首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
黄土区露天煤矿排土场土壤与地形因子对植被恢复的影响   总被引:2,自引:0,他引:2  
王洪丹  王金满  曹银贵  卢元清  秦倩  王宇 《生态学报》2016,36(16):5098-5108
在脆弱的生态环境改善和恢复过程中,植被恢复与重建扮演着重要的角色。黄土露天煤矿区生态环境极其脆弱,认识矿区损毁土地植被恢复与地形、土壤因子之间的作用规律对矿区土地复垦与生态恢复改善至关重要。为此,选择山西平朔安太堡露天煤矿南排土场对2条样带27个复垦样地的土壤、地形、植被参数进行了采集与测定,并应用单因素方差分析与CANOCO4.5软件的降趋势对应分析和冗余分析研究了地形与土壤因子对植被恢复的影响。结果表明:植被与土壤变量之间呈显著相关,与地形变量之间相关性不明显;坡度主要影响草本覆盖度,坡向与有机质和速效磷之间具有线性相关性;速效钾对植被的变化起着重要的作用;土壤容重与砾石含量对土壤养分含量具有明显的指示作用;有机质与全氮呈显著正相关,各土壤养分指标之间存在明显的相关关系。为了改善和恢复黄土区露天煤矿排土场脆弱的生态系统,应该考虑植被和土壤的联合演替。在当地的生态环境状况下土地复垦与生态恢复的关键是改善土壤状况和增加人工植被,同时加强对排土场人工和自然植被的保护。  相似文献   

3.
中卫山羊核心产地植物群落的数量分类与排序   总被引:3,自引:0,他引:3  
应用数量分类(TWINSPAN)和DCA排序方法,对我国特有裘皮用山羊(中卫山羊)核心产地——宁夏香山地区植物群落进行多元分析,根据TWINSPAN分类结果,并结合生态特征将所调查的28个样地植被分为6组,代表了该山地在海拔、地形、土壤、山坡坡度等环境作用下植被空间的分布格局。TWINSPAN分类结果与DCA排序结果较一致,DCA排序第一轴结果主要体现出海拔和山坡坡度对植被分布的作用,第二轴结果主要体现了地形(坡向)和土壤基质(沙地、石质山坡、土质山坡)对植被分布的作用。影响该干旱山地植被分布的主要环境因子有海拔和山坡的坡度,另外长期过度放牧对植被的空间分布影响较大,导致了该山地系统植被空间结构紊乱,并干扰了群落数量分析结果的准确性。  相似文献   

4.
In oceanic, nutrient-rich Fennoscandian arctic-alpine tundra heaths, grazing by reindeer has been found to increase herbs and graminoids in relation to dwarf shrubs. In continental lichen heaths in the inland with nutrient-poor conditions, however, slowly decomposable dwarf shrubs are favoured by grazing. According to a hypothesis, by favouring easily decomposing plants in nutrient-rich conditions and slowly decomposing plants in nutrient-poor conditions, herbivory enhances soil nutrient cycling in nutrient-rich and retards it in nutrient-poor areas. We tested this hypothesis by comparing the impact of reindeer grazing on soil C and N mineralization between two oceanic and two continental arctic-alpine tundra heaths.
Although soil respiration and microbial metabolic activity were enhanced by grazing in the suboceanic but not in the subcontinental tundra heaths, gross N mineralization rates were higher in the grazed areas in soils from all study sites, indicating that reindeer grazing leads to increased rates of nutrient cycling in both nutrient-poor and nutrient-rich tundra heaths. Thus, in the subcontinental tundra heaths, the increase in soil N concentrations due to mammalian waste products enhances N mineralization rates, even though the organic C quality is not improved by reindeer grazing. There was some site-specific variation in the strength of the reindeer effects on various microbial processes and soil properties, which can be related to spatial variation in grazing intensity and timing, as these factors in turn affect the nutrient sink strength of the vegetation.  相似文献   

5.
The vegetation of traditionally managed species-rich hay meadows at Sverveli, Telemark, S Norway was studied applying an indirect gradient approach. The vegetation in 93 randomly placed sample plots was analysed in order to detect the main vegetational gradients. Ecological measurements were recorded from each plot. The relationships between vegetation and environment were studied by DCA and LNMDS ordinations and non-parametric correlation analysis. Both ordinations revealed the same two ecologically interpretable vegetation gradients. Soil moisture was identified as the most important environmental factor in determining the species composition, followed by soil nutrient content. The contents of P, K. and Mg in the soil were more strongly correlated with the main vegetational gradients than was soil N. Differences in management history may explain some of the observed variation in species composition that was not accounted for by the recorded environmental variables.  相似文献   

6.

Questions

Dryland annual plant communities constitute the most species-rich small-scale vegetation in the Mediterranean. Nevertheless, the composition and diversity of these units and the factors controlling their variation are still insufficiently understood. Therefore, we investigated species composition and richness patterns in relation to important environmental gradients provided by climate and soil.

Location

Central Crete, Greece.

Methods

The study is based on 82 plots of 4 m2 sampled at altitudes between 11 and 1400 m a.s.l. We conducted vegetation relevés and soil analyses. We used generalised additive models to model species richness and community characteristics along the studied gradients. We then performed distance-based redundancy analysis to determine the main environmental factors influencing species composition. To determine species of diagnostic value for bedrock types, we applied an indicator species analysis. Correlation tests were used to test the performance of the South Aegean Plant Indicator Values on our dataset.

Results

We recorded 347 taxa (species and subspecies) of 43 plant families, and mean species numbers of 47.2 ± 12.5 per plot. While overall species richness varied only slightly along the analysed environmental gradients, significant changes were observed for relative proportions of species from different life forms and families. Soil pH and elevation had the highest influence on the variation in species composition (23.3% explained). We found 22 species indicative of calcareous rock and 24 species indicative of lime-deficient rock types. The South Aegean Plant Indicator Values were relatively strongly correlated with environmental variables.

Conclusions

Results indicate considerable species turnover both along climatic (elevation) and soil gradients, highlighting the special importance of soil pH. The data provided by our study are expected to supply relevant ecological background information for a pending classification of East Mediterranean annual-rich vegetation.  相似文献   

7.
Plant communities, soil organic matter and microbial communities are predicted to be interlinked and to exhibit concordant patterns along major environmental gradients. We investigated the relationships between plant functional type composition, soil organic matter quality and decomposer community composition, and how these are related to major environmental variation in non-acid and acid soils derived from calcareous versus siliceous bedrocks, respectively. We analysed vegetation, organic matter and microbial community compositions from five non-acidic and five acidic heath sites in alpine tundra in northern Europe. Sequential organic matter fractionation was used to characterize organic matter quality and phospholipid fatty acid analysis to detect major variation in decomposer communities. Non-acidic and acidic heaths differed substantially in vegetation composition, and these disparities were associated with congruent shifts in soil organic matter and microbial communities. A high proportion of forbs in the vegetation was positively associated with low C:N and high soluble N:phenolics ratios in soil organic matter, and a high proportion of bacteria in the microbial community. On the contrary, dwarf shrub-rich vegetation was associated with high C:N and low soluble N:phenolics ratios, and a high proportion of fungi in the microbial community. Our study demonstrates a strong link between the plant community composition, soil organic matter quality, and microbial community composition, and that differences in one compartment are paralleled by changes in others. Variation in the forb-shrub gradient of vegetation may largely dictate variations in the chemical quality of organic matter and decomposer communities in tundra ecosystems. Soil pH, through its direct and indirect effects on plant and microbial communities, seems to function as an ultimate environmental driver that gives rise to and amplifies the interactions between above- and belowground systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Seed dispersal is a key process in plant community dynamics, and soil seed banks represent seed dispersal in time rather than in space. Despite their potential importance, seed bank dynamics in the Arctic are poorly understood. We investigated soil seed banks and corresponding plant community composition in three contrasting vegetation types in West Greenland, viz. dwarf shrub heaths, herb slopes and fell‐fields. Through germination testing, 31 species were documented in soil seed banks. All of these were herbaceous, while no dwarf‐shrub species, which represents the dominating growth form in the above‐ground vegetation, were emerging from the seed bank. Consequently, across vegetation types, the lowest similarity between seed bank and above‐ground vegetation was found in dwarf shrub heath. Nine plant species were exclusively found in seed bank, all of which were non‐clonal forbs. Seed bank size (total number of seeds) and species richness seemed to increase with the level of natural disturbance. Additionally, we examined the effect of different experimental light and temperature conditions on the quantity and diversity of germinating seeds. The difference in diversity in vegetation and seed bank at the species level will impact population dynamics, regeneration of vegetation after disturbances and its potential to respond to climate change.  相似文献   

9.
An on-going, integrated project concerning modern pollen/vegetation/land-use relationships in south Sweden is outlined. Some preliminary results and their potential uses in palaeoecological reconstructions are discussed. Moss polsters were collected from 92 examples of vegetation/land-use areas of south Sweden (e.g. nonfertilized grazed areas, burned and grazed heaths, traditionally managed fodder-producing meadows, etc.). A total of 23 land-use (e.g. management type) and environment variables (e.g. soil chemistry) is available for 84 sites. The 84 sample data-set was analysed by canonical correspondence analysis and associated statistical testing using Monte Carlo permutation tests to explore and test patterns of modern pollen variation in relation to the environment, and by weighted averaging regression and calibration to derive local-scale environmental and land-use reconstructions from fossil pollen assemblages preserved in a soil profile.  相似文献   

10.
Aims and Methods Mostly due to land use changes, European heathlands have become increasingly rare. In addition, the increasing amount of atmospheric nitrogen deposition has resulted in an encroachment of grasses and a loss in species diversity. Despite many investigations, information about the precise environmental parameters that determine the development and maintenance of heathland vegetation is still insufficient. In order to determine the environmental factors that control heath succession and grass encroachment, and to develop appropriate management schemes, we studied the influence of several soil and microclimate parameters on species composition and vegetation characteristics in five successional stages in a coastal heathland on the island of Hiddensee, north-east Germany, where the encroachment of Carex arenaria has become a major problem.Important findings We recorded the highest plant species richness in grey dune and birch forest plots, while the encroachment of C. arenaria let to a significant decline in plant species richness. The most important environmental factors influencing species richness and distribution of single species were microclimate, soil moisture, soil pH and the C/N ratio. While many studies reported the importance of differences in nutrient availability, we found no significant correlations between soil nutrient availability and vegetation pattern. Environmental conditions in dense C. arenaria stands, especially soil properties (e.g. soil pH), showed great differences in comparison to the other successional stages. However, no correlations between the encroachment of C. arenaria and single environmental factors were found. Our results show that not only soil nutrients are important abiotic factors in heaths but that also microclimate and soil moisture play an important role and that many factors are involved in heath succession and in the promotion of grass encroachment. Management plans for the conservation and restoration of heathlands should therefore focus on the specific site conditions and should take several abiotic and biotic factors into account.  相似文献   

11.
The present study was designed to investigate the relative importance of biotic versus abiotic factors in determining the distribution of species among heterogeneous environments. The composition of 70 quadrats of 0.25-m2, located in a 13-m × 40-m region of a mown field in Durham, North Carolina, was defined through two sets of principal component scores representing soil and vegetation gradients in the study area. The first principal component in each of the analyses exhibited a monotonic increase in value along an elevational gradient characterizing the field. This represents a one-dimensional correlation structure between the background soil and vegetation variables. Secondary soil and vegetation gradients, represented by the remaining principal component axes, were for the most part uncorrelated.Regression analyses were used to study the relationships coupling the distribution of Danthonia sericea, a bunchgrass species, to the distribution of associated soil and vegetation gradients. The correlation of the distribution of Danthonia to the dominant soil/vegetation gradient was highly significant. In addition, strong, secondary correlations with the background vegetation remained after removal of variance associated with soil composition; the converse was, in general, not true. One exception involved a minor zinc gradient that exhibited a negative correlation with the distribution of Danthonia. A strong correlation was found coupling an interaction term associated with the primary soil/vegetation gradient to the distribution of Danthonia. The results suggest that the present distribution of Danthonia is modified to a large extent by competitive interactions with other plant species. However, the relative significance of the soil-by-vegetation interaction term also indicates that soil composition must be explicitly considered to properly understand the role of biotic interactions. Any one factor, biotic or abiotic, may modify the distribution of a species, but the way in which it modifies the distribution will depend directly upon the composition of the other factors making up the biotic and abiotic, environmental background.Abbreviations Danthonia = the species Danthonia sericea - PC = principal component - PCA = principal component analysis - SS = sum of squares  相似文献   

12.
Abstract The vegetation patterns in the Central Coast region of New South Wales have been extensively studied with respect to single environmental variables, particularly soil nutrients. However, few data are available on the effects of multiple environmental variables. This study examines the relationships between vegetation and multiple environmental variables in natural vegetation on two underlying rock types, Hawkesbury Sandstone and Narrabeen Group shales and sandstones, in Ku-ring-gai Chase National Park, Sydney. Floristic composition and 17 environmental factors were characterized using duplicate 500 m2 quadrats from 50 sites representing a wide range of vegetation types. The patterns in vegetation and environmental factors were examined through multivariate analyses: indicator species analysis was used to provide an objective classification of plant community types, and the relationships between vegetation and environmental factors within the two soil types were examined through indirect and direct gradient analyses. Eleven plant communities were identified, which showed strong agreement with previous studies. The measured environmental factors showed strong correlations with vegetation patterns: within both soil types, the measured environmental variables explained approximately 32–35% of the variation in vegetation. No single measured environmental variable adequately described the observed gradients in vegetation; rather, vegetation gradients showed strong correlations with complex environmental gradients. These complex environmental gradients included nutrient, moisture, and soil physical and site variables. These results suggest that a simple ‘nutrient’ hypothesis regarding vegetation patterns in the Central Coast region is inadequate to explain variation in vegetation within soil types.  相似文献   

13.
Abstract. Moisture and nutrient gradients consistently explain much of the variation in plant species composition and abundance, but these gradients are not spatially explicit and only reveal species responses to resource levels. This study links these abstract gradients to quantitative, spatial models of hill‐slope assembly. A gradient analysis in the mixed‐wood boreal forest demonstrates that patterns of upland vegetation distribution are correlated to soil moisture and nutrient gradients. Variation in species abundance with time since the last fire is removed from the gradient analysis in order to avoid confounding the physical environment gradients. The physical‐environment gradients are related to qualitative positions on the hill slope i.e. crest, mid‐slope, bottom‐slope. However, hill‐slope shape can be quantitatively described and compared by fitting allometric equations to the slope profiles. Using these equations, we show that hill‐slope profiles on similar surficial materials have similar parameters, despite coming from widely separated locations. We then quantitatively link the moisture and nutrient gradients to the equations. Moisture and nutrients significantly increase as distance down‐slope from the ridgeline increases. Corresponding vegetation composition changes too. These relationships characterize the general pattern of vegetation change down most hill slopes in the area. Since hill slopes are a universal feature of all landscapes, these principles may characterize landscape scale spatial patterns of vegetation in many environments.  相似文献   

14.
A unique, species‐rich and endangered lichen biota can be found on European coastal and inland sand dunes. However, it is increasingly affected by natural succession as well as by anthropogenic disturbances. We studied lichen diversity on the grey dunes and dune heaths of coastal and inland regions of Estonia. A total of 28 study plots were investigated; in each 0.1 ha study plot general environmental variables and anthropogenic disturbances were described and all epigeic lichen species were identified. We found 66 lichenized fungus (lichen) species, including several rare and ten red‐listed lichens. Multivariate analysis (DCA, CCA) was performed to examine gradients in species composition and to relate variation in species data to environmental factors. In addition, we used redundancy analysis (RDA) to relate variation in species’ trait composition to environmental factors. Species composition on grey dunes differed significantly from that on dune heaths. The characteristic species for grey dunes are, besides several Cladonia species, foliose lichens, e.g. Hypogymnia physodes, Parmelia sulcata and Peltigera spp. Also species’ traits composition was different for either habitat, indicating that sorediate lichens, foliose lichens, lichens with cyanobacterium as the main photobiont, and sparsely branched Cladonia species dominate on grey dunes, while esorediate, green‐algal, crustose and richly branched fruticose lichens are common on dune heaths. Soil pH was the most essential environmental variable for determining both species composition and species’ traits composition. The composition of lichen species was also significantly influenced by forest closeness, soil Mg content and cover of bare sand; the effect of ground disturbances was low compared to the effect of these environmental factors. To protect and conserve the species‐rich lichen biota, it is necessary to protect the dune habitats from building activity, to avoid overtrampling in recreation areas and to regularly remove shrubs and trees.  相似文献   

15.
  • 1 The relationship of the seed bank to the vegetation of a freshwater marsh was studied along gradients of water depth and soil organic matter content. Characters examined included standing crop, seedling density, and species composition, distribution and richness.
  • 2 The seed bank differed from the vegetation in that only nine of twenty-seven species were present in both, abundant seed-bank species were uncommon as adults, and adults showed different distributions along a gradient of soil organic matter content whereas their seeds were most abundant in soils with high organic matter.
  • 3 The seed bank resembled the vegetation in that separate multivariate analyses of the communities revealed that variation in the species composition of each was significantly correlated with water depth and soil organic matter content. Further, species richness in both communities decreased with water depth and increased with soil organic matter content. Lastly, the standing crop of the vegetation and the number of seedlings both decreased with water depth and increased with soil organic matter.
  • 4 Consideration of spatial patterns and environmental gradients revealed more similarities between vegetation and seed banks than were obtained by comparing species lists. The results suggest that artificial stimulation of seed bank germination for management purposes will not produce vegetation changes as large as those suggested by differences in species lists.
  相似文献   

16.
  • 1 This paper aims to demonstrate the use of available vegetation data from the phytosociological literature in preliminary analyses to generate hypotheses regarding vegetation and climate change.
    • 2 Data for over 3000 samples of calcareous grassland, mesotrophic grassland, heath and woodland vegetation were taken from the literature for a region in the west of Atlantic Europe and subjected to ordination by detrended correspondence analysis in order to identify the main gradients present.
      • 3 Climate data were obtained at a resolution of 0.5° from an existing database. The relationship between vegetation composition and climate was investigated by the correlation of the mean scores for the first two ordination axes for each 0.5° cell with the climate and location variables.
        • 4 The ordinations resulted in clear geographical gradients for calcareous grasslands, heaths and woodlands but not for mesotrophic grasslands. Significant correlations were shown between some of the vegetation gradients and the climate variables, with the strongest relationships occurring between the calcareous grassland gradients and July temperature, latitude and oceanicity. Some of the vegetation gradients were also inferred to reflect edaphic factors, management and vegetation history.
          • 5 Those gradients that were related to temperature were hypothesized to reflect the influence of a progressively warmer climate on species composition, providing a baseline for further studies on the influence of climate change on species composition.
          • 6 The validity of the literature data was assessed by the collection of an original set of field data for calcareous grasslands and the subsequent ordination of a dataset containing samples from both the literature and the field. The considerable overlap between the samples from the literature and the field suggest that literature data can be used, despite certain limitations. Such preliminary analyses, using readily available data, can thus achieve useful results, thereby saving lengthy and costly field visits.
  相似文献   

17.
Improved sampling designs are needed to detect, monitor, and predict plant migrations and plant diversity changes caused by climate change and other human activities. We propose a methodology based on multi-scale vegetation plots established across forest ecotones which provide baseline data on patterns of plant diversity, invasions of exotic plant species, and plant migrations at landscape scales in Rocky Mountain National Park, Colorado, USA. We established forty two 1000-m2 plots in relatively homogeneous forest types and the ecotones between them on 14 vegetation transects. We found that 64% of the variance in understory species distributions at landscape scales were described generally by gradients of elevation and under-canopy solar radiation. Superimposed on broad-scale climatic gradients are small-scale gradients characterized by patches of light, pockets of fertile soil, and zones of high soil moisture. Eighteen of the 42 plots contained at least one exotic species; monitoring exotic plant invasions provides a means to assess changes in native plant diversity and plant migrations. Plant species showed weak affinities to overstory vegetation types, with 43% of the plant species found in three or more vegetation types. Replicate transects along several environmental gradients may provide the means to monitor plant diversity and species migrations at landscape scales because: (1) ecotones may play crucial roles in expanding the geophysiological ranges of many plant species; (2) low affinities of understory species to overstory forest types may predispose vegetation types to be resilient to rapid environmental change; and (3) ecotones may help buffer plant species from extirpation and extinction.  相似文献   

18.
Temperate heaths have an unfavorable conservation status in most European biogeographical regions. Increasing nitrogen levels promote competitive grass species such as Molinia caerulea, which is a main threat to heathland conservation in Europe. This article investigates the long‐term influence of sod cutting and the resulting changes in soil properties on the heath composition, integrity, and structure. In 15 nature reserves across the northern half of Belgium, we used (1) a large number of plots (203); (2) a broad range of sod cut depths (2–40 cm), and (3) a temporal dimension that describes how long the effects of sod cutting persist (census up to 19 years after sod cutting). Multivariate analyses were used in order to explore the influence of sod cut depth and time after sod cutting on the soil and vegetation properties. There was a positive relationship between sod cut depth and soil pH and water level, and a negative relationship with Al3+, NH4+, and total organic matter (TOM). However, only a limited number of typical (target) species appeared after sod cutting, and then only weakly. Most of the time they remained a minor component of the restored vegetation. Moreover, M. caerulea reappeared and its cover significantly increased during the years following sod cutting. Although we were able to show that sod cut depth has a differential effect on soil properties and vegetation recovery, it also appeared that sod cutting does not restore wet heaths in the long term when applied in regions with high nitrogen deposition.  相似文献   

19.
Vandvik  V.  Birks  H.J.B. 《Plant Ecology》2004,170(2):203-222
This paper discusses vegetation types and diversity patterns in relation to environment and land-use at summer farms, a characteristic cultural landscape in the Norwegian mountains. Floristic data (189 taxa) were collected in 130 4-m2 sample plots within 12 summer farms in Røldal, western Norway. The study was designed to sample as fully as possible the range of floristic, environmental, and land-use conditions. Vegetation types delimited by two-way indicator species analysis were consistent with results from earlier phytosociological studies. Detrended correspondence analysis and canonical correspondence analysis show that rather than being distinct vegetation types, the major floristic variation is structured along a spatial gradient from summer farm to the surrounding heathland vegetation. Species richness (alpha diversity) was modelled against environmental variables by generalized linear modelling and compositional turnover (beta diversity) by canonical correspondence analysis. Most environmental factors made significant contributions, but the spatial distance-to-farm gradient was the best predictor of both species richness and turnover. While summer farms reduce mean species richness at the plot scale, the compositional heterogeneity of the upland landscapes is increased, thereby creating ‘ecological room’ for additional vegetation types and species. Within an overall similarity across scales, soil variables (pH, base saturation, LOI, phosphate and nitrogen) differed considerably in their explanatory power for richness and turnover. A difference between ‘productivity limiting’ factors and ‘environmental sieves’ is proposed as an explanation. Species turnover with altitude is relatively low in grasslands as compared to heaths.  相似文献   

20.
 试验将3种土壤(酸性棕壤、灰壤土、粘泥炭土)/植被的土柱从位于英格兰北部的Great Dun Fell(GDF)移入同一山体低海拔的Newton Rigg(NR),利用海拔高差造成的温差(4.2℃)模拟全球变暖对生物量的影响;和利用施肥(20kgNhm-2·a-1、10kgPhm-2·a-1)试验模拟全球变暖下,温度升高诱发土壤有机质分解速度加快,营养元素浓度升高对生物量的影响。结果表明:海拔变动造成的温度差异使生物量差异极显著(P≤0.01)。温度升高使粘泥炭土、酸性棕壤、灰壤土地上总生物量比对照分别提高51%、78%及66%;同时,物种组成大大改变,剪股颖在群落总生物量中所占的比例急剧升高。但不同施肥处理未使样品间生物量出现显著差异,从而得出结论:全球变暖引起的土壤有机质分解速度加快不会直接对生物量造成重要影响;而温度是影响生物量及物种组成变化的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号