共查询到20条相似文献,搜索用时 109 毫秒
1.
细菌毒素-抗毒素系统(Toxin-antitoxin system,TA)由稳定的毒素和不稳定的抗毒素构成,几乎存在于所有细菌中。已证明染色体编码的II型TA系统作为胁迫反应因子,通过毒素作用于不同的细胞靶点来调控重要的细胞活动过程,使细菌适应不同的环境胁迫。因此,毒素活性的调控是II型TA系统介导细菌适应性胁迫反应的关键。本文总结了II型TA系统毒素活性调控机制的研究进展,并介绍了作者近年来对模式蓝藻Synechocystis sp.PCC6803中II型TA毒素活性调控的研究结果。 相似文献
2.
毒素-抗毒素系统(toxin-antitoxin system,简称TA系统)广泛存在于原核生物(细菌和古菌)的基因组中,通常TA系统由毒素和抗毒素两部分组成,毒素发挥毒性抑制细菌生长,抗毒素可以解除抑制,它们通过体内的调控作用来对细菌或古菌的生长活动进行调节。研究发现,TA系统根据其性质及抗毒素中和毒素的方式不同可以分为8种类型Ⅰ~Ⅷ,不同类型的TA系统之间又存在着错综复杂的交互作用,而且此系统在细菌中发挥的作用也一直是近年来学者们研究的热点。现就TA系统的最新分类、TA系统的功能以及应用作一概述。 相似文献
3.
毒素-抗毒素系统是广泛存在于细菌和真菌细胞内的一对小型遗传控制元件,毒素基因编码稳定的蛋白质分子,抗毒素基因编码的则是稳定性较差的蛋白质或者是具有调控功能的RNA.人们对于毒素分子在细胞内的生物靶标、分子结构与功能、体内调节机制等进行了大量的研究,不仅揭示了毒素-抗毒素的生理功能,而且为多种生物技术中的应用提供了新的素材.目前发现共有5大类型的毒素-抗毒素系统,其中Ⅰ型毒素-抗毒素系统的抗毒素分子为调节型RNA,可以通过多种不同途径与毒素蛋白质的mRNAs结合从而中和毒素的细胞毒性.Ⅰ型毒素-抗毒素系统以其独特的调节性RNA的调控方式,成为目前毒素-抗毒素研究中的重要热点.本文将对目前Ⅰ型毒素-抗毒素系统的研究进展进行综述,并对其可能的应用前景进行展望. 相似文献
4.
5.
王欣妍 《微生物学免疫学进展》2020,(6):58-62
毒素-抗毒素系统(toxin-antitoxin system,简称TA系统)是广泛存在于自然界微生物中的遗传元件,与细菌应激反应或对抗生素产生耐受有关.结核分枝杆菌(Mycobacterium tuberculosis)在人体中形成潜伏感染可能与细菌形成的特殊休眠状态有关,其可逃避宿主免疫系统的监视和清除;TA系统参... 相似文献
6.
毒素-抗毒素系统(toxin-antitoxin system,TA)由具有杀菌或抑菌作用的毒素和能中和毒素毒性的抗毒素组成,在细菌和古菌的染色体和可移动遗传元件中分布广泛。TA系统具有结构和功能的多样性,目前分为八大类型(Ⅰ-Ⅷ型)。研究发现TA系统与细菌生物膜的形成、细菌毒力、耐药性细菌感染、质粒拷贝数的调控及原噬菌体切离后在细胞中的稳定维持等相关。文章综述了近年来TA系统的最新分类、TA系统的功能及抗毒素的其他调控功能等进展,并对TA领域的应用做了简要描述。 相似文献
7.
《微生物学免疫学进展》2017,(3)
毒素-抗毒素(toxin-antitoxin,TA)系统是广泛存在细菌基因组上的由两个基因组成的操纵子,分别编码稳定的毒素蛋白和不稳定的抗毒素,其中毒素蛋白具有多种生物学功能。持留菌是指能够耐受高浓度抗生素或不利环境的一类细菌,它们同样具有TA系统。现就毒素-抗毒素系统介导持留菌形成机制的研究进展作一综述。 相似文献
8.
结核分枝杆菌(Mycobacterium tuberculosis)是引起结核病的病原菌。其处于持续生存的休眠状态时,可导致长期无症状感染,称为结核潜伏感染。研究显示,结核分枝杆菌染色体中存在大量 “毒素-抗毒素系统”(toxin-antitoxin system,TAS),某些TAS在潜伏感染中发挥作用,可调节细菌生长和诱导细菌进入休眠状态;某些TAS参与生物膜形成和应激反应,但其影响生物膜形成的机制尚未阐明。生物膜中的结核分枝杆菌对多种抗结核药物耐药,且能抵抗宿主免疫系统防御;休眠状态的结核分枝杆菌对抗结核药物通常也是耐受的,给结核病治疗带来了巨大挑战。本文就近年来结核分枝杆菌TAS与生物膜的研究及抗结核药物对生物膜形成的影响进行综述。 相似文献
9.
毒素-抗毒素系统(toxin-antitoxin system,TAS)广泛存在于细菌染色体及质粒上,是细菌中含量丰富的小型遗传元件。TAS通常由两个紧密相连的基因组成,分别编码毒素(toxin)和抗毒素(antitoxin),稳定的毒素能够损伤宿主细胞,不稳定的抗毒素能够保护宿主细胞免于毒素的损伤作用。依据其性质和作用方式,目前已经发现三种型别的TAS。TAS具有多种生物学作用,如诱导程序性细胞死亡(programmed cell death,PCD),应激条件下介导持留菌形成(persistence),稳定基因大片段等。本文就近几年TAS在应激条件下的生物学作用的研究进展做一综述。 相似文献
10.
毒素-抗毒素(toxin-antitoxin,TA)系统是由抗毒素及其同源毒素组成的小遗传元件,毒素可以抑制细胞生长或诱导细胞死亡,抗毒素则可以中和毒素的毒性。根据TA系统的组成和抗毒素的作用方式,TA系统可分为Ⅰ~Ⅷ型共八类,其中Ⅱ型TA系统存在最广泛,调控机制研究得最清楚。TA系统可以维持质粒等遗传元件的稳定性,同时在压力应激、促进生物膜形成、维持细菌致病力、抗噬菌体等方面都扮演着重要角色。研究TA系统的调控与生理功能能丰富人们对于生物多样性的认知,对于微生物资源的开发和利用具有重要的科学意义与应用价值。基于毒素和抗毒素的特点,TA系统被应用于生物医学领域和生物技术领域。本文综述了TA系统的分类、调控机制、生理功能和应用并简单描述了TA系统目前研究面临的问题和未来展望。 相似文献
11.
12.
毒性分子-抗毒性分子系统(toxin-antitoxin systems,TA systems)被发现广泛存在于细菌染色体、质粒以及古细菌基因组中。TA系统是由2个基因组成的操纵子,这2个基因分别编码稳定的毒性分子和不稳定的抗毒性分子。毒性分子总是蛋白质,抗毒性分子可能是蛋白质或RNA。因此,根据抗毒性分子的性质和作用方式的不同可将TA系统家族分为5种类型。Ⅰ型和Ⅲ型的抗毒性分子是RNA,能抑制毒性分子的合成或者与其隔离;II、IV和V型的抗毒性分子是蛋白质,能隔离、平衡毒性分子作用或抑制其合成。TA系统具有多种生物学功能。目前研究表明,TA系统可能在细菌应激应答、程序化细胞死亡、多重耐药的形成、防止DNA入侵、稳定大基因组片段等方面有重要的作用。 相似文献
13.
Diana Mendes Freire Claude Gutierrez Acely Garza-Garcia Anna D. Grabowska Ambre J. Sala Kanchiyaphat Ariyachaokun Terezie Panikova Katherine S.H. Beckham André Colom Vivian Pogenberg Michele Cianci Anne Tuukkanen Yves-Marie Boudehen Antonio Peixoto Laure Botella Dmitri I. Svergun Dirk Schnappinger Thomas R. Schneider Olivier Neyrolles 《Molecular cell》2019,73(6):1282-1291.e8
14.
Sean Benler Eugene V. Koonin 《BioEssays : news and reviews in molecular, cellular and developmental biology》2020,42(12):2000114
Exploration of immune systems in prokaryotes, such as restriction-modification or CRISPR-Cas, shows that both innate and adaptive systems possess programmed cell death (PCD) potential. The key outstanding question is how the immune systems sense and “predict” infection outcomes to “decide” whether to fight the pathogen or induce PCD. There is a striking parallel between this life-or-death decision faced by the cell and the decision by temperate viruses to protect or kill their hosts, epitomized by the lysis-lysogeny switch of bacteriophage Lambda. Immune systems and temperate phages sense the same molecular inputs, primarily, DNA damage, that determine whether the cell lives or dies. Because temperate (pro)phages are themselves components of prokaryotic genomes, their shared “interests” with the hosts result in coregulation of the lysis-lysogeny switch and immune systems that jointly provide the cell with the decision machinery to probe and predict infection outcomes, answering the life-or-death question. 相似文献
15.
16.
Patrik Florek Katarína Muchová Pamela Pavelíková & Imrich Barák 《FEMS microbiology letters》2008,278(2):177-184
SpoIISA and SpoIISB proteins from Bacillus subtilis belong to a recently described bacterial programmed-cell death system. The current work demonstrates that the toxin–antitoxin module is also functional in Escherichia coli cells, where the expression of SpoIISA toxin leads to transient growth arrest coupled with cell lysis, and SpoIISA-induced death can be prevented by coexpression of its cognate antitoxin, SpoIISB. Escherichia coli cells appear to be able to escape the SpoIISA killing by activation of a specific, as yet unidentified protease that cleaves out the cytosolic part of the protein. Analysis of the toxic effects of the transmembrane and cytosolic portions of SpoIISA showed that neither of them separately can function as a toxin; therefore, both parts of the protein have to act in concert to exert the killing. This work also identifies genes encoding putative homologues of SpoIISA and SpoIISB proteins on chromosomes of other Bacilli species. The SpoIISA-like proteins from Bacillus anthracis and Bacillus cereus were shown to manifest the same effect on the viability of E. coli as their homologue from B. subtilis . Moreover, expression of the proposed spoIISB -like gene rescues E. coli cells from death induced by the SpoIISA homologue. 相似文献
17.
Apoptosis: Programmed cell death in health and disease 总被引:3,自引:0,他引:3
Apoptosis is a normal physiological cell death process of eliminating unwanted cells from living organisms during embryonic and adult development. Apoptotic cells are characterised by fragmentation of nuclear DNA and formation of apoptotic bodies. Genetic analysis revealed the involvement of many death and survival genes in apoptosis which are regulated by extracellular factors. There are multiple inducers and inhibitors of apoptosis which interact with target cell specific surface receptors and transduce the signal by second messengers to programme cell death. The regulation of apoptosis is elusive, but defective regulation leads to aetiology of various ailments. Understanding the molecular mechanism of apoptosis including death genes, death signals, surface receptors and signal pathways will provide new insights in developing strategies to regulate the cell survival/death. The current knowledge on the molecular events of apoptotic cell death and their significance in health and disease is reviewed. 相似文献
18.
19.
在多细胞有机体的组织内稳态维持和正常发育过程中,细胞程序性死亡发挥着重要的作用。细胞程序性死亡有多种形式(如细胞凋亡、类细胞凋亡和类坏死等),其中了解较清楚的是细胞凋亡。一直以来,胱冬肽酶(caspase)被认为是细胞凋亡发生中关键的一种蛋白酶。但是最近的研究表明,包括细胞凋亡在内的一些细胞程序性死亡可以以一种不依赖胱冬肽酶的方式发生。细胞程序性死亡与胱冬肽酶之间存在非依赖性关系。 相似文献
20.
Shelly Gupta G. V. R. Krishna Prasad Arunika Mukhopadhaya 《The Journal of biological chemistry》2015,290(52):31051-31068
Porins, a major class of outer membrane proteins in Gram-negative bacteria, primarily act as transport channels. OmpU is one of the major porins of human pathogen, Vibrio cholerae. In the present study, we show that V. cholerae OmpU has the ability to induce target cell death. Although OmpU-mediated cell death shows some characteristics of apoptosis, such as flipping of phosphatidylserine in the membrane as well as cell size shrinkage and increased cell granularity, it does not show the caspase-3 activation and DNA laddering pattern typical of apoptotic cells. Increased release of lactate dehydrogenase in OmpU-treated cells indicates that the OmpU-mediated cell death also has characteristics of necrosis. Further, we show that the mechanism of OmpU-mediated cell death involves major mitochondrial changes in the target cells. We observe that OmpU treatment leads to the disruption of mitochondrial membrane potential, resulting in the release of cytochrome c and apoptosis-inducing factor (AIF). AIF translocates to the host cell nucleus, implying that it has a crucial role in OmpU-mediated cell death. Finally, we observe that OmpU translocates to the target cell mitochondria, where it directly initiates mitochondrial changes leading to mitochondrial membrane permeability transition and AIF release. Partial blocking of AIF release by cyclosporine A in OmpU-treated cells further suggests that OmpU may be inducing the opening of the mitochondrial permeability transition pore. All of these results lead us to the conclusion that OmpU induces cell death in target cells in a programmed manner in which mitochondria play a central role. 相似文献