首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The catalytic degradation of 2-carboxyarabinitol 1-phosphate (CA 1-P), a naturally occurring inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), was investigated by chromatographic and spectroscopic analyses of the reaction products. Carboxy-labeled [14C]CA 1-P was incubated with a partially purified tobacco (Nicotiana rustica) chloroplast protein that has been shown previously to catalyze metabolism of CA 1-P to a form incapable of inhibiting Rubisco (ME Salvucci, GP Holbrook, JC Anderson, and G Bowes [1988] FEBS Lett 231: 197-201). In the presence and absence of NADPH, ion-exchange chromatography showed a progressive conversion of [2′-14C]CA 1-P to a labeled compound which coeluted with authentic carboxyarabinitol. Parallel assays with unlabeled CA 1-P showed a concomitant decrease in the ability of reaction samples to inhibit Rubisco activity. In separate experiments, a 1:1 stoichiometry was found between the release of inorganic phosphate from [2′-14C]CA 1-P and accumulation of the 14C-labeled product. Liberation of inorganic phosphate was not observed when the tobacco enzyme was incubated with ribulose-1,5-bisphosphate, fructose-1,6-bisphosphate, glucose-1-phosphate, glucose-6-phosphate, or 6-phosphogluconate. Proton nuclear magnetic resonance spectroscopy of the labeled CA 1-P reaction product established its identity as carboxyarabinitol. We therefore propose that light-stimulated degradation of CA 1-P is catalyzed in vivo by a specific phosphatase, 2-carboxyarabinitol 1-phosphatase. Carboxyarabinitol 1-phosphatase activity was detected in the absence of NADPH, but increased threefold when 2 millimolar NADPH was present. Thus, while not required for the reaction, NADPH may play an important role in the regulation of CA 1-P degradation.  相似文献   

2.
The level of 2-carboxyarabinitol 1-phosphate (CA1P) in leaves of 12 species was determined by an isotope dilution assay. 14C-labeled standard was synthesized from [2-14C]carboxyarabinitol 1,5-bisphosphate using acid phosphatase, and was added at the initial point of leaf extraction. Leaf CA1P was purified and its specific activity determined. CA1P was found in dark-treated leaves of all species examined, including spinach (Spinacea oleracea), wheat (Triticum aestivum), Arabidopsis thaliana, and maize (Zea mays). The highest amounts were found in bean (Phaseolus vulgaris) and petunia (Petunia hybrida), which had 1.5 to 1.8 moles CA1P per mole ribulose 1,5-bisphosphate carboxylase catalytic sites. Most species had intermediate amounts of CA1P (0.2 to 0.8 mole CA1P per mole catalytic sites). Such intermediate to high levels of CA1P support the hypothesis that CA1P functions in many species as a light-dependent regulator of ribulose 1,5-bisphosphate carboxylase activity and whole leaf photosynthetic CO2 assimilation. However, CA1P levels in spinach, wheat, and A. thaliana were particularly low (less than 0.09 mole CA1P per mole catalytic sites). In such species, CA1P does not likely have a significant role in regulating ribulose 1,5-bisphosphate carboxylase activity, but could have a different physiological role.  相似文献   

3.
The relative contributions of invertase and sucrose synthase to initial cleavage of phloem-imported sucrose was calculated for sink leaves of soybean (Glycine max L. Merr cv Wye) and sugar beet (Beta vulgaris L. monohybrid). Invertase from yeast hydrolyzed sucrose 4200 times faster than 1′-deoxy-1′-fluorosucrose (FS) while sucrose cleavage by sucrose synthase from developing soybean leaves proceeded only 3.6 times faster than cleavage of FS. [14C]Sucrose and [14C]FS, used as tracers of sucrose, were transported at identical rates to developing leaves through the phloem. The rate of label incorporation into insoluble products varied with leaf age from 3.4 to 8.0 times faster when [14C]sucrose was supplied than when [14C]FS was supplied. The discrimination in metabolism was related to enzymatic discriminations against FS to calculate the relative contributions of invertase and sucrose synthase to sucrose cleavage. In the youngest soybean leaves measured, 4% of final laminar length (FLL), all cleavage was by sucrose synthase. Invertase contribution to sucrose metabolism was 47% by 7.6% FLL, increased to 54% by 11% FLL, then declined to 42% for the remainder of the import phase. In sugar beet sink leaves at 30% FLL invertase contribution to sucrose metabolism was 58%.  相似文献   

4.
2′-Carboxyarabinitol 1-phosphate (CA1P) is a naturally occurring inhibitor of ribulose-1,5 bisphosphate carboxylase/oxygenase activity. A chloroplast phosphatase has previously been identified that degrades CA1P in vitro to carboxyarabinitol (CA) plus phosphate, but CA has not yet been detected in plants. Here, we detail procedures to isolate and assay CA from leaves and utilize mass spectrometry to demonstrate for the first time that CA is present in plants. CA was present in leaves of all 13 species examined, including those of C3, C4, and Crassulacean acid metabolism photosynthetic subgroups. CA was present both in species with high levels of CA1P (e.g. Phaseolus vulgaris, Lycopersicon esculentum, Beta vulgaris) as well as in species with low levels of CA1P (e.g. Spinacea oleracea, Triticum aestivum). CA levels in the light were sometimes greater than those in the dark. Bean leaves had the most CA of any species tested, with levels in the light approaching 1 micromole per milligram of chlorophyll. In illuminated bean leaves, about 63% of the CA is located outside the chloroplast. CA is one of only a few branched chain sugar acids to be identified from plants.  相似文献   

5.
The light-dependent modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was studied in two species: Phaseolus vulgaris L., which has high levels of the inhibitor of Rubisco activity, carboxyarabinitol 1-phosphate (CA1P), in the dark, and Chenopodium album L., which has little CA1P. In both species, the ratio of initial to fully-activated Rubisco activity declined by 40–50% within 60 min of a reduction in light from high a photosynthetic photon flux density (PPFD; >700 mol · m–2 · s–1) to a low PPFD (65 ± 15 mol · m–2 · s–1) or to darkness, indicating that decarbamylation of Rubisco is substantially involved in the initial regulatory response of Rubisco to a reduction in PPFD, even in species with potentially extensive CA1P inhibition. Total Rubisco activity was unaffected by PPFD in C. album, and prolonged exposure (2–6 h) to low light or darkness was accompanied by a slow decline in the activity ratio of this species. This indicates that the carbamylation state of Rubisco from C. album gradually declines for hours after the large initial drop in the first 60 min following light reduction. In P. vulgaris, the total activity of Rubisco declined by 10–30% within 1 h after a reduction in PPFD to below 100 mol · m–2 · s–1, indicating CA1P-binding contributes significantly to the reduction of Rubisco capacity during this period, but to a lesser extent than decarbamylation. With continued exposure of P. vulgaris leaves to very low PPFDs (< 30 mol · m–2 · s–1), the total activity of Rubisco declined steadily so that after 6–6.5 h of exposure to very low light or darkness, it was only 10–20% of the high-light value. These results indicate that while decarbamylation is more prominent in the initial regulatory response of Rubisco to a reduction in PPFD in P. vulgaris, binding of CA1P increases over time and after a few hours dominates the regulation of Rubisco activity in darkness and at very low PPFDs.Abbreviations CA1P 2-carboxyarabinitol 1-phosphate - CABP 2-carboxyarabinitol 1,5-bisphosphate - kcat substrate-saturated turnover rate of fully carbamylated enzyme - PPFD photosynthetically active photon flux density (400–700 nm) - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate  相似文献   

6.
Excised light-grown leaves and etiolated leaves of Hordeum vulgare L. cv Dyan catabolized applied (±)-[2-14C]abscisic acid ([±]-[2-14C]ABA) to phaseic acid (PA), dihydrophaseic acid (DPA), and 2′-hydroxymethyl ABA (2′-HMABA). Identification of these catabolites was made by microchemical methods and by combined capillary gas chromatographymass spectrometry (GC-MS) following high dose feeds of nonlabeled substrate to leaves. Circular dichroism analysis revealed that 2′-HMABA was derived from the (−) enantiomer of ABA. By selecting tissue samples in which endogenous catabolites were undetectable by gas chromatography, it was possible to identify unequivocally ABA catabolites by GC-MS without the need to employ deuteriated substrate to distinguish the (±)-ABA catabolites from the same endogenous compounds. Refeeding studies were used to confirm the catabolic route. The methyl ester of (±)-[214C]-ABA was hydrolyzed efficiently by light-grown leaves of H. vulgare. Leaf age played a significant role in (±)-ABA catabolism, with younger leaves being less able than their older counterparts to catabolize this compound. The catabolism of (±)-ABA was inhibited markedly in water-stressed Hordeum leaves which was characterized by a decreased incorporation of label into 2′-HMABA, DPA, and conjugates. The specific, mixed function oxidase inhibitor, ancymidol, did not inhibit, dramatically, (±)-ABA catabolism in light-grown leaves of Hordeum whereas the 80s ribosome, translational inhibitor, cycloheximide, inhibited this process markedly. The 70s ribosome translational inhibitors, lincomycin and chloramphenicol, were less effective than cycloheximide in inhibiting (±)-ABA catabolism, implying that cytoplasmic protein synthesis is necessary for the catabolism of (±)-ABA in Hordeum leaves whereas chloroplast protein synthesis plays only a minor role. This further suggests that the enzymes involved in (±)-ABA catabolism in this plant are cytoplasmically synthesized and are `turned-over' rapidly, although the enzyme responsible for glycosylating (±)-ABA itself appeared to be stable.  相似文献   

7.
CA1P and CA1P phosphatase occur in the chloroplasts of leaf mesophyll cells of many species. However, whether either may occur exclusively in the chloroplast has not yet been established. To examine their intracellular distribution, mature, dark-or light-treated leaves of Phaseolus vulgaris were frozen, lyophilized and then centrifuged in density gradients of heptane and tetrachloroethylene. After gradient fractionation, both CA1P and CA1P phosphatase activity co-segregated with chloroplast material. Distribution analyses using sub-cellular compartment markers indicated that both CA1P and CA1P phosphatase do occur exclusively in leaf chloroplasts.Abbreviations Bicine N,N-bis[2-hydroxyethyl]glycine - CA1P 2-carboxyarabinitol 1-phosphate - CABP 2-carboxyarabinitol 1,5-bisphosphate - Chl chlorophyll - DTT dithiothreitol - EDTA (ethylenediamine)tetraacetic acid - PEP phosphoenolpyruvate - Tris tris(hydroxymethyl)aminomethane  相似文献   

8.
Ramina A 《Plant physiology》1979,63(2):298-300
Phaseolus vulgaris L. plants were supplied through the root with [8-14C]benzylaminopurine ([14C]BA). Collections of root, apex, and leaves were made 8 and 48 hours after labeling; ethanolic extracts of tissues were purified and subjected to thin layer chromatography on silica gel and/or cellulose powder.  相似文献   

9.
Paraquat resistance in conyza   总被引:6,自引:2,他引:4       下载免费PDF全文
A biotype of Conyza bonariensis (L.) Cronq. (identical to Conyza linefolia in other publications) originating in Egypt is resistant to the herbicide 1,1′-dimethyl-4,4′-bipyridinium ion (paraquat). Penetration of the cuticle by [14C]paraquat was greater in the resistant biotype than the susceptible (wild) biotype; therefore, resistance was not due to differences in uptake. The resistant and susceptible biotypes were indistinguishable by measuring in vitro photosystem I partial reactions using paraquat, 6,7-dihydrodipyrido [1,2-α:2′,1′-c] pyrazinediium ion (diquat), or 7,8-dihydro-6H-dipyrido [1,2-α:2′,1′-c] [1,4] diazepinediium ion (triquat) as electron acceptors. Therefore, alteration at the electron acceptor level of photosystem I is not the basis for resistance. Chlorophyll fluorescence measured in vivo was quenched in the susceptible biotype by leaf treatment with the bipyridinium herbicides. Resistance to quenching of in vivo chlorophyll fluorescence was observed in the resistant biotype, indicating that the herbicide was excluded from the chloroplasts. Movement of [14C] paraquat was restricted in the resistant biotype when excised leaves were supplied [14C]paraquat through the petiole. We propose that the mechanism of resistance to paraquat is exclusion of paraquat from its site of action in the chloroplast by a rapid sequestration mechanism. No differential binding of paraquat to cell walls isolated from susceptible and resistant biotypes could be detected. The exact site and mechanism of paraquat binding to sequester the herbicide remains to be determined.  相似文献   

10.
The effects of a highly cytokinin-active urea derivative, N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (Thidiazuron), and zeatin on cytokinin-autonomous growth and the metabolism of N6-(Δ2-isopentenyl)[8-14C]adenosine ([14C]i6 Ado) were examined in callus tissues of two Phaseolus lunatus genotypes, cv Jackson Wonder and P.I. 260415. Tissues of cv Jackson Wonder maintained on any concentration of Thidiazuron became cytokinin autonomous, whereas only tissues exposed to suboptimal concentrations of zeatin displayed cytokinin-autonomous growth. Tissues of P.I. 260415 remained cytokinin dependent under all these conditions. The metabolism of [14C]i6 Ado was similar for the two genotypes, but differed with the medium used. [14C]i6 Ado was rapidly converted to N6-(Δ2-isopentenyl)[8-14C]adenosine 5′-P ([14C]i6 AMP) by tissues grown on zeatin-containing medium, whereas only traces of the nucleotide were formed in tissues grown on medium with Thidiazuron. Incubation with [14C] i6 AMP of tissues grown in the presence of Thidiazuron resulted in rapid conversion to [14C]i6 Ado, while [14C]i6 AMP persisted in tissues maintained on zeatin. Thus, Thidiazuron appears to stimulate enzyme activity converting the ribonucleotide to ribonucleoside. Although the cytokininactive phenylureas and adenine derivatives differ in their effects on cytokinin autonomy as well as nucleotide formation, the two types of effects do not seem to be related.  相似文献   

11.
Translocation of assimilates and phosphate in detached bean leaves   总被引:1,自引:1,他引:0  
Leonard OA  Glenn RK 《Plant physiology》1968,43(9):1380-1388
14C-assimilates were accumulated by the veins in the blades and transported basipetally into the petioles of detached leaves of Red Kidney bean (Phaseolus vulgaris L.). Neither process was greatly affected by mild moisture stress, age of fully enlarged leaves, or period in the dark prior to exposure to 14CO2. However, both vein loading and transport into petioles were greatly reduced by oxygen deficiency. The basipetal transport of 32PO4 also did not appear to be greatly reduced by 6 or 8 days of darkness prior to the application of phosphate-32P, followed by a transport period of 1 day in the dark. Endothall at 5 × 10−3 m was effective in stopping basipetal flow of 32P. It is considered that transport in leaves may be powered by forces in the plasmodesmata of the cell walls between the border parenchyma and phloem.  相似文献   

12.
A cDNA clone for phenylalanine ammonia-lyase (PAL) induced in wounded sweet potato (Ipomoea batatas Lam.) root was obtained by immunoscreening a cDNA library. The protein produced in Escherichia coli cells containing the plasmid pPAL02 was indistinguishable from sweet potato PAL as judged by Ouchterlony double diffusion assays. The Mr of its subunit was 77,000. The cells converted [14C]-l-phenylalanine into [14C]-t-cinnamic acid and PAL activity was detected in the homogenate of the cells. The activity was dependent on the presence of the pPAL02 plasmid DNA. The nucleotide sequence of the cDNA contained a 2121-base pair (bp) open-reading frame capable of coding for a polypeptide with 707 amino acids (Mr 77, 137), a 22-bp 5′-noncoding region and a 207-bp 3′-noncoding region. The results suggest that the insert DNA fully encoded the amino acid sequence for sweet potato PAL that is induced by wounding. Comparison of the deduced amino acid sequence with that of a PAL cDNA fragment from Phaseolus vulgaris revealed 78.9% homology. The sequence from amino acid residues 258 to 494 was highly conserved, showing 90.7% homology.  相似文献   

13.
[8-14C]Benzylaminopurine (BA) translocation was studied in whole plants of Phaseolus vulgaris L. under three different light regimes (continuous light, 8-hour light + 16-hour dark, dark). Applications were made to the apex, to a cotyledonary leaf, or to the root system. Results showed that no BA basipetal translocation occurred, however BA is easily absorbed by the root system and is translocated acropetally.  相似文献   

14.
Discs of French bean leaves were vacuum infiltrated with solutionscontaining 14C-labelled substances. The infiltrated discs wereeither transferred immediately to darkness or first illuminatedfor 2 h and then transferred to darkness. After 6 h in darknessthe discs were extracted with buffer containing CO2, Mg2+ andadditional ribulose-1, 5-bisphosphate carboxylase/oxygenase(Rubisco; EC 4.1.1.39 [EC] ). Protein in the extracts was separatedfrom substances of low molecular weight by gel filtration andcoagulated by heating to 100C. Coagulated protein was removedby centrifugation and cations in the supernatant solution wereremoved by ion exchange resin. The non-volatile anions in theresulting solutions, among which was 21-carboxy-D-arabinitol-1-phosphate(CA1P), were separated by HPLC. The amount of CA1P was determinedfrom the signal of a pulsed amperometric detector and its radioactivityby scintillation counting. Vacuum infiltration of [2114C]21-carboxy-D-arabinitol (CA) resulted in 12.6% of the radioactivityin the leaf discs being in CA1P after 6 h in darkness and 21.6%when 2 h light was given before the dark treatment. Where radioactiveglucose, fructose, sucrose, hamamelose, glycerate, glycine oracetate were infiltrated, 14C in CA1P was less than 1% of thetotal present after the dark period with or without a precedingperiod of light. Incorporation of 14C from [14C] CA into CA1Pin darkness was strongly inhibited by 2,4-dinitrophenol andalso to a lesser extent by tentoxin. With both inhibitors themain effect was a decreased uptake of the substrate. Illuminationprior to darkness stimulated the incorporation of radioactivityfrom CA, glycine, glucose, sucrose, and hamamelose into CA1Pin subsequent darkness. Unlike the other substrates, which wereextensively metabolized, CA and hamamelose were converted tofew products; CA was converted almost exclusively to CA1P andCA1P was a major product of hamamelose metabolism. Key words: CA1P, Phaseolus vulgaris, precursors, synthesis  相似文献   

15.
The aim of this work was to establish the pathways of carbohydrate oxidation used in the dark by leaves of Pisum sativum and Triticum aestivum. Segments of young and mature leaves of pea released the carbons of glucose-[14C] as 14CO2 in the order 3,4 > 1 > 2 > 6 whereas in segments of young and mature leaves of wheat the order was 3,4 > 1 > 6 > 2. The detailed labelling of the constituents of mature leaves of wheat by glucose-[1-14C], -[2-14C], -[3,4-14C], and -[6-14C] was determined and showed that the high yield of CO2 from C-6 relative to that from C-2 was due to release of C-6 during pentan synthesis. Estimates were made of the maximum catalytic activities of phosphofructokinase and glucose-6-phosphate dehydrogenase in pea and wheat leaves of three ages. The results of all the above investigations strongly indicate that both pea and wheat leaves in the dark oxidize carbohydrate via glycolysis and the pentose phosphate pathway with the latter accounting for no more than a third of the total. No evidence was obtained of any major change in the relative activities of the two pathways during the development of either type of leaf.  相似文献   

16.
The regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity by 2-carboxyarabinitol 1-phosphate (CA1P) was investigated using gas-exchange analysis of antisense tobacco (Nicotiana tabacum) plants containing reduced levels of Rubisco activase. When an increase in light flux from darkness to 1200 μmol quanta m−2 s−1 was followed, the slow increase in CO2 assimilation by antisense leaves contained two phases: one represented the activation of the noncarbamylated form of Rubisco, which was described previously, and the other represented the activation of the CA1P-inhibited form of Rubisco. We present evidence supporting this conclusion, including the observation that this second phase, like CA1P, is only present following darkness or very low light flux. In addition, the second phase of CO2 assimilation was correlated with leaf CA1P content. When this novel phase was resolved from the CO2 assimilation trace, most of it was found to have kinetics similar to the activation of the noncarbamylated form of Rubisco. Additionally, kinetics of the novel phase indicated that the activation of the CA1P-inhibited form of Rubisco proceeds faster than the degradation of CA1P by CA1P phosphatase. These results may be significant with respect to current models of the regulation of Rubisco activity by Rubisco activase.  相似文献   

17.
The chemical induction of porphyrin synthesis has been investigated in etiolated and greening leaves of Phaseolus vulgaris L. var. Red Kidney. When these leaves are incubated in darkness with solutions of transition metal ion chelators such as α,α′-dipyridyl, 1,10-phenanthroline, pyridine-2-aldoxime, or other related aromatic heterocyclic nitrogenous bases, they synthesize large amounts of protochlorophyllide and Mg protoporphyrins. Greening leaves produce more porphyrin than do etiolated leaves under such conditions. If the leaves are then transferred to 1 millimolar solutions of various transition metal salts such as Fe2+, Zn2+, or Co2+ (but not Mn2+ or Mg2+), Mg protoporphyrin (monomethyl ester) synthesis immediately ceases and the pigment(s) rapidly disappear(s); protochlorophyllide synthesis gradually diminishes during 4 to 8 hours of treatment. The loss in Mg protoporphyrin(s) can be accounted for by a simultaneous increase in protochlorophyllide in partially greened leaves but not in etiolated leaves. In the latter, the decline in Mg protoporphyrin(s) initiated by the application of Zn2+ is retarded by low temperature and anaerobiosis but not by respiratory inhibitors. Cycloheximide inhibits the loss of Mg protoporphyrin(s) but does not affect their conversion to protochlorophyllide.  相似文献   

18.
1′-Fluorosucrose (FS), a sucrose analog resistant to hydrolysis by invertase, was transported from husk leaves into maize (Zea mays L., Pioneer Hybrid 3320) kernels with the same magnitude and kinetics as sucrose. 14C-Label from [14C]FS and [14C]sucrose in separate experiments was distributed similarly between the pedicel, endosperm, and embryo with time. FS passed through maternal tissue and was absorbed intact into the endosperm where it was metabolized and used in synthesis of sucrose and methanol-chloroform-water insolubles. Accumulation of [14C] sucrose from supplied [14C]glucosyl-FS indicated that the glucose moiety from the breakdown of sucrose (here FS), which normally occurs in the process of starch synthesis in maize endosperm, was available to the pool of substrates for resynthesis of sucrose. Uptake of FS into maize endosperm without hydrolysis suggests that despite the presence of invertase in maternal tissues and the hydrolysis of a large percentage of sucrose unloaded from the phloem, hexoses are not specifically needed for uptake into maize endosperm.  相似文献   

19.
Regulation of 2-carboxyarabinitol 1-phosphatase   总被引:4,自引:3,他引:1       下载免费PDF全文
The regulation of 2-carboxyarabinitol 1-phosphatase (CA 1-Pase) by phosphorylated effectors was studied with enzyme purified from tobacco (Nicotiana tabacum) leaves. CA 1-Pase activity was most stimulated by fructose 1,6-bisphosphate, exhibiting an A0.5 value of 1.9 millimolar and a 10-fold enhancement of catalysis. With ribulose-1,5-bisphosphate, the A0.5 was 0.6 millimolar, and maximal stimulation of activity was 5.3-fold. Among the monophosphates, 3-phosphoglycerate and phosphoglycolate were more potent positive effectors than glyceraldehyde 3-phosphate, glucose 1-phosphate, glucose 6-phosphate, and dihydroxyacetone phosphate. Stimulation of CA 1-Pase by ribulose-1,5-bisphosphate and fructose 1,6-bisphosphate increased Vmax but did not appreciably alter Km (2-carboxyarabinitol 1-phosphate) values. Inorganic phosphate appeared to inhibit CA 1-Pase noncompetitively with respect to 2-carboxyarabinitol 1-phosphate, exhibiting a Ki of 0.3 millimolar. The results suggest that these positive and negative effectors bind to a regulatory site on CA 1-Pase and may have a physiologial role in the light regulation of this enzyme. Related experiments with CA 1-Pase inactivated by dialysis in the absence of dithiothreitol show that partial reactivation can be achieved in the presence of a range of reducing reagents, including dithiothreitol, cysteine, and reduced glutathione. This could imply an ancillary involvement of sulfhydryl reduction during light activation of CA 1-Pase in vivo. The enzyme was thermally stable up to 35°C, in contrast to ribulose-1,5-bisphosphate carboxylase/oxygenase activase which lost activity above 30°C. The activation energy for CA 1-Pase was calculated to be 56.14 kilojoules per mole.  相似文献   

20.
When glycolate was metabolized in peroxisomes isolated from leaves of spinach beet (Beta vulgaris L., var. vulgaris) formate was produced. Although the reaction mixture contained glutamate to facilitate conversion of glycolate to glycine, the rate at which H2O2 became “available” during the oxidation of [1-14C]glycolate was sufficient to account for the breakdown of the intermediate [1-14C]glyoxylate to formate (C1 unit) and 14CO2. Under aerobic conditions formate production closely paralleled 14CO2 release from [1-14C]glycolate which was optimal between pH 8.0 and pH 9.0 and was increased 3-fold when the temperature was raised from 25 to 35 C, or when the rate of H2O2 production was increased artificially by addition of an active preparation of fungal glucose oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号