首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clathrin is a major vesicle coat protein involved in receptor-mediated endocytosis. In yeast and higher eukaryotes, clathrin is recruited to the plasma membrane during the early stage of endocytosis along with clathrin-associated adaptors. As coated pits undergo maturation, a burst of actin polymerization accompanies and helps drive vesicle internalization. Here, we investigate the dynamics of clathrin relative to the early endocytic patch protein Sla2p. We find that clathrin is recruited to the cortex prior to Sla2p. In the absence of clathrin, normal numbers of Sla2p patches form, but many do not internalize or are dramatically delayed in completion of endocytosis. Patches that do internalize receive Sla1p late, which is followed by Abp1, which appears near the end of Sla2p lifetime. In addition, clathrin mutants develop actin comet tails, suggesting an important function in actin patch organization/dynamics. Similar to its mammalian counterparts, the light chain (LC) subunit of yeast clathrin interacts directly with the coiled-coil domain of Sla2p. A mutant of Sla2p that no longer interacts with LC (sla2Delta376-573) results in delayed progression of endocytic patches and aberrant actin dynamics. These data demonstrate an important role for clathrin in organization and progression of early endocytic patches to the late stages of endocytosis.  相似文献   

2.
Clathrin-mediated transport is a major pathway for endocytosis. However, in yeast, where cortical actin patches are essential for endocytosis, plasma membrane-associated clathrin has never been observed. Using live cell imaging, we demonstrate cortical clathrin in association with the actin-based endocytic machinery in yeast. Fluorescently tagged clathrin is found in highly mobile internal trans-Golgi/endosomal structures and in smaller cortical patches. Total internal reflection fluorescence microscopy showed that cortical patches are likely endocytic sites, as clathrin is recruited prior to a burst of intensity of the actin patch/endocytic marker, Abp1. Clathrin also accumulates at the cortex with internalizing alpha factor receptor, Ste2p. Cortical clathrin localizes with epsins Ent1/2p and AP180s, and its recruitment to the surface is dependent upon these adaptors. In contrast, Sla2p, End3p, Pan1p, and a dynamic actin cytoskeleton are not required for clathrin assembly or exchange but are required for the mobility, maturation, and/or turnover of clathrin-containing endocytic structures.  相似文献   

3.
Our current understanding of clathrin-mediated endocytosis proposes that the process is initiated at a specialized anatomical structure called a coated pit. Electron microscopy has been required for elucidation of the morphology of coated pits and the vesicles produced therein, and the presence of a bristle coat has been taken as suggestive of clathrin surrounding these vesicles. More recently, immunocytochemical methods have confirmed that endocytic vesicles are surrounded by clathrin and its adaptor proteins, but there is a need to identify precisely and to follow the fate of the cellular organelles seen by fluorescence microscopy. We used quantum immune-electron microscopy to localize clathrin in a human adrenal cortical cell line (SW-13). Clathrin was shown to associate with a variety of vesicle types including the classic clathrin-coated vesicles and pits used in receptor internalization, pentilaminar annular gap junction vesicles, and multivesicular bodies. The images obtained with quantum dot technology allow accurate and specific localization of clathrin and the clathrin adaptor protein, AP-2, with cellular organelles and suggest that some of the structures classified as typical coated vesicles by immunocytochemical light microscopic techniques actually may be membrane bound pits.  相似文献   

4.
Clathrin‐mediated endocytosis is a fundamental transport pathway that depends on numerous protein‐protein interactions. Testing the importance of the adaptor protein‐clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin‐binding motif (sla1AAA) that disrupt clathrin binding. Live‐cell imaging showed an impaired Sla1‐clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3‐dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1‐clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending.   相似文献   

5.
The fluorescence probe [1-(4-trimethylammonium]-6-phenyl-1,3,5-hexatriene (TMA-DPH) displays properties relevant for both monitoring endocytosis kinetics and assessing membrane fluidity by fluorescence-anisotropy measurements (1). Thus, it is, possible with this probe to follow the evolution of membrane fluidity during endocytosis, from the very beginning of the process, i.e., the formation of endocytic vesicles. In most cases, endocytosis is known to start with clathrin-coated vesicles. Still, there are more and more arguments in favor of a complementary endocytic pathway without clathrin. In this article we present membrane-fluidity data for very early endocytosis, which allow an upper limit to be determined for the contribution of a putative nonclathrin pathway. We show that this limit is markedly higher for bone marrow-derived macrophages than for mouse fibroblasts of the L929 cell line.  相似文献   

6.
Dynamics of clathrin and adaptor proteins during endocytosis   总被引:3,自引:0,他引:3  
The endocytic adaptor complex AP-2 colocalizes with the majority of clathrin-positive spots at the cell surface. However, we previously observed that AP-2 is excluded from internalizing clathrin-coated vesicles (CCVs). The present studies quantitatively demonstrate that AP-2 disengages from sites of endocytosis seconds before internalization of the nascent CCV. In contrast, epsin, an alternate adaptor for clathrin at the plasma membrane, disappeared, along with clathrin. This suggests that epsin remains an integral part of the CCV throughout endocytosis. Clathrin spots at the cell surface represent a heterogeneous population: a majority (70%) of the spots disappeared with a time course of 4 min, whereas a minority (22%) remained static for 30 min. The static clathrin spots undergo constant subunit exchange, suggesting that although they are static structures, these spots comprise functional clathrin molecules, rather than dead-end aggregates. These results support a model where AP-2 serves a cargo-sorting function before endocytosis, whereas alternate adaptors, such as epsin, actually link cargo to the clathrin coat surrounding nascent endocytic vesicles. These data also support a role for static clathrin, providing a nucleation site for endocytosis. adaptor complex; epsin; total internal reflection fluorescence microscopy  相似文献   

7.
A major endocytic pathway initiates with the formation of clathrin-coated vesicles (CCVs) that transport cargo from the cell surface to endosomes1-6. CCVs are distinguished by a polyhedral lattice of clathrin that coats the vesicle membrane and serves as a mechanical scaffold. Clathrin coats are assembled during vesicle formation from individual clathrin triskelia , the soluble form of clathrin composed of three heavy and three light chain subunits7,8. Because the triskelion does not have the ability to bind to the membrane directly, clathrin-binding adaptors are critical to link the forming clathrin lattice to the membrane through association with lipids and/or membrane proteins9. Adaptors also package transmembrane protein cargo, such as receptors, and can interact with each other and with other components of the CCV formation machinery9.Over twenty clathrin adaptors have been described, several are involved in clathrin mediated endocytosis and others localize to the trans Golgi network or endosomes9. With the exception of HIP1R (yeast Sla2p), all known clathrin adaptors bind to the N-terminal -propeller domain of the clathrin heavy chain9. Clathrin adaptors are modular proteins consisting of folded domains connected by unstructured flexible linkers. Within these linker regions, short binding motifs mediate interactions with the clathrin N-terminal domain or other components of the vesicle formation machinery9. Two distinct clathrin-binding motifs have been defined: the clathrin-box and the W-box9. The consensus clathrin-box sequence was originally defined as L[L/I][D/E/N][L/F][D/E]10 but variants have been subsequently discovered11. The W-box conforms to the sequence PWxxW (where x is any residue).Sla1p (Synthetic Lethal with Actin binding protein-1) was originally identified as an actin associated protein and is necessary for normal actin cytoskeleton structure and dynamics at endocytic sites in yeast cells12. Sla1p also binds the NPFxD endocytic sorting signal and is critical for endocytosis of cargo bearing the NPFxD signal13,14. More recently, Sla1p was demonstrated to bind clathrin through a motif similar to the clathrin box, LLDLQ, termed a variant clathrin-box (vCB), and to function as an endocytic clathrin adaptor15. In addition, Sla1p has become a widely used marker for the endocytic coat in live cell fluorescence microscopy studies16. Here we use Sla1p as a model to describe approaches for adaptor-clathrin interaction studies. We focus on live cell fluorescence microscopy, GST-pull down, and co-immunoprecipitation methods.Download video file.(108M, mov)  相似文献   

8.
The dynamics of clathrin-mediated endocytosis can be assayed using fluorescently tagged proteins and total internal reflection fluorescence microscopy. Many of these proteins, including clathrin and dynamin, are soluble and changes in fluorescence intensity can be attributed either to membrane/vesicle movement or to changes in the numbers of individual molecules. It is important for assays to discriminate between physical membrane events and the dynamics of molecules. Two physical events in endocytosis were investigated: vesicle scission from the plasma membrane and vesicle internalization. Single vesicle analysis allowed the characterization of dynamin and clathrin dynamics relative to scission and internalization. We show that vesicles remain proximal to the plasma membrane for variable amounts of time following scission, and that uncoating of clathrin can occur before or after vesicle internalization. The dynamics of dynamin also vary with respect to scission. Results from assays based on physical events suggest that disappearance of fluorescence from the evanescent field should be re-evaluated as an assay for endocytosis. These results illustrate the heterogeneity of behaviors of endocytic vesicles and the importance of establishing suitable evaluation criteria for biophysical processes.  相似文献   

9.
Endocytosis is an essential process by which eukaryotic cells internalize exogenous material or regulate signaling at the cell surface [1]. Different endocytic pathways are well established in yeast and animals; prominent among them is clathrin-dependent endocytosis [2, 3]. In plants, endocytosis is poorly defined, and no molecular mechanism for cargo internalization has been demonstrated so far [4, 5], although the internalization of receptor-ligand complexes at the plant plasma membrane has recently been shown [6]. Here we demonstrate by means of a green-to-red photoconvertible fluorescent reporter, EosFP [7], the constitutive endocytosis of PIN auxin efflux carriers [8] and their recycling to the plasma membrane. Using a plant clathrin-specific antibody, we show the presence of clathrin at different stages of coated-vesicle formation at the plasma membrane in Arabidopsis. Genetic interference with clathrin function inhibits PIN internalization and endocytosis in general. Furthermore, pharmacological interference with cargo recruitment into the clathrin pathway blocks internalization of PINs and other plasma-membrane proteins. Our data demonstrate that clathrin-dependent endocytosis is operational in plants and constitutes the predominant pathway for the internalization of numerous plasma-membrane-resident proteins including PIN auxin efflux carriers.  相似文献   

10.
The accurate distribution and recycling of transmembrane proteins amongst the membrane-bound organelles of the cell is vital to ensure its correct functioning. Transmembrane protein cargo destined for clathrin-mediated endocytosis and transport along the endocytic pathway is sorted into transport vesicles by interactions with adaptors, which simultaneously link clathrin to the membrane. Clathrin adaptors recognize a variety of signals present in the cytoplasmic portions of cargo proteins; recent structural, biophysical and cell biological studies have elucidated new types of cargo-adaptor interactions and probed the molecular mechanisms regulating cargo selection and vesicle maturation. Here, we review this recent progress in the context of our existing knowledge of endocytic sorting mechanisms.  相似文献   

11.
Clathrin is a scaffold protein found in different types of coated vesicles in most eukaryotic cells. Major forces that drive clathrin coat formation are the adaptor protein complexes. Trypanosoma cruzi is a flagellate protozoan that ingests macromolecules through receptor-mediated endocytosis, but the molecules involved in this process are still poorly known. Bioinformatics was used to identify proteins in the T. cruzi genome database, permitting discrimination of the genes involved in clathrin coat assembly. Clathrin expression was demonstrated in T. cruzi epimastigotes by using several experimental approaches. Western blot analysis showed a single 180-kDa protein band, which corresponds to the molecular mass of mammalian clathrin heavy chain. A flow cytometry assay demonstrated that the clathrin heavy chain was expressed in 97.74% of the cell population analyzed, with a high-fluorescence signal. Immunofluorescence observation showed labeling clustered at the flagellar pocket and Golgi complex region. Coated vesicles budding off from the flagellar pocket and the trans Golgi network membranes were identified by transmission electron microscopy. Our data demonstrate the expression of clathrin in T. cruzi epimastigotes and show the association of this polypeptide with the parasite endocytic and exocytic pathways.  相似文献   

12.
Abstract

Clathrin constitutes the coat of vesicles involved in three receptor-mediated intracellular transport pathways; the export of aggregated material from the trans-Golgi network for regulated secretion, the transfer of lysosomal hydrolases from the trans-Golgi network to lysosomes and receptor-mediated endocytosis at the plasma membrane. The clathrin subunits and the other major coat constituents, the adaptor polypeptides, interact in specific ways to build the characteristic polygonal clathrin lattice and to attach the coat to integral membrane receptors. Both clathrin coat assembly and disassembly on the cytoplasmic side of the membrane are multistep processes that are regulated by the coat constituents themselves and by cytosolic proteins and factors. Neurons represent a cell type with distinct morphology and special demands on exocytic and endocytic pathways that requires neuron-specific constituents and modifications of clathrin-coated vesicles.  相似文献   

13.
Clathrin-mediated endocytosis (CME) is the best-studied pathway by which cells selectively internalize molecules from the plasma membrane and surrounding environment. Previous live-cell imaging studies using ectopically overexpressed fluorescent fusions of endocytic proteins indicated that mammalian CME is a highly dynamic but inefficient and heterogeneous process. In contrast, studies of endocytosis in budding yeast using fluorescent protein fusions expressed at physiological levels from native genomic loci have revealed a process that is very regular and efficient. To analyse endocytic dynamics in mammalian cells in which endogenous protein stoichiometry is preserved, we targeted zinc finger nucleases (ZFNs) to the clathrin light chain A and dynamin-2 genomic loci and generated cell lines expressing fluorescent protein fusions from each locus. The genome-edited cells exhibited enhanced endocytic function, dynamics and efficiency when compared with previously studied cells, indicating that CME is highly sensitive to the levels of its protein components. Our study establishes that ZFN-mediated genome editing is a robust tool for expressing protein fusions at endogenous levels to faithfully report subcellular localization and dynamics.  相似文献   

14.
Endocytosis in the African trypanosome, Trypanosoma brucei, is intimately involved in maintaining homeostasis of the cell surface proteome, morphology of the flagellar pocket and has recently been demonstrated as a bona fide drug target. RNAi-mediated knockdown of many factors required for endocytic transport, including several small GTPases, the major coat protein clathrin and a clathrin-associated receptor, epsinR, results in rapid cell death in vitro. Rapid loss of viability in vitro precludes meaningful investigation by RNAi of the roles of trypanosome endocytosis in vivo. Here we have sought to address this issue using strategies designed to produce milder effects on the endocytic system than complete functional ablation. We created a trypanosome clathrin heavy chain hemizygote and several lines expressing mutant forms of Rab5 and Rab11, described previously. All are viable in in vitro culture, with negligible impact to proliferative rates or cell cycle. Clathrin hemizygotes express clathrin heavy chain at ∼50% of wild type levels, but despite this demonstrate no defect to growth in mice, while none of the Rab5 mutants affected proliferation in vivo, despite clear evidence for effects on endocytosis. By contrast we find that expressing a dominantly active Rab11 mutant led to compromised growth in mice. These data indicate that trypanosomes likely tolerate the effects of partly decreased clathrin expression and alterations in early endocytosis, but are more sensitive to alterations in the recycling arm of the pathway.  相似文献   

15.
Clathrin-dependent endocytosis allows cells to bring plasma membrane and extracellular molecules into the cell. Forming a clathrin-coated vesicle requires the sequential action of numerous factors, beginning with endocytic adaptors. Adaptors are thought to initiate the process in two ways: by selecting cargo for packaging into the vesicle and assembling the clathrin coat and other components necessary to shape the vesicle. Here, we review recent work focusing on the sequential and cooperative interactions of adaptors with their binding partners, and how adaptors contribute to initial stages of endocytic internalization. The regulation of adaptors might be a key step for controlling endocytosis, and thus aid in homeostasis and cell physiology.  相似文献   

16.
Clathrin-mediated endocytosis (CME) regulates many cell physiological processes such as the internalization of growth factors and receptors, entry of pathogens, and synaptic transmission. Within the endocytic network, clathrin functions as a central organizing platform for coated pit assembly and dissociation via its terminal domain (TD). We report the design and synthesis of two compounds named pitstops that selectively block endocytic ligand association with the clathrin TD as confirmed by X-ray crystallography. Pitstop-induced inhibition of clathrin TD function acutely interferes with receptor-mediated endocytosis, entry of HIV, and synaptic vesicle recycling. Endocytosis inhibition is caused by a dramatic increase in the lifetimes of clathrin coat components, including FCHo, clathrin, and dynamin, suggesting that the clathrin TD regulates coated pit dynamics. Pitstops provide new tools to address clathrin function in cell physiology with potential applications as inhibitors of virus and pathogen entry and as modulators of cell signaling.  相似文献   

17.
Structural insights into the clathrin coat   总被引:2,自引:0,他引:2  
Clathrin is a cytoplasmic protein best known for its role in endocytosis and intracellular trafficking. The diverse nature of clathrin has recently become apparent, with strong evidence available suggesting roles in both chromosome segregation and reassembly of the Golgi apparatus during mitosis. Clathrin functions as a heterohexamer, adopting a three-legged triskelion structure of three clathrin light chains and three heavy chains. During endocytosis clathrin forms a supportive network about the invaginating membrane, interacting with itself and numerous adapter proteins. Advances in the field of structural biology have led us to a greater understanding of clathrin in its assembled state, the clathrin lattice. Combining techniques such as X-ray crystallography, NMR, and cryo-electron microscopy has allowed us to piece together the intricate nature of clathrin-coated vesicles and the interactions of clathrin with its many binding partners. In this review I outline the roles of clathrin within the cell and the recent structural advances that have improved our understanding of clathrin-clathrin and clathrin-protein interactions.  相似文献   

18.
In eukaryotic cells, the internalization of extracellular cargo via the endocytic machinery is an important regulatory process required for many essential cellular functions. The role of cooperative protein-protein and protein-membrane interactions in the ubiquitous endocytic pathway in mammalian cells, namely the clathrin-dependent endocytosis, remains unresolved. We employ the Helfrich membrane Hamiltonian together with surface evolution methodology to address how the shapes and energetics of vesicular-bud formation in a planar membrane are stabilized by presence of the clathrin-coat assembly. Our results identify a unique dual role for the tubulating protein epsin: multiple epsins localized spatially and orientationally collectively play the role of a curvature inducing capsid; in addition, epsin serves the role of an adapter in binding the clathrin coat to the membrane. Our results also suggest an important role for the clathrin lattice, namely in the spatial- and orientational-templating of epsins. We suggest that there exists a critical size of the coat above which a vesicular bud with a constricted neck resembling a mature vesicle is stabilized. Based on the observed strong dependence of the vesicle diameter on the bending rigidity, we suggest that the variability in bending stiffness due to variations in membrane composition with cell type can explain the experimentally observed variability on the size of clathrin-coated vesicles, which typically range 50–100 nm. Our model also provides estimates for the number of epsins involved in stabilizing a coated vesicle, and without any direct fitting reproduces the experimentally observed shapes of vesicular intermediates as well as their probability distributions quantitatively, in wildtype as well as CLAP IgG injected neuronal cell experiments. We have presented a minimal mesoscale model which quantitatively explains several experimental observations on the process of vesicle nucleation induced by the clathrin-coated assembly prior to vesicle scission in clathrin dependent endocytosis.  相似文献   

19.
A distribution of EGF receptor and clathrin during EGF endocytosis in A431, HER14, WT and PURO cell lines was studied by indirect immunofluorescence. Though the initial distribution of EGF-receptors on A431 and HER14 cells was somewhat different, the late stages of endocytosis proceeded equally and were marked by formation of bright spots in the juxtanuclear region characteristic of the late endosomes. The Src-family kinase inhibitor CGP77675 had no influence on the dynamics of receptor endocytosis at the immunofluorescent level in both cell lines. Stimulation of EGF-receptor endocytosis in A431 cells did not also result in any redistribution of clathrin in the areas where the majority of EGF-receptors are localized, i.e. in the lateral plasma membrane both in the control cells and under CGP77675 treatment. Clathrin in A431, WT and PURO cells demonstrated even a punctuated pattern throughout the cytoplasm with some accumulation in the juxtanuclear region. This distribution depended neither on the absence or presence of Src activity nor on EGF addition. The data obtained indicate that 1) EGF-receptors do not serve as the initiation sites during clathrin coated pit assembly; 2) Src-kinase activation does not result in significant clathrin redistribution in the plasma membrane, and its influence on EGF endocytosis can be considered as a secondary effect.  相似文献   

20.
Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号