首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 634 毫秒
1.
Defining the mechanisms and consequences of protein adduction is crucial to understanding the toxicity of reactive electrophiles. Application of tandem mass spectrometry and data analysis algorithms enables detection and mapping of chemical adducts at the level of amino acid sequence. Nevertheless, detection of adducts does not indicate relative reactivity of different sites. Here, we describe a method to measure the kinetics of competing adduction reactions at different sites on the same protein. Adducts are formed by electrophiles at Cys14 and Cys47 on the metabolic enzyme glutathione-S-transferase P1-1 and modification is accompanied by a loss of enzymatic activity. Relative quantitation of protein adducts was done by tagging N-termini of peptide digests with isotopically labeled phenyl isocyanate and tracking the ratio of light-tagged peptide adducts to heavy-tagged reference samples in liquid chromatography-tandem mass spectrometry analyses using a multiple reaction monitoring method. This approach was used to measure rate constants for adduction at both positions with two different model electrophiles, N-iodoacetyl-N-biotinylhexylenediamine and 1-biotinamido-4-(4'-[maleimidoethyl-cyclohexane]-carboxamido)butane. The results indicate that Cys47 was approximately two- to three-fold more reactive toward both electrophiles than was Cys14. This result was consistent with the relative reactivity of these electrophiles in a complex proteome system and with previously reported trends in reactivity of these sites. Kinetic analyses of protein modification reactions provide a means of evaluating the selectivity of reactive mediators of chemical toxicity.  相似文献   

2.
Activation of the sensory nerve ion channel TRPA1 by electrophiles is the key mechanism that initiates nociceptive signaling, and leads to defensive reflexes and avoidance behaviors, during oxidative stress in mammals. TRPA1 is rapidly activated by subtoxic levels of electrophiles, but it is unclear how TRPA1 outcompetes cellular antioxidants that protect cytosolic proteins from electrophiles. Here, using physiologically relevant exposures, we demonstrate that electrophiles react with cysteine residues on mammalian TRPA1 at rates that exceed the reactivity of typical cysteines by 6,000-fold and that also exceed the reactivity of antioxidant enzymes. We show that TRPA1 possesses a complex reactive cysteine profile in which C621 is necessary for electrophile-induced binding and activation. Modeling of deprotonation energies suggests that K620 contributes to C621 reactivity and mutation of K620 alone greatly reduces the effect of electrophiles on TRPA1. Nevertheless, binding of electrophiles to C621 is not sufficient for activation, which also depends on the function of another reactive cysteine (C665). Together, our results demonstrate that TRPA1 acts as an effective electrophilic sensor because of the exceptionally high reactivity of C621.  相似文献   

3.
The nonenzymatic free radical generation of reactive aldehydes is known to contribute to diseases of sustained oxidative stress including rheumatoid arthritis, atherosclerosis, neurodegeneration, and a number of liver diseases. At the same time, the accumulation of lipid electrophiles has been demonstrated to play a role in cell signaling events through modification of proteins critical for cellular homeostasis. Given the broad scope of reactivity profiles and the ability to modify numerous proteomic and genomic processes, new emphasis is being placed on a systems-based analysis of the consequences of electrophilic adduction. This review focuses on the generation and chemical reactivity of lipid-derived aldehydes with a special focus on the homeostatic responses to electrophilic stress.  相似文献   

4.
Two hemoglobins with cysteine residues highly reactive toward electrophiles have been identified and characterized. Cys-125beta of guinea pig hemoglobin has a low pK(a) and forms conjugates with electrophiles more quickly than glutathione and several orders of magnitude more quickly than other protein thiols. This cysteine is capable of intercepting benzoquinone, a known carcinogenic metabolite, before other protein nucleophiles can be modified. Cys-13beta of mouse hemoglobin was observed to conjugate with electrophiles as quickly as glutathione. The structural basis of reactivity is different in the two hemoglobins and is analyzed in terms of hydrogen-bonding, solvent accessibility, and helix-dipole contributions. Complementing a previously characterized highly reactive cysteine in rat hemoglobin, identification of these cysteines suggests that the reactivity of these hemoglobins could represent a common function as a detoxification sink against carcinogens.  相似文献   

5.
Chemical probes appended with reactive electrophiles afford powerful tools for profiling discrete protein families in living cells. Herein, we have synthesized cell-permeable chemical probes that target fatty acid-associated proteins. These fatty acid-based chemical probes contain acyloxymethylketone or fluorophosphonate functional groups and an alkyne click chemistry tag for visualization of covalently modified proteins by in-gel fluorescence scanning. Our fatty acid-based chemical probe affords new tools to evaluate the activity/expression of lipid-associated proteins that should facilitate their functional characterization and inhibitor discovery.  相似文献   

6.
Histidine and lysine as targets of oxidative modification   总被引:4,自引:0,他引:4  
Uchida K 《Amino acids》2003,25(3-4):249-257
Summary. Histidine and lysine are two representative targets of oxidative modifications. Histidine is extremely sensitive to a metal-catalyzed oxidation, generating 2-oxo-histidine and its ring-ruptured products, whereas the oxidation of lysine generates carbonyl products, such as aminoadipic semialdehyde. On the other hand, both histidine and lysine are nucleophilic amino acids and therefore vulnerable to modification by lipid peroxidation-derived electrophiles, such as 2-alkenals, 4-hydroxy-2-alkenals, and ketoaldehydes, derived from lipid peroxidation. Histidine shows specific reactivity toward 2-alkenals and 4-hydroxy-2-alkenals, whereas lysine is a ubiquitous target of aldehydes, generating various types of adducts. Covalent binding of reactive aldehydes to histidine and lysine is associated with the appearance of carbonyl reactivity and antigenecity of proteins.  相似文献   

7.
Hybrid glycoprotein and neoproteoglycan probes were prepared by coupling various glycoproteins or polysaccharides to peroxidase or biotinyl bovine serum albumin, respectively. Lectins recognizable by the neoglycoconjugate probes were extracted from 16 cultivable mushrooms. Dot-blot assay revealed five extracts to be reactive with only hybrid glycoprotein probes, but others also reacted with neoproteoglycan probes. According to the reactivity pattern with probe screening, the one lectin from Oudemansiella platyphylla extract (OPL) bound best with asialotransferrin-- and asialoagalactotransferrin--peroxidase probes and was isolated using an asialotransferrin column, but it did not bind with other hybrid glycoprotein or neoproteoglycan probes. OPL, consisting of two polypeptides with high homology in the N-terminal amino acid sequences, exhibited weak hemagglutinating activity. Purified OPL specifically bound the beta-GlcNAc probe among various biotinylated polymeric sugar probes, while it exhibited essentially the same binding specificity toward neoglycoconjugate probes as that of the crude extract, showing a preference for the asialobiantennary complex type of N-linked glycans. These results indicate that the neoglycoconjugate probes are valuable in lectin screening.  相似文献   

8.
Guengerich FP  Fang Q  Liu L  Hachey DL  Pegg AE 《Biochemistry》2003,42(37):10965-10970
The active site cysteine of human O(6)-alkylguanine-DNA alkyltransferase (hAGT), Cys145, was shown to be highly reactive with model electrophiles unrelated to substrates, including 1-chloro-2,4-dinitrobenzene. The high reactivity suggested that the Cys145 thiolate anion might be stable at neutral pH. The pK(a) was estimated from plots of UV spectra (A(239)) and reactivity toward 4,4'-dithiopyridine vs pH. The estimated pK(a) for hAGT was 4-5, depending upon the method used, and near that of the extensively characterized papain Cys25. Rates of reaction with 4,4'-dithiopyridine were similar for the thiolate forms of hAGT, papain, glutathione, and the bacterial hAGT homologue Ogt (the pK(a) of the latter was 5.4). Bound Zn(2+) has previously been shown to be required for the catalytic activity of hAGT (Rasimas, J. J. et al. (2003) Biochemistry 42, 980-990). Zn(2+) was shown to be required for the low pK(a) of hAGT. The high reactivity of hAGT Cys145 is postulated to be important in normal catalytic function, in cross-linking reactions involving bis-electrophiles, and in inhibition of the DNA repair function of hAGT by electrophiles.  相似文献   

9.
Endothelial dysfunction is considered to be the earliest event in atherogenesis. Oxidative stress, inflammation, and apoptosis play critical roles in its progression and onset. Lipid peroxidation, which occurs during oxidative stress, results in the formation of lipid hydroperoxide-derived bifunctional electrophiles such as 4-hydroxy-2(E)-nonenal that induce apoptosis. In this study, recently identified lipid hydroperoxide-derived bifunctional electrophiles 4-oxo-2(E)-nonenal (ONE; 5-30 microm) and 4,5-epoxy-2(E)-decenal (EDE; 10-20 microM) were shown to cause a dose- and time-dependent apoptosis in EA.hy 926 endothelial cells. This was manifest by morphological changes, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. Bifunctional electrophiles caused cytochrome c release from mitochondria into the cytosol, implicating a mitochondrial pathway of apoptosis in the endothelial cells. The novel carboxylate-containing lipid hydroperoxide-derived bifunctional electrophile 9,12-dioxo-10(E)-dodecenoic acid was inactive because it could not translocate across the plasma membrane. However, its less polar methyl ester derivative (2-10 microM) was the most potent inducer of apoptosis of any bifunctional electrophile that has been tested. An acute decrease in intracellular glutathione (GSH) preceded the onset of apoptosis in bifunctional electrophile-treated cells. The ability of ONE and EDE to deplete GSH was directly correlated with their predicted reactivity toward nucleophilic amino acids. Liquid chromatography/mass spectrometry methodology was developed in order to examine the intracellular and extracellular concentrations of bifunctional electrophile-derived GSH adducts. Relative intracellular/extracellular ratios of the GSH adducts were identical with the rank order of potency for inducing caspase 3 activation. This suggests that there may be a role for the bifunctional electrophile-derived GSH adducts in the apoptotic response. N-Acetylcysteine rescued bifunctional electrophile-treated cells from apoptosis, whereas the GSH biosynthesis inhibitor d,l-buthionine-(R,S)-sulfoximine sensitized the cells to apoptosis. These data suggest that lipid hydroperoxide-derived bifunctional electrophiles may play an important role in cardiovascular pathology through their ability to induce endothelial cell apoptosis.  相似文献   

10.
Understanding the composition, structure and dynamics of macromolecules and their assemblies is at the forefront of biological science today. Hydroxyl-radical-mediated protein footprinting using mass spectrometry can define macromolecular structure, macromolecular assembly and conformational changes of macromolecules in solution based on measurements of reactivity of amino acid side-chain groups with covalent-modification reagents. Subsequent to oxidation by reactive oxygen species, proteins are digested by specific proteases to generate peptides for analysis by mass spectrometry. Accurate measurements of side-chain reactivity are achieved using quantitative liquid-chromatography-coupled mass spectrometry, whereas the side-chain sites within the macromolecular probes are identified using tandem mass spectrometry. In addition, the use of footprinting data in conjunction with computational modeling approaches is a powerful new method for testing and refining structural models of macromolecules and their complexes.  相似文献   

11.
Activity-based protein profiling (ABPP) is recognized as a powerful and versatile chemoproteomic technology in drug discovery. Central to ABPP is the use of activity-based probes to report the activity of specific enzymes or reactivity of amino acid types in complex biological systems. Over the last two decades, ABPP has facilitated the identification of new drug targets and discovery of lead compounds in human and infectious disease. Furthermore, as part of a sustained global effort to illuminate the druggable proteome, the repertoire of target classes addressable with activity-based probes has vastly expanded in recent years. Here, we provide an overview of ABPP and summarise the major technological advances with an emphasis on probe development.  相似文献   

12.
The chemical properties of the three amino groups of insulin were obtained at 10 and 37 degrees C using the competitive labelling technique with acetic anhydride as the labelling reagent. At 10 degrees C, pK values of 7.9, 7.2, and 7.8 were found for the glycyl A1, phenylalanyl B1, and lysyl B29 amino groups. When compared with standard amino compounds by means of a Br?nsted plot, the two amino-termini were found to be 'super-reactive' and the lysyl epsilon-amino group buried. In the presence of carbon dioxide at physiological pH values, all three amino groups became much less reactive indicating that they had reacted to form carbamino derivatives. Above pH 8 the reactivities of the glycyl amino terminus and epsilon-amino group increase sharply indicating that insulin is undergoing a conformational change which is most likely a change in its association state. At 37 degrees C the amino groups do not titrate normally but exhibit sharp increases in reactivity over the physiological pH range with the midpoints in the pH reactivity profiles between pH values of 7.0 and 7.3. This behaviour is interpreted as a rapid disaggregation of insulin to form monomers as a result of the ionization of the amino groups. It is concluded that at physiological pH and temperature all three amino groups are deprotonated.  相似文献   

13.
The effect of hydrogen bonding at hetero atoms of reduced flavin on its reactivity was studied by ab initio molecular orbital calculations. Among the atoms in the isoalloxazine nucleus of lumiflavin, C(4a) was found to be the most reactive with neutral electrophiles such as molecular oxygen, whereas no reactivity of N(5) can be expected, because of its negative charge. The reactivity of C(4a) is markedly enhanced by hydrogen bonding at N(1) and N(3) in a hydrophobic environment, while it is decreased when hydrogen bonding occurs at all the hetero atoms, as in the case of an aqueous solution of flavin.  相似文献   

14.
The process of lipid peroxidation is widespread in biology and is mediated through both enzymatic and non-enzymatic pathways. A significant proportion of the oxidized lipid products are electrophilic in nature, the RLS (reactive lipid species), and react with cellular nucleophiles such as the amino acids cysteine, lysine and histidine. Cell signalling by electrophiles appears to be limited to the modification of cysteine residues in proteins, whereas non-specific toxic effects involve modification of other nucleophiles. RLS have been found to participate in several physiological pathways including resolution of inflammation, cell death and induction of cellular antioxidants through the modification of specific signalling proteins. The covalent modification of proteins endows some unique features to this signalling mechanism which we have termed the 'covalent advantage'. For example, covalent modification of signalling proteins allows for the accumulation of a signal over time. The activation of cell signalling pathways by electrophiles is hierarchical and depends on a complex interaction of factors such as the intrinsic chemical reactivity of the electrophile, the intracellular domain to which it is exposed and steric factors. This introduces the concept of electrophilic signalling domains in which the production of the lipid electrophile is in close proximity to the thiol-containing signalling protein. In addition, we propose that the role of glutathione and associated enzymes is to insulate the signalling domain from uncontrolled electrophilic stress. The persistence of the signal is in turn regulated by the proteasomal pathway which may itself be subject to redox regulation by RLS. Cell death mediated by RLS is associated with bioenergetic dysfunction, and the damaged proteins are probably removed by the lysosome-autophagy pathway.  相似文献   

15.
The unique combination of nucleophilicity and redox-sensitivity that is characteristic of cysteine residues results in a variety of posttranslational modifications (PTMs), including oxidation, nitrosation, glutathionylation, prenylation, palmitoylation and Michael adducts with lipid-derived electrophiles (LDEs). These PTMs regulate the activity of diverse protein families by modulating the reactivity of cysteine nucleophiles within active sites of enzymes, and governing protein localization between soluble and membrane-bound forms. Many of these modifications are highly labile, sensitive to small changes in the environment, and dynamic, rendering it difficult to detect these modified species within a complex proteome. Several chemical-proteomic platforms have evolved to study these modifications and enable a better understanding of the diversity of proteins that are regulated by cysteine PTMs. These platforms include: (1) chemical probes to selectively tag PTM-modified cysteines; (2) differential labeling platforms that selectively reveal and tag PTM-modified cysteines; (3) lipid, isoprene and LDE derivatives containing bioorthogonal handles; and (4) cysteine-reactivity profiling to identify PTM-induced decreases in cysteine nucleophilicity. Here, we will provide an overview of these existing chemical-proteomic strategies and their effectiveness at identifying PTM-modified cysteine residues within native biological systems.  相似文献   

16.
17.
A recent paper by Muller and Greff (Fd. Chem. Toxicol., 22 (1984) 661) presents QSAR equations for upper respiratory tract irritation by compounds falling into various chemical families. In the present paper the relationships are analysed further. It is found that a general QSAR equation, covering a diverse range of structures, correlates the biological activity reported by Muller and Greff with a single physicochemical parameter, TB'. The parameter TB' is the boiling point at atmospheric pressure (TB), adjusted for compounds with Trouton constants different from 22 cal deg-1 mol-1: TB' = (Tr X TB/22) + 40(1 - Tr/22) where Tr is the Trouton constant. Some of the compounds studied were found to be more irritant than predicted by the general equation: their enhanced activity can be rationalised in terms of their chemical reactivity as electrophiles, their metabolism to electrophiles, or their hydrolysis to more irritant products.  相似文献   

18.
Electrophiles are electron-deficient species that form covalent bonds with electron-rich nucleophiles. In biological systems, reversible electrophile–nucleophile interactions mediate basal cytophysiological functions (e.g. enzyme regulation through S-nitrosylation), whereas irreversible electrophilic adduction of cellular macromolecules is involved in pathogenic processes that underlie many disease and injury states. The nucleophiles most often targeted by electrophiles are side chains on protein amino acids (e.g. Cys, His, and Lys) and aromatic nitrogen sites on DNA bases (e.g. guanine N7). The sulfhydryl thiol (RSH) side chain of cysteine residues is a weak nucleophile that can be ionized in specific conditions to a more reactive nucleophilic thiolate (RS?). This review will focus on electrophile interactions with cysteine thiolates and the pathophysiological consequences that result from irreversible electrophile modification of this anionic sulfur. According to the Hard and Soft, Acids and Bases (HSAB) theory of Pearson, electrophiles and nucleophiles can be classified as either soft or hard depending on their relative polarizability. HSAB theory suggests that electrophiles will preferentially and more rapidly form covalent adducts with nucleophiles of comparable softness or hardness. Application of HSAB principles, in conjunction with in vitro and proteomic studies, have indicated that soft electrophiles of broad chemical classes selectively form covalent Michael-type adducts with soft, highly reactive cysteine thiolate nucleophiles. Therefore, these electrophiles exhibit a common mechanism of cytotoxicity. As we will discuss, this level of detailed mechanistic understanding is a necessary prerequisite for the rational development of effective prevention and treatment strategies for electrophile-based pathogenic states.  相似文献   

19.
Cathepsin B-related proteases in the insulin secretory granule   总被引:16,自引:0,他引:16  
The distribution of proteases potentially reactive with peptide sequences containing pairs of basic amino acids or single basic amino acids was studied in subcellular fractions of a transplantable rat insulinoma using the affinity probes 125I-Tyr-Ala-Lys- ArgCH2Cl and 125I-Tyr-Ala-norleucine- ArgCH2Cl . Both probes labeled predominantly proteins of Mr = 39,000, 31,500, and 25,000. The Mr = 25,000 component appeared to be of lysosomal origin, while the Mr = 39,000 and 31,500 proteins were present in both the lysosomes and insulin granules. The Mr = 39,000 and 31,500 proteins were identified as precursor/product forms of the cysteine protease cathepsin B, while assays performed with fluorigenic peptide substrates suggested that the Mr = 25,000 protein was probably cathepsin L and/or H. The greater reactivity of the Mr = 39,000 form with the dibasic probe suggests that the relative proportions of the Mr = 39,000 and 31,500 forms of cathepsin B in different organelles may determine the extent to which the enzyme expresses activity as a specific (prohormone processing) endopeptidase or a more general (degradative) peptidase.  相似文献   

20.
I D Manger  T W Rademacher  R A Dwek 《Biochemistry》1992,31(44):10724-10732
Incubation of reducing sugars in ammonium bicarbonate was found to be a simple procedure for the formation of beta-D-glycosylamines of purified complex oligosaccharides in 70-80% yield. These provide valuable intermediates for the synthesis of a wide range of oligosaccharide probes and derivatives by acylation of the 1-amino function. The 1-amino function showed different rates of reactivity with different reagents. In general, interactions with large ring systems such as the fluorophores dansyl chloride and carboxyfluorescein gave 10-20% yields of products, which consisted of mixtures of both anomeric forms, whereas smaller acylating reagents gave near-quantitative yields of the desired beta-D-derivatives. Steric effects may explain differences in reactivity. N-Chloroacetamido derivatives could be obtained in high yield with retention of the beta-anomeric configuration. Subsequent ammonolysis of the chloroacetamido function afforded the corresponding N-glycyl beta-derivatives. The linker thereby introduced retains the amino function, possesses the useful properties of fixed anomeric configuration, improved stability, and uniform reactivity with a variety of reagents, and is structurally analogous to an asparagine side chain. The potential therefore exists for the generation of oligosaccharide derivatives tailored for different applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号