首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

American Creole cattle presumably descend from animals imported from the Iberian Peninsula during the period of colonization and settlement, through different migration routes, and may have also suffered the influence of cattle directly imported from Africa. The introduction of European cattle, which began in the 18th century, and later of Zebu from India, has threatened the survival of Creole populations, some of which have nearly disappeared or were admixed with exotic breeds. Assessment of the genetic status of Creole cattle is essential for the establishment of conservation programs of these historical resources.

Methodology/Principal Findings

We sampled 27 Creole populations, 39 Iberian, 9 European and 6 Zebu breeds. We used microsatellite markers to assess the origins of Creole cattle, and to investigate the influence of different breeds on their genetic make-up. The major ancestral contributions are from breeds of southern Spain and Portugal, in agreement with the historical ports of departure of ships sailing towards the Western Hemisphere. This Iberian contribution to Creoles may also include some African influence, given the influential role that African cattle have had in the development of Iberian breeds, but the possibility of a direct influence on Creoles of African cattle imported to America can not be discarded. In addition to the Iberian influence, the admixture with other European breeds was minor. The Creoles from tropical areas, especially those from the Caribbean, show clear signs of admixture with Zebu.

Conclusions/Significance

Nearly five centuries since cattle were first brought to the Americas, Creoles still show a strong and predominant signature of their Iberian ancestors. Creole breeds differ widely from each other, both in genetic structure and influences from other breeds. Efforts are needed to avoid their extinction or further genetic erosion, which would compromise centuries of selective adaptation to a wide range of environmental conditions.  相似文献   

2.
In the present report, the polymorphisms from 9 microsatellites were used to assess genetic diversity and relationships in 4 Creole cattle breeds from Argentina and Bolivia, 4 European taurine breeds, and 2 American zebu populations. The Creole populations display a relatively high level of genetic variation as estimated by allelic diversity and heterozygosity, whereas the British breeds displayed reduced levels of genetic diversity. The analysis of molecular variance indicated that 7.8% of variance can be explained by differences among taurine and zebu breeds. Consistent with these results, the first principal component (PC), which comprised the 40% of the total variance, clearly distinguishes these 2 groups. In addition, all constructed phylogenetic trees cluster together Nelore and Brahman breeds with robust bootstrap values. Only 1% of variance was due to difference between American Creole and European taurine cattle. Although this secondary split was supported by the classical genetic distance and the second PC (15%), the topology of trees is not particularly robust. The presence of zebu-specific alleles in Creole cattle allowed estimating a moderate degree of zebu admixture. When these data were compared with mitochondrial and Y chromosomal studies, a clear pattern of male-mediated introgression was revealed. The results presented here contribute to the understanding of origin and history of the American Creole cattle.  相似文献   

3.
In order to clarify the historical origin and phylogeographic affinities of Creole cattle matrilineages throughout the American continent, we analysed published D-loop mtDNA sequences (n = 454) from Creole, Iberian and African cattle breeds. The Western European T3 haplogroup was the most common in American Creole cattle (63.6%), followed by the African T1 (32.4%) and the Near Eastern T2 haplogroups (4%). None of the sequences were found in Bos indicus types. Within the African T1 haplogroup there were two subclades, T1a and T1*, whose geographic distribution in America was clearly disjointed. T1a is a highly divergent clade originally reported for Creole cattle from Brazil and the Lesser Antilles, but whose geographic distribution in Africa remains unknown. In contrast, lineages attributable to T1* are restricted in America to the region colonized by the Spaniards. We propose a new hypothesis for the origins of Creole cattle that summarizes all previously published historical and genetic data. While the African T1* fraction in Creole cattle may have arrived in America through the Iberian breeds, the divergent T1a lineages may have been introduced by Portuguese and other European crowns from some unknown, not-yet-sampled African location. Additional molecular studies will be required for pinpointing the specific African regional source.  相似文献   

4.
African-derived mitochondrial DNA (mtDNA) have been described in South American and Caribbean native cattle populations, which could have been introduced into America from Iberia or by direct importation from Africa. However, the similarity among described haplotypes is not known. We examined mtDNA variation in Guadeloupe Creole and Spanish cattle in an attempt to identify African-derived mtDNA haplotypes and compare them with those previously described. Eleven haplotypes clustered into the European taurine haplogroup (T3), two haplotypes into the African taurine (T1) haplogroup, and three haplotypes into the African-derived American haplogroup (AA). The AA1 and Eucons haplotypes were the most frequently observed. The presence of the AA haplogroup in Spanish cattle confirms historical records and genetic evidence of Iberian cattle as the main source of American native cattle origin. The possible origin of African-derived mitochondrial haplotypes in Iberian and Creole cattle is discussed, and the accumulated evidence does not support a founder effect from African ancestral cattle by direct importations. The presence of taurine AA and T3 haplotypes in Brazilian Nellore may indicate introgression by local European-derived cattle. Data presented in this work will contribute to the understanding of the origin of Guadeloupe Creole cattle.  相似文献   

5.
Seventy-eight cattle samples from three Creole Caribbean islands and one Brazilian breed were analyzed for sequence variation in the hypervariable segment of the mitochondrial DNA control region. Seventy-three samples displayed Bos taurus haplotypes, and five samples exhibited haplotypes that were of Bos indicus ancestry. Phylogenetic analysis revealed that all sampled B. taurus sequences fell into two distinct clusters with separate African and European origins. European sequences were encountered in each population; however, the distribution of African haplotypes was uneven, with the highest proportion of African influence found in the Guadeloupe Creole. The reduced levels of African haplotypic variation within the Caribbean and Brazilian are consistent with prior founder effects. Additionally, genetic variation at three microsatellite loci illustrated African influence uniquely in the Guadeloupe Creole. Collectively, the data suggest that this African influence is, at least in part, attributable to the historical importation of African cattle to the Americas. Furthermore, alleles of B. indicus ancestry were detected at appreciable frequencies in all Caribbean Creole populations and may reflect zebu introgressions from either West Africa or the Indian subcontinent.  相似文献   

6.
The ancestry of New World cattle was investigated through the analysis of mitochondrial and Y chromosome variation in Creoles from Argentina, Brazil, Mexico, Paraguay and the United States of America. Breeds that influenced the Creoles, such as Iberian native, British and Zebu, were also studied. Creoles showed high mtDNA diversity (H = 0.984 ± 0.003) with a total of 78 haplotypes, and the European T3 matriline was the most common (72.1%). The African T1a haplogroup was detected (14.6%), as well as the ancestral African‐derived AA matriline (11.9%), which was absent in the Iberian breeds. Genetic proximity among Creoles, Iberian and Atlantic Islands breeds was inferred through their sharing of mtDNA haplotypes. Y‐haplotype diversity in Creoles was high (H = 0.779 ± 0.019), with several Y1, Y2 and Y3 haplotypes represented. Iberian patrilines in Creoles were more difficult to infer and were reflected by the presence of H3Y1 and H6Y2. Y‐haplotypes confirmed crossbreeding with British cattle, mainly of Hereford with Pampa Chaqueño and Texas Longhorn. Male‐mediated Bos indicus introgression into Creoles was found in all populations, except Argentino1 (herd book registered) and Pampa Chaqueño. The detection of the distinct H22Y3 patriline with the INRA189‐90 allele in Caracú suggests introduction of bulls directly from West Africa. Further studies of Spanish and African breeds are necessary to elucidate the origins of Creole cattle, and determine the exact source of their African lineages.  相似文献   

7.
South American horses constitute a direct remnant of the Iberian horses brought to the New World by the Spanish conquerors. The source of the original horses was Spain, and it is generally assumed that the animals belonged to the Andalusian, Spanish Celtic, Barb or Arabian breeds. In order to establish the relationship between Argentinean and Spanish horses, a portion of the mitochondrial D-loop of 104 animals belonging to nine South American and Spanish breeds was analysed using SSCP and DNA sequencing. The variability found both within and between breeds was very high. There were 61 polymorphic positions, representing 16% of the total sequence obtained. The mean divergence between a pair of sequences was 2.8%. Argentinean Creole horses shared two haplotypes with the Peruvian Paso from Argentina, and the commonest haplotype of the Creole horses is identical to one of the Andalusian horses. Even when there was substantial subdivision between breeds with highly significant Wright's Fixation Index (FST), the parsimony and distance-based phylogenetic analyses failed to show monophyletic groups and there was no clear relationship in the trees between the South American and any of the other horses analysed. Although this result could be interpreted as mixed ancestry of the South American breeds with respect to the Spanish breeds, it is probably indicating the retention of very ancient maternal lineages in the breeds analysed.  相似文献   

8.
The objectives of the present experiment were to evaluate a low-density SNP array designed for the molecular characterisation of gene banks and to assess the genetic diversity and population structure of beef cattle herds from an Argentinean research station. Forty-nine animals from three breeds (Angus, Hereford, and Argentinean Creole) were genotyped using the multi-species IMAGE001 60-K SNP array (10 K for cattle). Genotypes of other 19 cattle populations from Argentina, other American countries, and Europe were included in the study. Of special interest was the characterization of the Argentinean Creole, the only autochthonous cattle breed in the country. Due to the merging of different datasets, approximately 5 K SNPs were effectively used. Genetic differentiation (FST), principal component analysis, neighbour-joining tree of Reynolds distances and ancestry analysis showed that autochthonous American breeds are clearly differentiated, but all have genetic influences of Iberian cattle. The analysed herds of Argentinean Creole showed no evidence of recent admixture and represent a unique genetic pool within local American breeds. An experimental herd and the local commercial Hereford population have also diverged, probably due to the influence of current selection objectives in the breed. Our results illustrate the utility of using low-cost, low density SNP arrays in the evaluation of animal genetic resources. This type of panels could become a very useful resource in developing countries, where most endangered cattle breeds are located. The results also reinforce the importance of experimental herds as reservoir of genetic diversity, particularly in the case of local breeds under-represented in traditional production systems.  相似文献   

9.
In cattle, bovine leukocyte antigens (BoLAs) have been extensively used as markers for diseases and immunological traits. However, none of the highly adapted Latin American Creole breeds have been characterized for BoLA gene polymorphism by high resolution typing methods. In this work, we sequenced exon 2 of the BoLA class II DRB3 gene from 179 cattle (113 Bolivian Yacumeño cattle and 66 Colombian Hartón del Valle cattle breeds) using a polymerase chain reaction sequence-based typing (PCR-SBT) method. We identified 36 previously reported alleles and three novel alleles. Thirty-five (32 reported and three new) and 24 alleles (22 reported and two new) were detected in Yacumeño and Hartón del Valle breeds, respectively. Interestingly, Latin American Creole cattle showed a high degree of gene diversity despite their small population sizes, and 10 alleles including three new alleles were found only in these two Creole breeds. We next compared the degree of genetic variability at the population and sequence levels and the genetic distance in the two breeds with those previously reported in five other breeds: Holstein, Japanese Shorthorn, Japanese Black, Jersey, and Hanwoo. Both Creole breeds presented gene diversity higher than 0.90, a nucleotide diversity higher than 0.07, and mean number of pairwise differences higher than 19, indicating that Creole cattle had similar genetic diversity at BoLA-DRB3 to the other breeds. A neutrality test showed that the high degree of genetic variability may be maintained by balancing selection. The FST index and the exact G test showed significant differences across all cattle populations (FST = 0.0478; p < 0.001). Results from the principal components analysis and the phylogenetic tree showed that Yacumeño and Hartón del Valle breeds were closely related to each other. Collectively, our results suggest that the high level of genetic diversity could be explained by the multiple origins of the Creole germplasm (European, African and Indicus), and this diversity might be maintained by balancing selection.  相似文献   

10.
In order to understand the genetic ancestry and mitochondrial DNA (mtDNA) diversity of current Colombian horse breeds we sequenced a 364-bp fragment of the mitocondrial DNA D-loop in 116 animals belonging to five Spanish horse breeds and the Colombian Paso Fino and Colombian Creole cattle horse breeds. Among Colombian horse breeds, haplogroup D had the highest frequency (53%), followed by haplogroups A (19%), C (8%) and F (6%). The higher frequency of haplogroup D in Colombian horse breeds supports the theory of an ancestral Iberian origin for these breeds. These results also indicate that different selective pressures among the Colombian breeds could explain the relatively higher genetic diversity found in the Colombian Creole cattle horse when compared with the Colombian Paso Fino.  相似文献   

11.
In Bolivia, four different Creole cattle breeds can be found, as well as other European and Zebu breeds adapted to local environments. The relationship between the occurrence of the 1/29 translocation and subfertility is well known, and analysis of Y chromosome morphology is useful to determine a possible introgression with Bos indicus. The incidence of the 1/29 translocation was analyzed in four Bolivian Creole cattle breeds and the Brahman Yacume?o population, as well as on four farms with phenotypical Creole-type cattle. In 259 (164 dams and 95 sires) Bolivian Creole cattle, 10.42% of the individuals demonstrated the 1/29 translocation, with a variation from 0 to 28.20% between the breeds. In contrast, 43 (19 dams and 24 sires) Yacume?o Brahman and the Creole-type cattle did not show the centric fusion. The highly significant differences between Creole cattle breeds in relation to the incidence of 1/29 translocation could be a consequence of factors such as founder group, genetic drift, and selection. The low frequency observed in the Saavedre?io Creole dairy cattle might be explained by its breeding under a more intensive system, and selection according to milk yield and fertility traits. Finally, no relation between acrocentric Y chromosomes and 1/29 translocation was observed.  相似文献   

12.
Genetic deversity at the highly polymorphic BoLA-DRB3 locus was investigated by DNA sequence analyses of 18 African cattle from two breeds representing the two subspecies of cattle, Bos primigenius indicus and Bos primigenius taurus. Yhe polymorphism was compared with that found in a sample ofd 32 European cattle from four breeds, all classified as B. p. taurus. Particularly extensive genetic diversity was found among African cattle, in which as many as 18 alleles were recognized in this small random sample of animals from two breeds. The observed similarity in allele frequency distribution between the two African populations, N'Dama and Zebu cattle, is consistent with the recent recognition of gene flow between B. p. indicus and B. P taurus cattle in Africa. A total of 30 DRB3 alleles were documented and as many as 26 of these were classified as major allelic types showing at least five amino acid substitutions compared with other major types. The observation of extensive genetic diversity at MHC loci in cattle, as well as in other farm animals, provides a compelling argument against matin-type preferences as a primary cause in maintaining major histocompatibility complex diversity, since the reproduction of these animals has been controlled by humans for many generations.The nucleotide sequence data reported in this paper have been submitted to the EMBL nucleotide sequence database and have been given the accession numbers X87641-X87670  相似文献   

13.
Five cattle populations, representing four breeds, were analysed for 14 protein markers and five microsatellite loci. The breeds studied were Brown Swiss and three autochthonous Spanish cattle: Avileña-Negra Ibérica (A-NI), two populations (A-NI 1 and A-NI 2) from different, reproductively isolated, locations; Sayaguesa; and Morucha. A total of 752 animals were examined for biochemical polymorphisms, of which 488 were also DNA typed. Genetic parameters and phylogenetic trees were obtained separately for each group of markers and results were compared. Estimates of heterozygosity and genetic distances from microsatellites were greater than those obtained using protein markers. The overall topology of the two dendrograms was similar. A-NI 1 and A-NI 2 populations were grouped together, related to Morucha, and the three of them related to Sayaguesa. Brown Swiss appeared in a separate branch from Spanish cattle. These results support the usefulness of microsatellites in the study of genetic relationships among closely related populations and breeds.  相似文献   

14.
The domestication and development of cattle has considerably impacted human societies, but the histories of cattle breeds and populations have been poorly understood especially for African, Asian, and American breeds. Using genotypes from 43,043 autosomal single nucleotide polymorphism markers scored in 1,543 animals, we evaluate the population structure of 134 domesticated bovid breeds. Regardless of the analytical method or sample subset, the three major groups of Asian indicine, Eurasian taurine, and African taurine were consistently observed. Patterns of geographic dispersal resulting from co-migration with humans and exportation are recognizable in phylogenetic networks. All analytical methods reveal patterns of hybridization which occurred after divergence. Using 19 breeds, we map the cline of indicine introgression into Africa. We infer that African taurine possess a large portion of wild African auroch ancestry, causing their divergence from Eurasian taurine. We detect exportation patterns in Asia and identify a cline of Eurasian taurine/indicine hybridization in Asia. We also identify the influence of species other than Bos taurus taurus and B. t. indicus in the formation of Asian breeds. We detect the pronounced influence of Shorthorn cattle in the formation of European breeds. Iberian and Italian cattle possess introgression from African taurine. American Criollo cattle originate from Iberia, and not directly from Africa with African ancestry inherited via Iberian ancestors. Indicine introgression into American cattle occurred in the Americas, and not Europe. We argue that cattle migration, movement and trading followed by admixture have been important forces in shaping modern bovine genomic variation.  相似文献   

15.
Polledness has been shown to have autosomal Mendelian inheritance, with the polled locus being dominant to the horned locus. This trait was mapped to the BTA1 centromeric end in several breeds. One of the distinctive attributes of Creole cattle, such as the Argentinean Creole, is the presence of long, lyre‐shaped horns. However, polled native animals were reported before the introduction of modern selected European breeds. Here, we studied the origin of the polled mutation, either independent or introgressed, in a Creole line from the Creole cattle founder group at the IIACS‐INTA Leales Experimental Station (northwest Argentina). The study sample (65 animals: 26 horned and 39 polled) was genotyped using high‐density SNP microarrays and three previously reported genetic markers (P202ID, P80kbID and PG). A genome‐wide association study, selection signatures, linkage disequilibrium analysis and copy number variations were used to detect the responsible region and the segregating haplotypes/alleles. The interval mapped in the Leales herd (1.23–2.13 Mb) overlapped with the region previously reported in several European cattle breeds, suggesting that the same locus could be segregating in this population. The previously reported variants PF and PG were not detected, thus dismissing the Holstein‐Friesian and Nellore origins of the polled phenotype in this native breed. Conversely, the presence of the Celtic variant PC suggests an almost complete co‐segregation. The cluster analysis rejected the hypothesis of recent introgression, which is compatible with the historical record of polled Creole cattle in northwest Argentina.  相似文献   

16.
Goats have played a key role as source of nourishment for humans in their expansion all over the world in long land and sea trips. This has guaranteed a place for this species in the important and rapid episode of livestock expansion triggered by Columbus’ arrival in the Americas in the late 1400s. The aims of this study are to provide a comprehensive perspective on genetic diversity in American goat populations and to assess their origins and evolutionary trajectories. This was achieved by combining data from autosomal neutral genetic markers obtained in more than two thousand samples that encompass a wide range of Iberian, African and Creole goat breeds. In general, even though Creole populations differ clearly from each other, they lack a strong geographical pattern of differentiation, such that populations of different admixed ancestry share relatively close locations throughout the large geographical range included in this study. Important Iberian signatures were detected in most Creole populations studied, and many of them, particularly the Cuban Creole, also revealed an important contribution of African breeds. On the other hand, the Brazilian breeds showed a particular genetic structure and were clearly separated from the other Creole populations, with some influence from Cape Verde goats. These results provide a comprehensive characterisation of the present structure of goat genetic diversity, and a dissection of the Iberian and African influences that gave origin to different Creole caprine breeds, disentangling an important part of their evolutionary history. Creole breeds constitute an important reservoir of genetic diversity that justifies the development of appropriate management systems aimed at improving performance without loss of genomic diversity.  相似文献   

17.
Five cattle Y‐specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2‐haplotypes were only present in African cattle. Network and correspondence analyses showed that this African‐specific subfamily clustered separately from the main Y2‐subfamily and the Y1 haplotypes. Within‐breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between‐breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub‐Saharan Africa (belonging to Y2‐haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y‐chromosome lineages (Y1 and Y2) in taurine cattle. However, Y‐specific microsatellites increased analytical resolution and allowed at least two different Y2‐haplotypic subfamilies to be distinguished, one of them restricted to the African continent.  相似文献   

18.
An account is given of the serologically defined class I specificities encoded by the bovine MHC (expressed as the BoLA system) in two populations of African cattle and in European breeds. The BoLA typing was performed using alloantisera raised against tissue antigens of both European and African breeds of cattle. All of the specificities agreed in the first two international BoLA workshops were found in the African cattle, although there were significant differences in the frequency of some specificities between the African and European animals. Many of the European antisera, which are operationally monospecific in Bos taurus cattle, were multispecific in the African animals. Subgroups of two specificities (w8 and w10) were demonstrated. Five new BoLA-A locus alleles were detected by means of antisera raised against alloantigens of African cattle. Two of these occurred at an extremely high frequency in the African populations; one being unique to these cattle. Monoclonal antibodies proved to be useful typing reagents, particularly in the elucidation of subgroups.  相似文献   

19.
Summary. Ten genetic markers were studied in seven Spanish native cattle breeds, using a total of 725 animals. Of the ten, two were found to be monomorphic in all seven breeds. The genetic relationships of the seven breeds are estimated by three different genetic-statistical methods (genetic distances, main coordinate analysis and cluster analysis), which indicate three clearly distinct groups of populations: one where the Cárdena Andaluza and Alistana Sanabresa are very closely related, one comprising Sayaguesa, Morucha, Asturiana de los Valles and Asturiana de la Montaña cattle, and a third, genetically distant from the other two, comprising only Blanca Cacereña. The dendrogram drawn from the genetic distances matrix would seem to imply that the seven breeds are descended from different ancestors.  相似文献   

20.
Butana and Kenana breeds from Sudan are part of the East African zebu Bos indicus type of cattle. Unlike other indigenous zebu cattle in Africa, they are unique due to their reputation for high milk production and are regarded as dairy cattle, the only ones of their kind on the African continent. In this study, we sequenced the complete mitochondrial DNA (mtDNA) D‐loop of 70 animals to understand the maternal genetic variation, demographic profiles and history of the two breeds in relation to the history of cattle pastoralism on the African continent. Only taurine mtDNA sequences were identified. We found very high mtDNA diversity but low level of maternal genetic structure within and between the two breeds. Bayesian coalescent‐based analysis revealed different historical and demographic profiles for the two breeds, with an earlier population expansion in the Butana vis a vis the Kenana. The maternal ancestral populations of the two breeds may have diverged prior to their introduction into the African continent, with first the arrival of the ancestral Butana population. We also reveal distinct demographic history between the two breeds with the Butana showing a decline in its effective population size (Ne) in the recent past ~590 years. Our results provide new insights on the early history of cattle pastoralism in Sudan indicative of a large ancient effective population size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号