首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Protein methylesterase (PME) amino acid composition and substrate specificity towards methylated normal and deamidated protein substrates were investigated. The enzyme contained 23% acidic and 5% basic residues. These values are consistent with a pI of 4.45. The product formed from methylated protein by PME was confirmed as methanol by h.p.l.c. The kcat. and Km values for several methylated protein substrates ranged from 20 x 10(-6) to 560 x 10(-6) s-1 and from 0.5 to 64 microM respectively. However, the kcat./Km ratios ranged within one order of magnitude from 11 to 52 M-1.s-1. Results with the irreversible cysteine-proteinase inhibitor E-64 suggested that these low values were in part due to the fact that only one out of 25 molecules in the PME preparations was enzymically active. When PME was incubated with methylated normal and deamidated calmodulin, the enzyme hydrolysed the latter substrate at a higher rate. The Km and kcat. for methylated normal calmodulin were 0.9 microM and 31 x 10(-6) s-1, whereas for methylated deamidated calmodulin values of 1.6 microM and 188 x 10(-6) s-1 were obtained. The kcat./Km ratios for methylated normal and deamidated calmodulin were 34 and 118 M-1.s-1 respectively. By contrast, results with methylated adrenocorticotropic hormone (ACTH) substrates indicated that the main difference between native and deamidated substrates resides in the Km rather than the kcat. The Km for methylated deamidated ACTH was 5-fold lower than that for methylated native ACTH. The kcat./Km ratios for methylated normal and deamidated ACTH were 43 and 185 M-1.s-1 respectively. These results indicate that PME recognizes native and deamidated methylated substrates as two different entities. This suggests that the methyl groups on native calmodulin and ACTH substrates may not be on the same amino acid residues as those on deamidated calmodulin and ACTH substrates.  相似文献   

2.
Various amino acid and peptide thioesters were tested as substrates for human proteinase 3 and the best substrate is Boc-Ala-Ala-Nva-SBzl with a kcat/Km value of 1.0 x 10(6) M-1.s-1. Boc-Ala-Ala-AA-SBzl (AA = Val, Ala, or Met) are also good substrates with kcat/Km values of (1-4) x 10(5) M-1.s-1. Substituted isocoumarins are potent inhibitors of proteinase 3 and the best inhibitors are 7-amino-4-chloro-3-(2-bromoethoxy)isocoumarin and 3,4-dichloroisocoumarin (DCI) with kobs/[I] values of 4700 and 2600 M-1.s-1, respectively. Substituted isocoumarins, peptide phosphonates and chloromethyl ketones inhibited proteinase 3 less potently than human neutrophil elastase (HNE) by 1-2 orders of magnitude.  相似文献   

3.
Acryloyl-CoA reductase from Clostridium propionicum catalyses the irreversible NADH-dependent formation of propionyl-CoA from acryloyl-CoA. Purification yielded a heterohexadecameric yellow-greenish enzyme complex [(alpha2betagamma)4; molecular mass 600 +/- 50 kDa] composed of a propionyl-CoA dehydrogenase (alpha2, 2 x 40 kDa) and an electron-transferring flavoprotein (ETF; beta, 38 kDa; gamma, 29 kDa). A flavin content (90% FAD and 10% FMN) of 2.4 mol per alpha2betagamma subcomplex (149 kDa) was determined. A substrate alternative to acryloyl-CoA (Km = 2 +/- 1 microm; kcat = 4.5 s-1 at 100 microm NADH) is 3-buten-2-one (methyl vinyl ketone; Km = 1800 microm; kcat = 29 s-1 at 300 microm NADH). The enzyme complex exhibits acyl-CoA dehydrogenase activity with propionyl-CoA (Km = 50 microm; kcat = 2.0 s-1) or butyryl-CoA (Km = 100 microm; kcat = 3.5 s-1) as electron donor and 200 microm ferricenium hexafluorophosphate as acceptor. The enzyme also catalysed the oxidation of NADH by iodonitrosotetrazolium chloride (diaphorase activity) or by air, which led to the formation of H2O2 (NADH oxidase activity). The N-terminus of the dimeric propionyl-CoA dehydrogenase subunit is similar to those of butyryl-CoA dehydrogenases from several clostridia and related anaerobes (up to 55% sequence identity). The N-termini of the beta and gamma subunits share 40% and 35% sequence identities with those of the A and B subunits of the ETF from Megasphaera elsdenii, respectively, and up to 60% with those of putative ETFs from other anaerobes. Acryloyl-CoA reductase from C. propionicum has been characterized as a soluble enzyme, with kinetic properties perfectly adapted to the requirements of the organism. The enzyme appears not to be involved in anaerobic respiration with NADH or reduced ferredoxin as electron donors. There is no relationship to the trans-2-enoyl-CoA reductases from various organisms or the recently described acryloyl-CoA reductase activity of propionyl-CoA synthase from Chloroflexus aurantiacus.  相似文献   

4.
Two aldehyde dehydrogenases involved in the degradation of toluene and xylenes, namely, benzaldehyde dehydrogenase and 2-hydroxymuconic semialdehyde dehydrogenase, are encoded by the xylC and xylG genes, respectively, on TOL plasmid pWW0 of Pseudomonas putida. The nucleotide sequence of xylC was determined in this study. A protein exhibiting benzaldehyde dehydrogenase activity had been purified from cells of P. putida (pWW0) (J. P. Shaw and S. Harayama, Eur. J. Biochem. 191:705-714, 1990); however, the amino-terminal sequence of this protein does not correspond to that predicted from the xylC sequence but does correspond to that predicted from the xylG sequence. The protein purified in the earlier work was therefore 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product). This conclusion was confirmed by the fact that this protein oxidized 2-hydroxymuconic semialdehyde (kcat/Km = 1.6 x 10(6) s-1 M-1) more efficiently than benzaldehyde (kcat/Km = 3.2 x 10(4) s-1 M-1). The xylC product, the genuine benzaldehyde dehydrogenase, was purified from extracts of P. putida (pWW0-161 delta rylG) which does not synthesize 2-hydroxymuconic semialdehyde dehydrogenase. The amino-terminal sequence of the purified protein corresponds to the amino-terminal sequence deduced from the xylC sequence. This enzyme efficiently oxidized benzaldehyde (kcat/Km = 1.7 x 10(7) s-1 M-1) and its analogs but did not oxidize 2-hydroxymuconic semialdehyde or its analogs.  相似文献   

5.
Lipoamide and a peptide, Thr-Val-Glu-Gly-Asp-Lys-Ala-Ser-Met-Glu lipoylated on the N6-amino group of the lysine residue, were tested as substrates for reductive acetylation by the pyruvate decarboxylase (E1p) component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. The peptide has the same amino acid sequence as that surrounding the three lipoyllysine residues in the lipoate acetyltransferase (E2p) component of the native enzyme complex. Lipoamide was shown to be a very poor substrate, with a Km much higher than 4 mM and a value of kcat/Km of 1.5 M-1.s-1. Under similar conditions, the three E2p lipoyl domains, excised from the pyruvate dehydrogenase complex by treatment with Staphylococcus aureus V8 proteinase, could be reductively acetylated by E1p much more readily, with a typical Km of approximately 26 microM and a typical kcat of approximately 0.8 s-1. The value of kcat/Km for the lipoyl domains, approximately 3.0 x 10(4) M-1.s-1, is about 20,000 times higher than that for lipoamide as a substrate. This indicates the great improvement in the effectiveness of lipoic acid as a substrate for E1p that accompanies the attachment of the lipoyl group to a protein domain. The free E2o lipoyl domain was similarly found to be capable of being reductively succinylated by the 2-oxoglutarate decarboxylase (E1o) component of the 2-oxoglutarate dehydrogenase complex of E. coli. The 2-oxo acid dehydrogenase complexes are specific for their particular 2-oxo acid substrates. The specificity of the E1 components was found to extend also to the lipoyl domains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The interaction between six class C beta-lactamases and various penicillins has been studied. All the enzymes behaved in a very uniform manner. Benzylpenicillin exhibited relatively low kcat. values (14-75 s-1) but low values of Km resulted in high catalytic efficiencies [kcat./Km = 10 X 10(6)-75 X 10(6) M-1.s-1]. The kcat. values for ampicillin were 10-100-fold lower. Carbenicillin, oxacillin cloxacillin and methicillin were very poor substrates, exhibiting kcat. values between 1 x 10(-3) and 0.1 s-1. The Km values were correspondingly small. It could safely be hypothesized that, with all the tested substrates, deacylation was rate-limiting, resulting in acyl-enzyme accumulation.  相似文献   

7.
A general method is presented here for the determination of the Km, kcat, and kcat/Km of fluorescence resonance energy transfer (FRET) substrates using a fluorescence plate reader. A simple empirical method for correcting for the inner filter effect is shown to enable accurate and undistorted measurements of these very important kinetic parameters. Inner filter effect corrected rates of hydrolysis of a FRET peptide substrate by hepatitis C virus (HCV) NS3 protease at various substrate concentrations enabled measurement of a Km value of 4.4 +/- 0.3 microM and kcat/Km value of 96,500 +/- 5800 M-1 s-1. These values are very close to the HPLC-determined Km value of 4.6 +/- 0.7 microM and kcat/Km value of 92,600 +/- 14,000 M-1 s-1. We demonstrate that the inner filter effect correction of microtiter plate reader velocities enables rapid measurement of Ki and Ki' values and kinetic inhibition mechanisms for HCV NS3 protease inhibitors.  相似文献   

8.
The time course of the interaction between trypsin and a synthetic peptide corresponding to a segment (residues 676-703) of the bait region (residues 666-706) of human alpha 2-macroglobulin (alpha 2M) was studied by measuring the generation of cleavage products as a function of time by HPLC. Three primary cleavage sites for trypsin were present in the synthetic peptide. The fastest cleavage occurred at the bond corresponding to Arg696-Leu in alpha 2M with an estimated kcat/Km = 1-2 x 10(6) M-1.s-1. This value is of the same magnitude as that characterizing the interaction of alpha 2M and trypsin when taking into account the fact that alpha 2M is a tetramer, kcat/Km = 5 x 10(6) M-1.s-1 [Christensen, U. & Sottrup-Jensen, L. (1984) Biochemistry 23, 6619-6626]. The values of kcat/Km for cleavage at bonds corresponding to Arg681-Val and Arg692-Gly in alpha 2M were 1.5 x 10(5) M-1.s-1 and 1.3 x 10(5) M-1.s-1, respectively. Cleavage of intermediate product peptides was slower, with kcat/Km in the range 13-1.3 x 10(6) M-1.s-1. The value of Km determined for fast cleavage in the synthetic peptide was 8-10 microM. 1H-NMR spectroscopy indicated no ordered structure of the peptide. Hence, the very fast cleavage of the peptide is compatible with a loose structure that readily adopts a conformation favorable for recognition and cleavage by trypsin.  相似文献   

9.
J V Gray  D Eren  J R Knowles 《Biochemistry》1990,29(37):8872-8878
The interaction of the monofunctional chorismate mutase from Bacillus subtilis with chorismate and prephenate has been studied kinetically and by NMR spectroscopy with 13C specifically labeled substrates. Prephenate dominates the population of enzyme-bound species, and the "off" rate constant (approximately 60 s-1) obtained from line-broadening experiments is close to the value of kcat for chorismate (50 s-1) determined kinetically. The calculated "on" rate constant for prephenate (8 x 10(5) M-1 s-1) is similar to the value of kcat/Km for chorismate (5 x 10(5) M-1 s-1). The kinetic parameters of the Bacillus mutase are remarkably insensitive to pH over a wide range and display no solvent isotope effect. These results suggest that the enzyme-catalyzed reaction may be encounter controlled (slowed from the diffusion limit by some feature of the enzyme's active site) and that kcat for chorismate is determined by the product off rate. There is now no evidence to suggest that the skeletal rearrangement on the enzyme surface occurs by a pathway other than a pericyclic process.  相似文献   

10.
A protein identified as "N-acylamino acid racemase" from Amycolaptosis sp. is an inefficient enzyme (kcat/Km = 3.7 x 10(2) M-1 s-1). Its sequence is 43% identical to that of an unidentified protein encoded by the Bacillus subtilis genome. Both proteins efficiently catalyze the o-succinylbenzoate synthase reaction in menaquinone biosynthesis (kcat/Km = 2.5 x 10(5) and 7.5 x 10(5) M-1 s-1, respectively), suggesting that this is their "correct" metabolic function. Their membership in the mechanistically diverse enolase superfamily provides an explanation for the catalytic promiscuity of the protein from Amycolaptosis. The adventitious promiscuity may provide an example of a protein poised for evolution of a new enzymatic function in the enolase superfamily. This study demonstrates that the correct assignment of function to new proteins in functional and structural genomics may require an understanding of the metabolism of the organism.  相似文献   

11.
Human Hageman factor, a plasma proteinase zymogen, was activated in vitro under a near physiological condition (pH 7.8, ionic strength I = 0.14, 37 degrees C) by Pseudomonas aeruginosa elastase, which is a zinc-dependent tissue destructive neutral proteinase. This activation was completely inhibited by a specific inhibitor of the elastase, HONHCOCH(CH2C6H5)CO-Ala-Gly-NH2, at a concentration as low as 10 microM. In this activation Hagemen factor was cleaved, in a limited fashion, liberating two fragments with apparent molecular masses of 40 and 30 kDa, respectively. The appearance of the latter seemed to correspond chronologically to the generation of activated Hageman factor. Kinetic parameters of the enzymatic activation were kcat = 5.8 x 10(-3) s-1, Km = 4.3 x 10(-7) M and kcat/Km = 1.4 x 10(4) M-1 x s-1. This Km value is close to the plasma concentration of Hageman factor. Another zinc-dependent proteinase, P. aeruginosa alkaline proteinase, showed a negligible Hageman factor activation. In the presence of a negatively charged soluble substance, dextran sulfate (0.3-3 micrograms/ml), the activation rate by the elastase increased several fold, with the kinetic parameters of kcat = 13.9 x 10(-3) s-1, Km = 1.6 x 10(-7) M and kcat/Km = 8.5 x 10(4) M-1 x s-1. These results suggested a participation of the Hageman factor-dependent system in the inflammatory response to pseudomonal infections, due to the initiation of the system by the bacterial elastase.  相似文献   

12.
1. A continuous spectrophotometric determination of rat hepatic microsomal anaerobic azo reductase activity has been developed. 2. The addition of soluble flavins (riboflavin, FMN or FAD) greatly increased this NADPH-dependent activity towards a number of azo substrates. 3. Investigations with amaranth as substrate gave an apparent Km of 34 microM and Vmax. of 4 nmol/min per mg of microsomal protein. The inclusion of a fixed concentration of FMN increased Vmax. and greatly decreased Km, the magnitude of these changes reflecting the concentration of flavin present. 4. Investigations using a fixed amaranth concentration over a range of flavin concentrations gave biphasic double-reciprocal plots with two apparent Km and Vmax. values. 5. Pretreatment of animals with cobaltous chloride, 2-allyl-2-isopropylacetamide, carbon tetrachloride, phenobarbitone and 3-methylcholanthrene altered azo reductase activity in parallel with changes in cytochrome P-450 content. 6. The significance of these results is discussed in terms of the electron-transfer components present in the hepatic microsomal fraction.  相似文献   

13.
Human red cell acid phosphatase (ACP1) is a polymorphic enzyme closely related to cytosolic low molecular weight acid phosphatases, a protein family broadly conserved among eukaryotes. Two different functions have been proposed for ACP1: flavin mononucleotide (FMN) phosphatase and phosphotyrosine phosphatase (PTPase). Given that genetic variants of ACP1 activity are common, the enzyme could have a role in regulating a large spectrum of cellular functions and, in turn, disease susceptibility. In the present paper we report a study of ACP1 genetic polymorphism in 1088 normal subjects and in 1267 subjects from the population of Rome admitted to hospital for a number of common diseases. All ACP1 parameters investigated show highly significant differences among samples, suggesting that the enzyme may have a significant role in some of the diseases considered. In particular, consistent associations of ACP1 with developmental disturbances and with hemolytic favism have been observed. In the majority of diseases showing association with ACP1, only one of the two ACP1 isoforms, f and s, is involved, supporting the hypothesis of a functional differentiation between the two enzymatic fractions.  相似文献   

14.
The emergence of drug-resistant forms of Plasmodium falciparum emphasizes the need to develop new antimalarials. In this context, the fatty acid biosynthesis (FAS) pathway of the malarial parasite has recently received a lot of attention. Due to differences in the fatty acid biosynthesis systems of Plasmodium and man, this pathway is a good target for the development of new and selective therapeutic drugs directed against malaria. In continuation of these efforts we report cloning and overexpression of P. falciparum beta-hydroxyacyl-acyl carrier protein (ACP) dehydratase (PffabZ) gene that codes for a 17-kDa protein. The enzyme catalyzes the dehydration of beta-hydroxyacyl-ACP to trans-2-acyl-ACP, the third step in the elongation phase of the FAS cycle. It has a Km of 199 microM and kcat/Km of 80.4 m-1 s-1 for the substrate analog beta-hydroxybutyryl-CoA but utilizes crotonoyl-CoA, the product of the reaction, more efficiently (Km = 86 microM, kcat/Km = 220 m-1 s-1). More importantly, we also identify inhibitors (NAS-91 and NAS-21) for the enzyme. Both the inhibitors prevented the binding of crotonoyl-CoA to PfFabZ in a competitive fashion. Indeed these inhibitors compromised the growth of P. falciparum in cultures and inhibited the parasite fatty acid synthesis pathway both in cell-free extracts as well as in situ. We modeled the structure of PfFabZ using Escherichia coli beta-hydroxydecanoyl thioester dehydratase (EcFabA) as a template. We also modeled the inhibitor complexes of PfFabZ to elucidate the mode of binding of these compounds to FabZ. The discovery of the inhibitors of FabZ, reported for the first time against any member of this family of enzymes, essential to the type II FAS pathway opens up new avenues for treating a number of infectious diseases including malaria.  相似文献   

15.
A flavocytochrome b2 (L-lactate dehydrogenase) mutant was constructed in which the C-terminal tail (23 amino acid residues) had been deleted (Gly-489----Stop). This tail appears to form many intersubunit contacts in the tetrameric wild-type protein, and it was expected that its removal might lead to the formation of monomeric flavocytochrome b2. The isolated tail-deleted mutant enzyme (TD-b2), however, was found to be tetrameric (Mr 220,000). TD-b2 shows Km and kcat. values (at 25 degrees C and pH 7.5) of 0.96 +/- 0.06 mM and 165 +/- 6 s-1 respectively compared with 0.49 +/- 0.04 mM and 200 +/- 10 s-1 for the wild-type enzyme. The kinetic isotope effect with [2-2H]lactate as substrate seen for TD-b2, with ferricyanide as electron acceptor, was essentially the same as that observed for the wild-type enzyme. TD-b2 exhibited loss of activity during turnover in a biphasic process. The rate of the faster of the two phases was dependent on L-lactate concentration and at saturating concentrations showed a first-order deactivation rate constant, kf(deact.), of 0.029 s-1 (at 25 degrees C and pH 7.5). The slower phase, however, was independent of L-lactate concentration and gave a first-order deactivation rate constant, ks(deact.), of 0.01 s-1 (at 25 degrees C and pH 7.5). This slower phase was found to correlate with dissociation of FMN, which is one of the prosthetic groups of the enzyme. Thus fully deactivated TD-b2, which was also tetrameric, was found to be completely devoid of FMN. Much of the original activity of TD-b2 could be recovered by re-incorporation of FMN. Thus the C-terminal tail of flavocytochrome b2 appears to be required for the structural integrity of the enzyme around the flavin active site even though the two are well separated in space.  相似文献   

16.
Cathepsin X, purified to homogeneity from human liver, is a single chain glycoprotein with a molecular mass of approximately 33 kDa and pI 5.1-5.3. Cathepsin X was inhibited by stefin A, cystatin C and chicken cystatin (Ki = 1.7-15.0 nM), but poorly or not at all by stefin B (Ki > 250 nM) and L-kininogen, respectively. The enzyme was also inhibited by two specific synthetic cathepsin B inhibitors, CA-074 and GFG-semicarbazone. Cathepsin X was similar to cathepsin B and found to be a carboxypeptidase with preference for a positively charged Arg in P1 position. Contrary to the preference of cathepsin B, cathepsin X normally acts as a carboxymonopeptidase. However, the preference for Arg in the P1 position is so strong that cathepsin X cleaves substrates with Arg in antepenultimate position, acting also as a carboxydipeptidase. A large hydrophobic residue such as Trp is preferred in the P1' position, although the enzyme cleaved all P1' residues investigated (Trp, Phe, Ala, Arg, Pro). Cathepsin X also cleaved substrates with amide-blocked C-terminal carboxyl group with rates similar to those of the unblocked substrates. In contrast, no endopeptidase activity of cathepsin X could be detected on a series of o-aminobenzoic acid-peptidyl-N-[2,-dinitrophenyl]ethylenediamine substrates. Furthermore, the standard cysteine protease methylcoumarine amide substrates (kcat/Km approximately 5.0 x 103 M-1.s-1) were degraded approximately 25-fold less efficiently than the carboxypeptidase substrates (kcat/Km approximately 120.0 x 103 M-1.s-1).  相似文献   

17.
Bovine erythrocyte glutathione (GSH) peroxidase (GPX, EC 1.11.1.9) was examined for GSH-dependent dehydroascorbate (DHA) reductase (EC 1.8.5.1) and thioltransferase (EC 1.8.4.1) activities. Using the direct assay method for GSH-dependent DHA reductase activity, GPX had a kcat (app) of 140 +/- 9 min-1 and specificity constants (kcat/Km(app)) of 5.74 +/- 0.78 x 10(2) M-1s-1 for DHA and 1.18 +/- 0.17 x 10(3) M-1s-1 for GSH based on the monomer Mr of 22,612. Using the coupled assay method for thioltransferase activity, GPX had a kcat (app) of 186 +/- 9 min-1 and specificity constants (app) of 1. 49 +/- 0.14 x 10(3) M-1s-1 for S-sulfocysteine and 1.51 +/- 0.18 x 10(3) M-1s-1 for GSH based on the GPX monomer molecular weight. GPX has a higher specificity constant for S-sulfocysteine than DHA, and both assay systems gave nearly identical specificity constants for GSH. The DHA reductase and thioltransferase activities of GPX adds to the repertoire of functions of this enzyme as an important protector against cellular oxidative stress.  相似文献   

18.
Ghanem E  Li Y  Xu C  Raushel FM 《Biochemistry》2007,46(31):9032-9040
Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a nonspecific diesterase that enables Escherichia coli to utilize alkyl phosphodiesters, such as diethyl phosphate, as the sole phosphorus source. The catalytic properties of GpdQ were determined, and the best substrate found was bis(p-nitrophenyl) phosphate with a kcat/Km value of 6.7 x 10(3) M-1 s-1. In addition, the E. aerogenes diesterase was tested as a catalyst for the hydrolysis of a series of phosphonate monoesters which are the hydrolysis products of the highly toxic organophosphonate nerve agents sarin, soman, GF, VX, and rVX. Among the phosphonate monoesters tested, the hydrolysis product of rVX, isobutyl methyl phosphonate, was the best substrate with a kcat/Km value of 33 M-1 s-1. The ability of GpdQ to hydrolyze the phosphonate monoesters provides an alternative selection strategy in the search of enhanced variants of the bacterial phosphotriesterase (PTE) for the hydrolysis of organophosphonate nerve agents. This investigation demonstrated that the previously reported activity of GpdQ toward the hydrolysis of methyl demeton-S is due to the presence of a diester contaminant in the commercial material. Furthermore, it was shown that GpdQ is capable of hydrolyzing a close analogue of EA 2192, the most toxic and persistent degradation product of the nerve agent VX.  相似文献   

19.
A cytosolic aldo-keto reductase was purified from Saccharomyces cerevisiae ATCC 26602 to homogeneity by affinity chromatography, chromatofocusing, and hydroxylapatite chromatography. The relative molecular weights of the aldo-keto reductase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion chromatography were 36,800 and 35,000, respectively, indicating that the enzyme is monomeric. Amino acid composition and N-terminal sequence analysis revealed that the enzyme is closely related to the aldose reductases of xylose-fermenting yeasts and mammalian tissues. The enzyme was apparently immunologically unrelated to the aldose reductases of other xylose-fermenting yeasts. The aldo-keto reductase is NADPH specific and catalyzes the reduction of a variety of aldehydes. The best substrate for the enzyme is the aromatic aldehyde p-nitrobenzaldehyde (Km = 46 microM; kcat/Km = 52,100 s-1 M-1), whereas among the aldoses, DL-glyceraldehyde was the preferred substrate (Km = 1.44 mM; kcat/Km = 1,790 s-1 M-1). The enzyme failed to catalyze the reduction of menadione and p-benzoquinone, substrates for carbonyl reductase. The enzyme was inhibited only slightly by 2 mM sodium valproate and was activated by pyridoxal 5'-phosphate. The optimum pH of the enzyme is 5. These data indicate that the S. cerevisiae aldo-keto reductase is a monomeric NADPH-specific reductase with strong similarities to the aldose reductases.  相似文献   

20.
M C Walker  G Tollin 《Biochemistry》1992,31(10):2798-2805
Intramolecular electron transfer between the heme and flavin cofactors of flavocytochrome b2 is an obligatory step during the enzymatic oxidation of L-lactate and subsequent reduction of cytochrome c. Previous kinetic studies using both steady-state and transient methods have suggested that such intramolecular electron transfer is inhibited when pyruvate, the two-electron oxidation product of L-lactate, is bound at the active site of Hansenula anomala flavocytochrome b2. In contrast to this, we have recently demonstrated using laser flash photolysis that intramolecular electron transfer could be observed in the flavocytochrome b2 from Saccharomyces cerevisiae only when pyruvate was present [Walker, M., & Tollin, G. (1991) Biochemistry 30, 5546-5555], despite a large thermodynamic driving force of 100 mV and apparently favorable cofactor geometry as indicated by crystallographic studies. In the present study, we have utilized laser flash photolysis to investigate intramolecular electron transfer in the flavocytochrome b2 from H. anomala in an effort to address these apparently conflicting interpretations with respect to the influence of pyruvate on enzyme properties. The results obtained are closely comparable to those we reported using the protein from Saccharomyces. Thus, in the absence of pyruvate, bimolecular reduction of both the heme and FMN cofactors by deazaflavin semiquinone occurs (k approximately 10(9) M-1 s-1), followed by a protein concentration dependent intermolecular electron transfer from the semiquinone form of the FMN cofactor to the heme (k approximately 10(7) M-1 s-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号