Reactor - MAb Monoclonal Antibody - PU polyurethane  相似文献   

19.
This paper reports on a methodology for increasing proliferation and monoclonal antibody (mAb) production in hybridoma cultures. The 55-6 murine B cell hybridoma line (CD40 and CD19-deficient expression) was treated with increasing concentrations of lipopolysaccharide (LPS). Expression of CD69, CD40, and CD19 surface antigens on 55-6 cells did not show significant changes from untreated cells. The specific growth rate decreased at higher concentrations of LPS, but the monoclonal antibody production rate was highest at the highest LPS concentration assayed. These data are in agreement with the lowest growth rate found at this concentration of LPS. Furthermore, cells were cultured with anti-mouse surface immunoglobulin G antibody (anti-mIgG) plus LPS to find out whether LPS-derived signals and anti-mIgG stimuli are synergistic. CD69, CD40, and CD19 expression was greater than for either untreated cells (control culture) or cells stimulated with LPS alone. Moreover, LPS stimulation in combination with anti-mIgG enhanced both the growth rate and IgG2a production over the control culture and cells stimulated with LPS alone. Maximum antibody concentration increased almost 500% compared to the control and about 100% with respect to culture stimulated with LPS alone. The maximum specific IgG2a production rate was about 300% higher than in the control culture and about 30% higher than in culture stimulated only with LPS.  相似文献   

20.
制备抗细小病毒B19-VP2单克隆抗体,用于检测人血清中的B19抗原,辅助诊断相关疾病;也可用于制备人类细小病毒基因工程疫苗。用纯化的基因工程表达的B19-VP2蛋白免疫BALB/c小鼠,取免疫小鼠的脾细胞和小鼠骨髓瘤Sp2/0细胞融合,有限稀释法克隆细胞。ELISA及IF证明抗体特异性。克隆筛选出4株细胞,并初步建立了检测B19-VP2抗原的双抗体夹心酶联免疫吸附试验,为双抗体夹心法检测B19抗原为临床相关疾病诊断提供了检测手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号