首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In laser flow cytometry, an increasingly popular technique of analytical cytology, quantitative measurements of interest include cell and nuclear diameters. Electronic circuitry for a new cell sizing technique has been developed which measured the time that signal pulses from either fluorescence or light scatter sensors exceed a preset constant fraction of the peak signal amplitude (pulse width) or the time that it takes a signal to rise between constant fractions of the peak signal amplitude on the rising side of the pulse (pulse rise-time). These pulse width or pulse rise-time measurements were related to cell or nuclear diameters and were used in combination to determine nuclear size to cell size ratios. This method of sizing was found to be independent of fluorescent or light-absorbing stain intensity, linearly related to cell or nuclear diameter, and capable of resolving small diameter differences.  相似文献   

2.
An improved dual-laser flow cytometric system for quantitative analysis and sorting of mammalian cells has been developed using a low-power argon and high-power krypton laser as illumination sources, thus permitting the excitation of fluorescent dyes having absorption regions ranging from the ultraviolet to infrared. Cells stained in liquid suspension with fluorescent dyes enter a flow chamber where they intersect two spatially separated laser beams. Separate pairs of quartz beam-shaping optics focus each beam onto the cell stream. Electro-optical sensors measure fluorescence and light scatter signals from cells that are processed electronically and displayed as frequency distribution histograms. Cells also can be electronically separated and microscopically identified. The ease and versatility of operation designed into this system represent a marked technological improvement for dual-laser excited flow systems. Details of this instrument are described along with illustrative examples of cells stained with mithramycin and rhodamine and analyzed for DNA content, total protein, and nuclear and cytoplasmic diameter.  相似文献   

3.
Unlike other caspases, caspase-2 appears to be a nuclear protein although immunocytochemical studies have suggested that it may also be localized to the cytosol and golgi. Where and how caspase-2 is activated in response to apoptotic signals is not clear. Earlier immunocytochemistry studies suggest that caspase-2 is activated in the nucleus and through cleavage of BID leads to increased mitochondrial permeability. More recent studies using bimolecular fluorescence complementation found that caspase-2 oligomerization that leads to activation only occurs in the cytoplasm. Thus, apoptotic signals may lead to activation of caspase-2 which may already reside in the cytoplasm or lead to release of nuclear caspase-2 to the extra-nuclear cytoplasmic compartment. It has not been possible to study release of nuclear caspase-2 to the cytoplasm by cell fractionation studies since cell lysis is known to release nuclear caspase-2 to the extra-nuclear fraction. This is similar to what is known about unliganded nuclear estrogen receptor-α (ERα ) when cells are disrupted. In this study we found that pre-treatment of cells with N-ethylmaleimide (NEM), which alkylates cysteine thiol groups in proteins, completely prevents redistribution of caspase-2 and ERα from the nucleus to the extra-nuclear fraction when cells are lysed. Using this approach we provide evidence that apoptotic signals rapidly leads to a shift of caspase-2 from the nucleus to the extra-nuclear fraction, which precedes the detection of apoptosis. These findings are consistent with a model where apoptotic signals lead to a rapid shift of caspase-2 from the nucleus to the cytoplasm where activation occurs.  相似文献   

4.
L C Seamer  R N Mandler 《Cytometry》1992,13(5):545-552
We have developed a technique to improve the sensitivity of relative membrane potential measurements in mouse spinal cord cells using the fluorescent, anionic, voltage sensitive dye, DiBa-C4(3) (Oxonol) and flow cytometry. In order to attribute cellular fluorescence primarily to membrane potential, signal variability due to cell size and shape was reduced by dividing the log fluorescence signal from each cell by either its log forward angle light scatter or log side scatter signals. The use of these ratios in place of log oxonol fluorescence reduced the coefficient of variation of the distributions while leaving the changes in mean fluorescence largely unaffected. Kolmogorov-Smirnov analysis of pre- vs. postkainate stimulation (an excitatory amino acid) showed improved sensitivity of the assay with the use of this ratio technique.  相似文献   

5.
A new two-color fluorescence staining technique for cervical cytology specimens is described. To permit application of this staining in automated cytology, techniques for specimen collection and cell preparation giving a sufficient number of well-separated cells on slides were used. The staining consists of a combination of a modified Feulgen-acriflavine procedure for DNA and a primulin or stilbene isothiocyanate staining for protein. This results in a bright yellow nuclear fluorescence and a blue cytoplasmic fluorescence. The staining procedure can be completed in about 90 min and is therefore suitable for routine application. Sequential inspection of the yellow nuclear and blue cytoplasmic fluorescence can be done with the two-wavelength excitation method used in fluorescence microscopy. For the application of this method, special vertical illuminators are now available. These illuminators are provided with quickly interchangeable filter sets permitting consecutive visualization of, for example, only the nuclei in the first image and the whole cell in the second image. This procedure opens new possibilities for rapid image-analysis systems.  相似文献   

6.
Cellular dimensions affecting the nucleocytoplasmic volume ratio   总被引:4,自引:1,他引:3       下载免费PDF全文
Although it has long been appreciated that larger eukaryotic cells have larger nuclei, little is known about how this size relationship is maintained. Here we describe a method for measuring the aqueous volume ratio of nucleus to cytoplasm, two compartments which are interconnected via the pores in the nuclear envelope. We then use that method to identify proportional cellular dimensions in variously treated cells and in different cell types. Cells were scrape loaded with a mixture of fluorescent dextrans: Texas red dextran, average mol wt = 10,000 (TRDx10), and fluorescein isothiocyanate dextran, average mol wt = 70,000 (FDx70). After introduction into the cytoplasmic space, the TRDx10 distributed into both the nucleus and cytoplasm, whereas the FDx70 was restricted to cytoplasm, due to size exclusion by the nuclear pores. The aqueous nucleocytoplasmic volume ratio (RN/C) was determined by measuring, from fluorescence images of spread cells, total cellular fluorescence of each of the two probes and the fluorescence ratio of those probes in the cytoplasm. RN/C was unaffected by the measurement procedure or by varying temperatures between 23 degrees and 37 degrees C. Loading excess unlabeled dextrans had little effect on RN/C, with the single exception that high concentrations of large dextrans could lower RN/C in endothelial cells. Expanding intracellular membranous compartments of macrophages by phagocytosis of latex beads decreased RN/C. Expanding the same compartment by pinocytosis of sucrose, which nearly doubled total cell volume, had little effect on RN/C, indicating that nuclear volume was more closely linked to the cytoplasmic volume, exclusive of vesicular organelles, than to total cell volume. RN/C was the same in mononucleate and binucleate endothelial cells. Finally, measurements of RN/C in murine bone marrow-derived macrophages, bovine aortic endothelial cells, Swiss 3T3 fibroblasts, PtK2 cells, and CV-1 cells revealed that nuclear volume scaled allometrically with cell volume. The allometric relationship indicated that cell volume was proportional to nuclear surface area.  相似文献   

7.
Single-cell forward light scattering patterns have been examinedfor four algal species (one pennate diatom, two green flagellatesand one filamentous cyanobacterium), mounted statically in afocused laser beam. In all cases, the distribution of lightintensity at narrow angles (within the first scattering lobe)is well described by diffraction theory. Narrow-angle forwardscattering measurements can therefore be used in principle todeduce the size and approximate shape of algal cells. The feasibilityof using this technique in flow cytometry has been tested usingan instrument which orientates elongated cells uniformly inthe flow stream, and uses fibre optics to make azimuthally resolvedforward scatter measurements at sub-degree polar angles. Withthis instrument it is possible to discriminate between specieswith similar volume and fluorescence characteristics using forwardlight scattering as a shape-sensitive parameter.  相似文献   

8.
9.
Using both conventional and laser confocal fluorescence microscopy, the intracellular distribution of galectin-1 in HeLa cells was analyzed and compared with the localization of previously documented markers of the nucleus and cytoplasm. The Sm epitopes of the small nuclear ribonucleoprotein complexes (snRNPs) and the non-snRNP splicing factor SC35 yielded only nuclear staining. On the other hand, the enzyme lactate dehydrogenase was cytoplasmic. In contrast to these patterns in which nuclear versus cytoplasmic localizations appeared to be mutually exclusive, galectin-1, as well as galectin-3, yielded simultaneous nuclear and cytoplasmic staining. Confocal microscopy showed galectin-1 fluorescence throughout most of the sections from the top of the cell to the bottom. Through the middle sections, as the plane of focus cuts through the nucleus, there was definite fluorescence staining in the nuclear compartment. This nuclear localization was critically dependent on the type of detergent used to permeabilize the cell: cells treated with saponin or digitonin yielded exclusively cytoplasmic staining while Triton X-100-treated cells showed nuclear as well as cytoplasmic labeling. Finally, double-immunofluorescence analysis showed that, within the nucleoplasm, the following pairs of nuclear antigens could be colocalized in certain speckled structures: (a) SC35 versus Sm; (b) galectin-1 versus Sm; (c) galectin-3 versus Sm; and (d) galectin-1 versus galectin-3. These results establish the presence of galectin-1 in the nuclei of HeLa cells, a conclusion consistent with the identification of the protein in nuclear extracts of the same cells and with its documentation as a factor in pre-mRNA splicing.  相似文献   

10.
Nuclear pores in cells of the yeast Saccharomyces cerevisiae were examined by using the freeze-fracture technique. Nuclear pore diameters in actively growing cells appear to be exclusively of the normal diameter (75 to 115 nm), whereas some pore diameters in abnormally small G1-arrested cells produced by nitrogen starvation are unusually wide (120 to 160 nm). There may be a correlation between nuclear pore size and nuclear envelope size, the larger pores tending to occur in the smaller envelopes. The finding suggests that nuclear pore diameter may not function in regulating the flow of informational molecules from nucleus to cytoplasm, but may be implicated in regulating the flow of substrates into the nucleus.  相似文献   

11.
Studies of RNA interference (RNAi) provide evidence that in addition to the well-characterized cytoplasmic mechanisms, nuclear mechanisms also exist. The mechanism by which the nuclear RNA-induced silencing complex (RISC) is formed in mammalian cells, as well as the relationship between the RNA silencing pathways in nuclear and cytoplasmic compartments is still unknown. Here we show by applying fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS) in vivo that two distinct RISC exist: a large ~3 MDa complex in the cytoplasm and a 20-fold smaller complex of ~158 kDa in the nucleus. We further show that nuclear RISC, consisting only of Ago2 and a short RNA, is loaded in the cytoplasm and imported into the nucleus. The loaded RISC accumulates in the nucleus depending on the presence of a target, based on an miRNA-like interaction with impaired cleavage of the cognate RNA. Together, these results suggest a new RISC shuttling mechanism between nucleus and cytoplasm ensuring concomitant gene regulation by small RNAs in both compartments.  相似文献   

12.
RNA molecules which are restricted to the nucleus in mouse L-cells were characterized by the technique of RNA/DNA hybridization. Competition of cytoplasmic RNA with labeled nuclear RNA of various sizes revealed that the RNA restricted to the cell nucleus is heterogeneous in size. Competition for sites on fractions of mouse DNA of various base compositions indicated that this unstable RNA is also heterogeneous in base composition. Fractionation of nuclei into three subfractions failed to separate the uniquely nuclear RNA from the precursors of cytoplasmic RNA. The significance of the selective transport of RNA from the nucleus to the cytoplasm and its importance in the control of gene activity in eucaryotic cells is discussed.  相似文献   

13.
Various observations suggest that an intracellular timer is involved in the control of cell proliferation and differentiation that supplements control by extracellular signaling and depends on quantitative relations between cytoplasm and nucleus. To further elucidate the mechanism of this timer, we examined the results of experiments with mice in which cell cycle regulating genes were inactivated: the inactivation of negative cell cycle regulators extends cell proliferation, whereas inactivation of positive regulators decreases cell proliferation. We conclude that this is caused in the former case by shortening of G1 which decreases the cytoplasmic growth rate per cell cycle, whereas in the latter case this rate is increased due to G1 prolongation. This is consistent with our hypothesis according to which the cytoplasmic/nuclear ratio must increase to a certain level to induce end stage differentiation and cell cycle arrest. A new basis of this hypothesis is the fact that end stage differentiation requires large quantities of membranous cytoplasmic structures that the cells are unable to produce de novo. Embryonic cells, however, possess only few of these structures. The only feasible way to multiply these structures is by growing more cytoplasm per cell cycle than needed for a doubling so that successively, the level of the cytoplasmic/nuclear ratio is reached that is required for differentiation. A consequence is that the cytoplasmic growth rate per cell cycle determines the number of amplification divisions. We suggest that the differentiation signal may be triggered when a differentiation-preventing protein (for example Bcl-2) is diluted out by the expansion of cytoplasmic membrane structures, thus simultaneously determining the cell size. The intracellular timer and extracellular signals cooperate in adjusting cell production to the organism's need and in determining when and how the cells respond to extracellular signals or transmit extracellular signals.  相似文献   

14.
Isolated ventricular muscle cells from the adult rat heart have been examined by both Coulter analysis and light scatter flow cytometry. The dispersed cell preparations contain two main cell types: viable, rod-shaped cells and damaged, round cells. Coulter analytical techniques provided statistical data on cell volume for both cell types. The contribution of each population to the Coulter pulse height distributions were separated by a subtraction method using data obtained from digitonin-treated preparations that contain only round cells. A shape factor for cells aligned with the flow direction was computed from light microscope measurements and the effects of cell orientation within the Coulter aperture were approximately assessed. The estimated volumes for intact myocytes compare favourably with those reported in the literature. No significant size difference was observed between fresh and fixed cells.Narrow angle, forward light scatter measurements were made on individual cells flowing across a focused laser beam. Both scatter pulse height and pulse width (pulse duration) distributions were collected. Values for myocyte length calculated from pulse width information agree well with published data and confirm that the hydrodynamic forces in the flow system produced alignment of the cells with the flow direction. Scatter pulse width distributions reveal two distinct peaks assignable to either rod or round cells. Preliminary electronic gating experiments, using pulse height signals, suggest that signals derived from round cells could be eliminated entirely using a gating regime based on pulse width. This would enable flow cytometric measurements to be made on only the intact myocytes present in heterogeneous preparations.  相似文献   

15.
HEp-2 cells infected with herpes simplex virus develop five distinct immunofluorescent elements. Three (small nuclear granules, large nuclear granules, and an amorphous mass filling the nucleus) contain antigens which react with a rabbit serum prepared against boiled infected cell debris. A labeled pool of human antibody revealed antigens making up cytoplasmic granules and those responsible for a diffuse cytoplasmic fluorescence. All five immunofluorescent elements are demonstrable with a rabbit serum prepared against unheated infected cell debris. Viral antigens are segregated in the nucleus or in the cytoplasm; within the limits of detection, each antigen accumulates in one compartment only. The antigens responsible for the diffuse cytoplasmic fluorescence and for the amorphous nuclear mass are synthesized early in infection; they are formed in arginine-deprived cells and exist in a form which does not sediment on centrifugation at 79,000 x g for 2 hr. The antigens comprising the nuclear and cytoplasmic granules arise relatively late in infection; they are not formed in arginine-deprived cells, and they are readily sedimented on centrifugation at 79,000 x g for 2 hr. Heating (60 C for 2 hr) confers on one or more cytoplasmic viral antigens a new specificity; the altered antigens are demonstrable with labeled rabbit anti-boiled infected cell serum which normally does not combine with cytoplasmic antigens.  相似文献   

16.
Control of cell-cycle timing in early embryos of Caenorhabditis elegans   总被引:3,自引:0,他引:3  
A technique has been developed for extruding either substantial amounts of cytoplasm without nuclei or individual nuclei with small amounts of cytoplasm from early embryos of C. elegans after perforating the eggshell with a laser microbeam. This technique, in conjunction with laser-induced cell fusion, has allowed the altering of nuclear/cytoplasmic ratios and the exposing of the nucleus of one cell to cytoplasm from another. Using these approaches the roles of nuclei and cytoplasm in determining the different cell-cycle periods of the several blastomere lineages in early embryos have been examined. It was found that nuclei in a common cytoplasm divide synchronously; enucleated blastomeres retain a cycling period characteristic of their lineage; cycling period is not substantially affected by changes in the ratio of nuclear to cytoplasmic volumes or the DNA content per cell; the period of a cell from one lineage can be substantially altered by introduction of cytoplasm from a cell of another lineage with a different period; and short-term effects of foreign cytoplasm on the timing of the subsequent mitosis differ depending on position of the donor cell in the cell cycle. These results are discussed in connection with models for the action of cytoplasmic factors in controlling cell-cycle timing.  相似文献   

17.
The organelle DNA in generative cell and its behavior during spermatogenesis in Pharbitis limbata and P. purpurea were observed by epifluorescence microscopy stained with 4',-6-diamidino-2-phenylindole (DAPI). In these two species, the generative cell is long and thin in which a great amount of cytoplasmic DNA is present. Most pairs of sperm cells are isomorphic, in which one end is obtuse and the other is elongate, but in a few pairs dimorphi sperms are present. The nucleus is located at one end of the cell. A lot of cytoplasmic DNA are distributed randomly throughout the cytoplasm. The size of organelle nucleoids and their fluorescence intensity are different in a sperm cell. The features of generative cell and sperm cell, and behavior of cytoplasmic DNA are similar in P. limbata and P. purpurea. The obvious differences between them are that the size and fluorescence intensity of organelle nucleoids in P. purpurea are respectively smaller and weaker than in P. limbata. The results showed that morning glory has potential of biparental or paternal cytoplasmic in heritance. Isomorphism and dimorphism of sperms, and the relationship between the ratio of nucleus and cytoplasm in sperm cell and the plastid biparental inheritance are discussed.  相似文献   

18.
Nuclear protein transport processes have largely been studied using in vitro semi‐intact cell systems where high concentrations of nuclear localizing substrates are used, and cytoplasmic components such as the microtubule (MT) network, are either absent or damaged. Here we use the fluorescence recovery after photobleaching (FRAP) technique to analyze the nucleocytoplasmic flux of distinct fluorescently tagged proteins over time in living cultured cells. FRAP was performed in different parts of the cell to analyze the kinetics of nucleocytoplasmic trafficking and intranuclear/cytoplasmic mobility of the tumor suppressor Rb protein and a SV40 large tumor antigen (T‐ag) derivative containing the nuclear localization sequence (NLS), both fused to green fluorescent protein (GFP). The results indicate that proteins carrying the T‐ag NLS are highly mobile in the nucleus and cytoplasm. Rb, in contrast, is largely immobile in both cellular compartments, with similar nuclear import and export kinetics. Rb nuclear export was CRM‐1‐mediated, with its reduced mobility in the cytoplasm in part due to association with MTs. Overall our results show that nuclear and cytoplasm retention modulates the rates of nuclear protein import and export in intact cells. J. Cell. Biochem. 107: 1160–1167, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Two physical parameters were investigated to automatically recognize cells in sputum from human squamous cell carcinoma of the lung and to separate them for preparation by the Papanicolaou methods, for human interactive identification and for automated high resolution image analysis. The two parameters, 0.5-15.0 degrees forward argon-ion laser light scatter to estimate total cell size and 546 nm Acridine orange fluorescence to approximate total cell DNA content, were measured in a flow-through fluorescence activated cell sorting system. Enrichment for neoplastic cells in three cases of squamous cell carcinoma of the lung averaged 7.8-fold over the original sputum when only green fluorescence was used and 10.5-fold using green fluorescence and forward light scatter. The average enrichment for neoplastic cells was 65.6-fold relative to polymorphonuclear deenrichment.  相似文献   

20.
The techniques of somatic cell hybridization have provided a valuable means of studying mechanisms of regulation of mammalian cell differentiation and transformation. Most previous studies have indicated that fusions between tumorigenic and nontumorigenic cells result in hybrid cells that are usually tumorigenic. In recent years it has been demonstrated that the phenotypic expression of tumorigenicity is at least partially due to the extensive chromosome loss that occurs in most interspecific and some intraspecific hybrid cells. In the present study we have utilized enucleation techniques that permit cells to be divided into nuclear (karyoplast) and cytoplasmic (cytoplast) cell fragments. Even though these nuclear and cytoplasmic fragments are metabolically stable for short periods of time, in our hands they ultimately degenerate. Viable cells can be reconstructed by PEG-induced fusion of karyoplasts to cytoplasts. Since reconstructed cells apparently do not segregate chromosomes, they may provide a clearer understanding of the interactions between the nucleus and the cytoplasm in the control of the expression of tumorigenicity. We have reconstructed cells using karyoplasts from the tumorigenic Y-1 cell line and cytoplasts from a nontumorigenic cell line, A-MT-BU-A1. In addition we have reconstructed cells containing Y-1 cytoplasts and A-MT-BU-A1 karyoplasts. The reconstructed cells porduced were assayed for tumorigenicity by their ability to grow in soft agar and in nude mice. The results of these experiments indicate that the reconstructed cells containing a tumorigenic nucleus and a nontumorigenic cytoplasm ultimately are tumorigenic and conversely the reconstructed cells containing a nontumorigenic nucleus and a tumorigenic cytoplasm are nontumorigenic. These experiments support the concept that with these cell lines the nucleus (karyoplast) is sufficient to control the phenotypic expression of tumorigenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号