首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multichannel quartz crystal microbalance array (MQCM) with three pairs of gold electrodes was fabricated for detection of two biomarkers: acetone and nitric oxide (NO). The gold electrodes were deposited symmetrically on an AT-cut 10 MHz circular quartz plate using photolithography, sputtering, and lift-off technologies. The effect of gold layer thickness on MQCM performance was investigated and the optimized thickness was 101 nm. The simulation values of the electric parameters C0, Cq, Lq, and Rq in the Butterworth–Van Dike equivalent circuit for the MQCM device were 97 pF, 1.3 pF, 1.05 mH, and 9.8 Ω, respectively. Simulation values were in the theoretical range, which indicated that the fabricated MQCM device had good resonance performance. Two types of nanocomposites, titanium dioxide–multiwalled carbon nanotubes and cobalt (II)phthalocyanine–silica, were synthesized as sensing materials. The sensing mechanism is based on coordination adsorption of target molecules onto the sensing material, resulting in a resonant frequency shift of modified QCM sensor. A linear range from 4.33 to 129.75 ppmv for acetone was obtained and one from 5.75 to 103.45 ppbv for NO.  相似文献   

2.
Quartz crystal microbalance (QCM) sensors are widely used for determining liquid properties or probing interfacial processes. For some applications the sensitivity of the QCM sensors typically used (5–20 MHz) is limited compared with other biosensor methods. In this study ultrasensitive QCM sensors with resonant frequencies from 39 to 110 MHz for measurements in the liquid phase are presented. The fundamental sensor effect of a QCM is the decrease of the resonant frequency of an oscillating quartz crystal due to the binding of mass on a coated surface during the measurement. The sensitivity of QCM sensors increases strongly with an increasing resonant frequency and, therefore, with a decreasing thickness of the sensitive area. The new kind of ultrasensitive QCM sensors used in this study is based on chemically milled shear mode quartz crystals which are etched only in the center of the blank, forming a thin quartz membrane with a thick, mechanically stable outer ring. An immunoassay using a virus specific monoclonal antibody and a M13-Phage showed an increase in the signal to noise ratio by a factor of more than 6 for 56 MHz quartz crystals compared with standard 19 MHz quartz crystals, the detection limit was improved by a factor of 200. Probing of acoustic properties of glycerol/water mixtures resulted in an increase in sensitivity, which is in very good agreement with theory. Chemically milled QCM sensors strongly improve the sensitivity in biosensing and probing of acoustic properties and, therefore, offer interesting new application fields for QCM sensors.  相似文献   

3.

The influence of TiO2 coating on resonant properties of gold nanoisland films deposited on silica substrates was studied numerically and in experiments. The model describing plasmonic properties of a metal truncated nanosphere placed on a substrate and covered by a thin dielectric layer has been developed. The model allows calculating a particle polarizability spectrum and, respectively, its surface plasmon resonance (SPR) wavelength for any given cover thickness, particle radius and truncation parameter, and dielectric functions of the particle, the substrate, the coating layer, and the surrounding medium. Dependence of the SPR position calculated for truncated gold nanospheres has coincided with the measured one for the gold nanoisland films covered with titania of different thicknesses. In the experiments, gold films with thickness of 5 nm were deposited on a silica glass substrate, annealed at 500 °C to form nanoislands of 20 nm in diameter, and covered with amorphous titania layers using atomic layer deposition technique. The resulting structures were characterized with scanning electron microscopy and optical absorption spectroscopy. The measured dependence of the SPR position on titania film thickness corresponded to the one calculated for truncated sphere-shaped nanoparticles with the truncation angle of ~50°. We demonstrated the possibility of tuning the SPR position within ~100 nm range by depositing to 30 nm thick titania layer.

  相似文献   

4.
We have measured the kinetics of adsorption of small (12.5-nm radius) unilamellar vesicles onto SiO2, oxidized gold, and a self-assembled monolayer of methyl-terminated thiols, using a quartz crystal microbalance (QCM). Simultaneous measurements of the shift in resonant frequency and the change in energy dissipation as a function of time provide a simple way of characterizing the adsorption process. The measured parameters correspond, respectively, to adsorbed mass and to the mechanical properties of the adsorbed layer as it is formed. The adsorption kinetics are surface specific; different surfaces cause monolayer, bilayer, and intact vesicle adsorption. The formation of a lipid bilayer on SiO2 is a two-phase process in which adsorption of a layer of intact vesicles precedes the formation of the bilayer. This is, to our knowledge, the first direct evidence of intact vesicles as a precursor to bilayer formation on a planar substrate. On an oxidized gold surface, the vesicles adsorb intact. The intact adsorption of such small vesicles has not previously been demonstrated. Based on these results, we discuss the capacity of QCM measurements to provide information about the kinetics of formation and the properties of adsorbed layers.  相似文献   

5.
The piezoelectric sensor (quartz crystal microbalance, QCM) was used to monitor cell adhesion in real time. Two cell lines, rat epithelial cells (WB F344) and lung melanoma cells (B16F10) were used. The cells were adhered and grown on the gold surface of the sensor pre-coated with adsorbed layer of extracellular matrix proteins as vitronectin and laminin. The process of cell attachment and spreading on the gold surface was continuously monitored and displayed by changes of the resonant frequency Deltaf and resistance DeltaR values of the piezoelectric resonators. The initial phase of cell attachment and spreading induced a decrease of frequency and increase of resistance relating viscoelastic properties of the cell monolayer on the sensing surface. The steady-state of both shifts was achieved after a few hours. The presence and state of cells on the surface was confirmed by fluorescent microscopy. The obtained results demonstrate that the piezoelectric sensor is suitable for studies of the cell adhesion processes. Thus obtained cell-based biosensor has potential for identification and screening of biologically active drugs and other biomolecules affecting cellular shape and attachment.  相似文献   

6.
We investigate the feasibility of coupling the quartz crystal microbalance (QCM) with magnetic separation for on-line analysis. A flow cell was integrated with QCM and magnetic force for the analysis of magnetic and nonmagnetic samples. The resonant frequency change (Deltaf) of QCM was related to the amount of deposited magnetic nanoparticles. This experiment demonstrates that QCM can be used as an on-line detector for magnetic separation. The QCM also gives a characteristic response of the binding between the streptavidin and biotin labeled on the magnetic nanoparticles. Biotin-labeled magnetic nanoparticles were flowed through a gold electrode of QCM to deposit as a matrix for selective capturing streptavidin. The resonant frequency change of QCM was proportional to the amounts of streptavidin captured by biotin. This technique can provide a simple, economic, and automatic method for on-line detection of biomarkers.  相似文献   

7.
In this work, a new methodology is developed for selection of affinity ligands towards the enzyme “trypsin” using quartz crystals microbalance (QCM) technique. To achieve this goal, the surface amination of gold plated QCM crystals was achieved in 13.56 MHz plasma polymerization system by using ethylenediamine. Three different ligands (i.e., 4-aminobenzamidine, 4-aminobenzoic acid, and phenylalanine) were immobilized on the aminated QCM crystals surface via glutaraldhyde coupling. All three ligand immobilized QCM crystals were characterized and compared under different experimental conditions. It was observed that the benzamidine ligand showed higher affinity to trypsin with a dissociation constant on the order of 1.76 × 10−9 M, which is within the range of 10−4–10−8 M for affinity ligands. Thus, its selectivity was suitable for purification of trypsin from biological fluids.  相似文献   

8.
The labeling strategy with gold nanoparticles for the conventional surface plasmon resonance (SPR) signal enhancement has been frequently used for the sensitive determination of small molecules binding to its interaction partners. However, the influence of gold nanoparticles with different size and shape on SPR signal is not known. In this paper, three kinds of gold nanoparticles, namely nanorods, nanospheres, and nanooctahedrons with different size, were prepared and used to investigate their effects on the conventional SPR signal at a fixed excitation wavelength 670 nm. It was found that the SPR signal (i.e., resonant angle shift) was varied with the shapes and sizes of gold nanoparticles in suspension at a fixed concentration due to their different plasmon absorbance bands. For gold nanorods with different longitudinal absorbance bands, three conventional SPR signal regions could be clearly observed when the gold nanorod suspensions were separately introduced onto the SPR sensor chip surface. One region was the longitudinal absorbance bands coinciding with or close to the SPR excitation wavelength that suppressed the SPR angle shift. The second region was the longitudinal absorbance bands at 624 to 639 and 728 to 763 nm that produced a moderate increase on the SPR resonant angle shift. The third region was found for the longitudinal absorbance bands from 700 to 726 nm that resulted in a remarkable increase in the SPR angle shift responses. This phenomenon can be explained on the basis of calculation of the correlation of SPR angle shift response with the gold nanorod longitudinal absorbance bands. For nanospheres and nanooctahedrons, the SPR angle shift responses were found to be particle shape and size dependent in a simple way with a sustaining increase when the sizes of the nanoparticles were increased. Consequently, a guideline for choosing gold nanoparticles as tags is suggested for the SPR determination of small molecules with binding to the immobilized interaction partners.  相似文献   

9.
The photo-immobilization technique is useful for immobilization of various biomolecules on assorted material surfaces, independent of the organic functional groups that may be present. Here, we report a convenient new photo-immobilization technique that was developed by combining a nonbiofouling polymer containing polyethylene glycol and a photoreactive crosslinker for surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) measurements. By this method, nonspecific interactions were reduced and various types of molecules, bovine serum albumin, heparin, dsDNA, phosphatidylserine, Tobacco Mosaic Virus, and norfloxacine, were immobilized on an alkane thiol-modified gold surface by a single method. The interactions of photo-immobilized biomolecules and their corresponding antibodies were investigated by SPR and QCM. In addition, SPR imaging was possible using the present method.  相似文献   

10.
This study proved a possibility of a peptide probe for evaluating affinity properties of proteins. We have designed and synthesized three different peptide probes, H-Ala3-(Gly-Pro5)3-Gly-OH (peptide A), H-Ala3-(Gly-Pro5)-Gly-OH (peptide B) and H-Ala3-Gly-OH (peptide C) for testing their affinities to profilin. Each peptide probe was immobilized on a quartz crystal microbalance (QCM) sensor. The QCM sensor with the peptide A showed a 93 Hz decrease of resonant frequency which indicated profilin bound to the QCM sensor in a single layer. In a successive reaction with actin, the QCM analysis resulted in a 123 Hz decrease of resonant frequency which showed actin bound to the QCM sensor. A fluorescence microscope image of the sensor surface exhibited clear fluorescence after binding a rhodamine labeled actin on the sensor surface. These results supported stepwise reactions of profilin binding to the peptide A and actin binding to profilin. In the three peptide probes, the peptide A showed the highest affinity to profilin, i.e., sequence dependent affinity was confirmed.  相似文献   

11.
Electrical frequency dependent characterization of DNA hybridization   总被引:2,自引:0,他引:2  
The hybridization of oligomeric DNA was investigated using the frequency dependent techniques of electrochemical impedance spectroscopy (EIS) and quartz crystal microgravimetry (QCM). Synthetic 5'-amino terminated single stranded oligonucleotides (ssDNA) were attached to the exposed glass surface between the digits of microlithographically fabricated interdigitated microsensor electrodes using 3-glycidoxypropyl-trimethoxysilane. Similar ssDNA immobilization was achieved to the surface of the gold driving electrodes of AT-cut quartz QCM crystals using 3-mercaptopropyl-trimethoxysilane. Significant changes in electrochemical impedance values (both real and imaginary components) (11% increase in impedance modulus at 120 Hz) and resonant frequency values (0.004% decrease) were detected as a consequence of hybridization of the bound ssDNA upon exposure to its complement under hybridization conditions. Non-complementary (random) sequence sowed a modest decrease in impedance and a non-detectable change in resonant frequency. The possibility to detect the binding state of DNA in the vicinity of an electrode, without a direct connection between the measurement electrode and the DNA, has been demonstrated. The potential for development of label-free, low density DNA microarrays is demonstrated and is being pursued.  相似文献   

12.
A quartz crystal microbalance (QCM) immunosensor was described for the detection of Salmonella Typhimurium with simultaneous measurements of the resonant frequency and motional resistance. The immunosensor was fabricated using protein A for the antibody immobilization. High-frequency impedance analysis indicated that the changes in resonant frequency and motional resistance (DeltaF and DeltaR) of the QCM were significant while the changes in static capacitance, motional capacitance, and motional inductance were insignificant. In the direct detection of S. Typhimurium in chicken meat sample, DeltaF and DeltaR were proportional to the cell concentration in the range of 10(5) - 10(8) and 10(6) - 10(8) cells/ml, respectively. Using anti-Salmonella-magnetic beads as a separator/concentrator for sample pretreatment as well as a marker for signal amplification, the detection limit was lowered to 10(2) cells/ml based on the DeltaR measurement; however, DeltaF was not related to the cell concentration. No interference was observed from E. coli K12 or the sample matrix.  相似文献   

13.
A high-performance surface plasmon resonance (SPR) sensor based on a novel approach to spectroscopy of surface plasmons is reported. This approach employs a special diffraction grating structure (referred to as surface plasmon resonance coupler and disperser, SPRCD) which simultaneously couples light into a surface plasmon and disperses the diffracted light for spectral readout of SPR signal. The developed SPRCD sensor consists of a miniature cartridge integrating the diffraction grating and microfluidics and a compact optical system which simultaneously acquires data from four independent sensing channels in the cartridge. It is demonstrated that the SPRCD sensor is able to measure bulk refractive index changes as small as 3 × 10−7 RIU (refractive index units) and to detect short oligonucleotides in concentrations down to 200 pM.  相似文献   

14.
A biofilm reactor was constructed to monitor the long-term growth and removal of biofilms as monitored by the use of a quartz crystal microbalance (QCM) and a novel optical method. The optical method measures the reflectance of white light off the surface of the quartz crystal microbalance electrode (gold) for determination of the biofilm thickness. Biofilm growth of Pseudomonas aeruginosa (PA) on the surface was used as a model system. Bioreactors were monitored for over 6 days. Expressing the QCM data as the ratio of changes in resistance to changes in frequency (DeltaR/Deltaf) facilitated the comparison of individual biofilm reactor runs. The various stages of biofilm growth and adaptation to low nutrients showed consistent characteristic changes in the DeltaR/Deltaf ratio, a parameter that reflects changes in the viscoelastic properties of the biofilm. The utility of white light reflectance for thickness measurements was shown for those stages of biofilm growth when the solution was not turbid due to high numbers of unattached cells. The thickness of the biofilms after 6 days ranged from 48 mum to 68 mum. Removal of the biofilm by a disinfectant (chlorine) was also measured in real time. The combination of QCM and reflectance allowed us to monitor in real time changes in the viscoelastic properties and thickness of biofilms over long periods of time.  相似文献   

15.
A flow-through quartz crystal microbalance (QCM) immunoassay method has been developed based on aflatoxin B1 antibody (anti-AFB1)-functionalized magnetic core-shell Fe3O4/SiO2 composite nanoparticles (bionanoparticles) in this study. To construct such an assay protocol, anti-AFB1, as a model protein, was initially covalently immobilized onto the Fe3O4/SiO2 surface, and then the functionalized nanoparticles were attached to the surface of the QCM probe with an external magnet. The binding of target molecules onto the immobilized antibodies decreased the sensor’s resonant frequency, and the frequency shift was proportional to the AFB1 concentration in the range of 0.3–7.0 ng/ml. The regeneration of the developed immunosensor was carried out via attaching or detaching the external magnet from the detection cell. In addition, the selectivity, reproducibility, and stability of the proposed immunoassay system were acceptable. Compared with the conventional ELISAs, the proposed immunoassay system was simple and rapid without multiple labeling and separation steps. Importantly, the proposed immunoassay method could be further developed for the immobilization of other antigens or biocompounds.  相似文献   

16.
By means of the quartz crystal microbalance (QCM), a convenient method was developed to determine the degree of orientation of purple membrane (PM) sheets on the air/water interface. Langmuir-Blodgett films from both wild-type and SH-mutant PM (bR D36C) were vertically deposited on the surface of gold-sputtered AT-cut quartz crystals. The shift of resonance frequency of the QCM during a special washing protocol allowed us to differentiate between physically adsorbed PM fragments and any PM attached to the gold surface via chemical bonds. By washing with organic solvents, complete desorption of the wild-type PM was achieved, whereas for the SH-mutant, approximately 60% of the PM fragments could not be detached from the surface. These PM sheets should be oriented with the cytoplasmic side facing the water subphase to that their SH-groups can chemically bind to the gold surface of the quartz plate.  相似文献   

17.
With the goal of developing a quartz crystal microbalance (QCM)-based DNA sensor, we have conducted an in situ QCM study along with fluorescence measurements using oligonucleotides (15-mer) as a model single-stranded DNA (ss-DNA) in two different aqueous buffer solutions; the sequence of 15-mer is a part of iduronate-2-sulphate exon whose mutation is known to cause Hunter syndrome, and the 15-mer is thiolated to be immobilized on the Au-coated quartz substrate. The fluorescence data indicate that the initial immobilization as well as the subsequent hybridization with a complementary strand is hardly dependent on the kind of buffer solution. In contrast, the mass increases deducible from the decrease of QCM frequency via the Sauerbrey equation are 2.7-6.2 and 3.0-4.4 times larger than the actual mass increases, as reflected in the fluorescence measurements, for the immobilization and the subsequent hybridization processes, respectively. Such an overestimation is attributed to the trapping of solvent as well as the formation of quite a rigid hydration layer associated with the higher viscosities and/or densities of the buffer solutions. Another noteworthy observation is the excessively large frequency change that occurs when the gold electrode is deposited in advance with Au nanoparticles. This clearly illustrates that the QCM detection of DNA hybridization is also affected greatly by the surface morphology of the electrode. These enlarged signals are altogether presumed to be advantageous when using a QCM system as an in situ probing device in DNA sensors.  相似文献   

18.
In this study we evaluate the strengths and weaknesses of surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance (QCM) technique for studying DNA assembly and hybridization reactions. Specifically, we apply in parallel an SPR instrument and a 5 MHz QCM device with dissipation monitoring (QCM-D) to monitor the assembly of biotinylated DNA (biotin-DNA) on a streptavidin-modified surface and the subsequent target DNA hybridization. Through the parallel measurements, we demonstrate that SPR is more suitable for quantitative analysis of DNA binding amount, which is essential for interfacial DNA probe density control and for the analysis of its effect on hybridization efficiency and kinetics. Although the QCM is not quantitative to the same extent as SPR (QCM measures the total mass of the bound DNA molecules together with the associated water), the dissipation factor of the QCM provides a qualitative measure of the viscoelastic properties of DNA films and the conformation of the bound DNA molecules. The complexity in mass measurement does not impair QCM's potential for a kinetic evaluation of the hybridization processes. For quantification of target DNA, the biotin-DNA modified SPR and QCM sensors are exposed to target DNA with increasing concentration. The plots of SPR/QCM signals versus target DNA concentration show that water entrapment between DNA strands make the QCM sensitivity for the hybridization assay well comparable with that of the SPR, although the intrinsic mass sensitivity of the 5 MHz QCM is approximately 20 times lower.  相似文献   

19.
Combining the surface modification and molecular imprinting technique, a novel piezoelectric sensing platform with excellent molecular recognition capability was established for the detection of uric acid (UA) based on the immobilization of TiO2 nanoparticles onto quartz crystal microbalance (QCM) electrode and modification of molecularly imprinted TiO2 (MIT) layer on TiO2 nanoparticles. The performance of the fabricated biosensor was evaluated, and the results indicated that the biosensor exhibited high sensitivity in UA detection, with a linear range from 0.04 to 45 μM and a limit of detection of 0.01 μM. Moreover, the biosensor presented high selectivity towards UA in comparison with other interferents. The analytical application of the UA biosensor confirmed the feasibility of UA detection in urine sample.  相似文献   

20.
Ultrafast transient absorption studies are reported for high-aspect-ratio gold nanorods that were fabricated by electrochemical deposition in polycarbonate templates. The nanorods are 60 nm in diameter with distribution of lengths of up to 6 μm. The average aspect ratio was ∼50, resulting in a longitudinal surface plasmon resonance (SPRL) band in the mid-IR, as well as a transverse (SPRT) band in the visible. The rods were excited at 400 nm and probed at a range of wavelengths from the visible to the mid-IR to interrogate both SPR bands. The dynamics observed, including the electron–phonon coupling time and coherent acoustic breathing mode oscillations, closely resemble those previously reported for gold spherical nanoparticles and smaller-aspect-ratio nanorods. The electron–phonon coupling time was similarly determined to be 3.3 ± 0.2 ps for both of the SPR bands. Also, oscillations with a 32-ps period were observed for probing near the SPRT band in the visible region due to impulsive coherent excitation of the acoustic breathing mode, which are consistent with the 60-nm diameter of the nanorods determined by scanning electron microscopy. The results demonstrate that the dynamics for long gold nanorods are similar to those for smaller nanoparticles. Gerald M. Sando is a NRL-ASEE Research Associate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号