首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
Electroporation of abalone sperm enhances sperm-DNA association   总被引:2,自引:0,他引:2  
The ability of sperm from the black-footed abalone Haliotis iris to take up foreign DNA in solution has been demonstrated. The efficiency of DNA uptake is related to the conditions of electroporation, including field strength (625 V cm−1, 1000 V cm−1), pulse length (18.6 ms, 27.4ms) and number of pulses (1, 2), and DNA concentration (20, 100 μg ml−1). Sperm motility decreased with increased field strength and pulse number. At a field strength of 625 V cm−1, neither the pulse length nor pulse number enhanced DNA uptake. A 40% enhancement in DNA uptake was observed when the sperm were shocked at 1000 V cm−1 with two long pulses (27.4 ms each). Linear regression analysis revealed that pulse number ( p = 0.013) and field strength ( P =0.039) were the most important factors in sperm–DNA interaction. Higher DNA concentration enhanced sperm DNA uptake irrespective of field strength, pulse length and pulse number. The optimal electroporation conditions for DNA uptake were 1000 V cm', with two pulses of 27.4 ms each, and a DNA concentration of 100 μg ml−1.  相似文献   

4.
5.
We utilised the retrograde transport machinery of neurones to deliver naked plasmid DNA into the central nervous system. A 5.4-kb fragment of the glycine receptor (GlyR) alpha1 subunit gene was cloned and used to drive the expression of a construct encoding for the enhanced green fluorescent protein (EGFP). Injections of the plasmid DNA in the tongue of mice resulted in the expression of the marker protein in hypoglossal motor neurones, showing that the GlyRalpha1 promoter sequence is sufficient to drive expression of the transgene. In order to determine the specificity of expression of the 5.4-kb fragment of the GlyR alpha1 subunit gene promoter, we subsequently injected the plasmid DNA into the mouse central nucleus of the amygdala. This nucleus receives projections from the parabrachial nucleus, a brainstem area that has a high density of GlyRs, and from the insular cortex, a forebrain structure devoid of GlyRs. We observed EGFP-labelled neurones in the parabrachial nucleus, but not in the insular cortex, indicating that the 5.4-kb GlyR alpha1 subunit gene promoter confers specificity of expression. This approach provides a simple and rapid way to identify, in vivo, promoter elements that mediate neurone-specific gene expression.  相似文献   

6.
Various growth factors and proteins produced by oviductal cells have been demonstrated to interact with developing embryos. However, little is known concerning the function of mammalian oviducts at the molecular biological level. This may be partly due to lack of efficient gene transfer to oviductal cells. In this study, we developed an efficient method for transfection of oviductal epithelium using in vivo electroporation (EP) in mice. One microliter of solution containing enhanced green fluorescent protein (EGFP) expression plasmid (0.5 microg) and 0.05% trypan blue (TB) were directly introduced into the ampulla of the eCG-hCG-treated B6C3F1 females at embryonic day (E) 0.6 of pregnancy (corresponding to 14:00-15:00 of the day the plug was recognized). The entire oviduct was then electroporated using tweezer-type electrodes attached to a T820 electroporator (BTX Genetronics, Inc., San Diego, CA) with eight square-wave pulses, 50 V in strength and 50 msec in duration. On E 3.4, embryos at morula/early blastocyst stages were collected and their number, morphology, and EGFP-derived fluorescence recorded. Fluorescence in oviducts was also examined. In some cases, these fluorescent oviducts were subjected to cryostat sectioning. Strong fluorescence was observed in some of the oviductal epithelia, with a maximum level of 36%. Neither the number nor morphology of the collected embryos was affected by EP. Some embryos possessed fluorescence in the blastocoel, but not cytoplasm, suggesting incorporation of EGFP present in the oviductal luminal fluid. This system may enable development of new factors regulating development of preimplantation embryos and offers the prospect of a new approach to understanding oviductal function.  相似文献   

7.
8.
9.
Efficient gene transfer is a key factor in gene therapy. Reducing the damage caused by gene transfer to muscle by electroporation is very important for its clinical application. Extensive investigation of optimal conditions for gene transfer by electroporation is required. The parameters used for electroporation, including plasmid concentration; injection volume; the plasmid dose of the injection; the concentration of saline media; the size of plasmid DNA; the age of the mice; the lag time between plasmid injection and electroporation; and the effect of repeated gene transfer by electroporation, were systematically investigated in the present study. The efficiencies of gene transfer by electroporation in normal and rodent models of diabetes were also evaluated. We found that electroporation used for non-viral gene transfer could be repeated in the same place in the muscle, but the expression efficiency was closely related to the muscle damage. Increasing pulse times could enhance the efficiency of gene transfer with a lower strength of electric field. It was better to use a higher plasmid concentration than to use a larger dose of plasmid and repeated injection to achieve a high level of transgene expression. Optimal conditions varied in different animal models, being milder for diabetic mice than for normal mice, and it was also shown that the conditions that worked well on these small rodents were not necessarily suitable for larger animals. Our results provide a comprehensive view of the factors that affect the efficiency of gene transfer into skeletal muscle by electroporation.  相似文献   

10.
11.
12.
13.
BACKGROUND: Injection of DNA encoding exogenic proteins into muscle tissue combined with electroporation often results in a transient increase of the encoded protein concentration in the muscle and the blood. The reduction is normally due to an immune response against the exogenic protein but other factors may also be involved. How various electroporation parameters affect the concentration kinetics of syngenic and exogenic proteins is studied in relation to immune response and muscle damage after electroporation-mediated DNA transfer to muscle. METHODS: Electroporation was applied to mouse quadriceps and rat tibialis anterior muscles after injection of DNA encoding either secreted alkaline phosphatase (SEAP), beta-galactosidase (beta-gal), luciferase or a mouse IgG molecule. Protein concentrations in blood or muscle and antibody responses were measured for a period up to 3 months. Tissue inflammation and muscle cell damage were studied on muscle cross-sections and assessed by measuring the concentrations of creatine phosphokinase (CPK) in blood. RESULTS: Mice with the highest SEAP concentration in blood at day 7 also had the highest rate of decrease afterwards, the strongest antibody responses against SEAP and the highest acute levels of CPK in blood. DNA-transfected muscle fibers were significantly reduced in number from days 7 to 14. Mononuclear cells surrounded the reporter gene expressing muscle fibers, thus indicating a cellular immune response. When using DNA encoding a syngenic protein the protein concentration in blood was relatively stabile over a 3-month period, but showed different kinetics for various electroporation parameters. CONCLUSIONS: Our findings suggest that the optimal electroporation parameters for DNA vaccination may be different from the optimal parameters for long-term expression of genes encoding syngenic proteins.  相似文献   

14.
15.
16.
17.
BACKGROUND: Although gene therapy using plasmid vectors is thought to be safer compared with viral vectors, poor efficacy of gene transfer is the obstacle preventing wide application of plasmid vectors. However, high levels of foreign gene expression have been achieved by rapid tail vein injection of a large volume of a plasmid DNA solution into rats. Using this technique, we examined the effect of rat CTLA4-Ig gene transfer on prevention of cardiac allograft rejection in this animal model. METHODS: Recipient Lewis rats were injected with either plasmid pCAGGS-CTLA4-Ig-Glu-tag as a treatment vector or plasmid pCAGGS-signal peptide (SP)-Ig as a control vector by hydrodynamics-based delivery technique on the day before heart transplantation. Hearts from Brown Norway donors were transplanted into the neck of Lewis recipients and graft survival was assessed. RESULTS: The plasma level of CTLA4-Ig reached a peak of nearly 5 microg/mL 1 day after injection, and then slowly decreased but still remained above 0.9 microg/mL until 100 days after injection. The recipient rats treated with the control vector and untreated rats rejected cardiac allografts within 7 days. On the other hand, the median survival time of the grafts treated with pCAGGS-CTLA4Ig-Glu-tag was more than 100 days. Histological examination revealed that long-term survival allografts contained fewer infiltrating lymphocytes. The serum from recipients with long-term survival allograft suppressed allogenic mixed lymphocyte reaction. CONCLUSIONS: CTLA4-Ig gene transfer by means of tail vein injection of plasmid DNA into a recipient rat resulted in remarkable prolongation of cardiac allograft survival with persistent plasma level of CTLA4-Ig protein.  相似文献   

18.
We describe the use of direct injection of circular plasmid DNA and subsequent in vivo electroporation (EP) for efficient gene delivery to the ovarian cells, including follicular cells and oocytes of mice. When Trypan blue (TB) was injected into the central portion of an ovary by a glass micropipette, rapid dispersion of TB to each preantral and antral follicle was observed. Injections of lacZ-expressing plasmid DNA and subsequent in vivo EP resulted in transfection of follicles with efficiencies ranging from 8-60%, together with cells in the thecal portion of the ovary. Of the lacZ-positive follicles, some oocytes were also positive for lacZ activity. These findings suggest that a solution introduced inside the ovary is rapidly dispersed to each follicle. With this technique, we expect great progress in genetic engineering in murine ovary.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号