首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene encoding streptococcal pyrogenic exotoxin type C (SPE C) was isolated from bacteriophage DNA derived from Streptococcus pyogenes CS112. The gene, designated speC2, was shown to reside near the phage attachment site of phage CS112. A restriction endonuclease map of the CS112 phage was generated, and the location and orientation of the speC2 gene were determined. Hybridization analyses of eight SPE C-producing strains revealed restriction fragment length polymorphism of the speC gene-containing DNA fragments and further showed that each speC was linked to a common CS112 phage-derived DNA fragment.  相似文献   

2.
A phage-associated lysin was found in culture lysates resulting from the propagation of virulent bacteriophage A25 on the group A streptococcal strain designated K56. In contrast to the previously described group C streptococcal phage-associated lysins, A25 phage-associated lysin was more active on chloroform-treated cells, was not phage bound, and was active on some group G and H strains, as well as on group A and C strains. A25 phage-associated lysin had an optimum pH of 6.7 and was inactivated by 10(-3) M p-hydroxymercuribenzoate. Group A cells exposed to penicillin were more susceptible to A25 phage-associated lysin, whereas chloramphenicol-treated cells became resistant to lysis. Release of lipoteichoic acid appeared to precede lysis, and cardiolipin treatment of cells reversed the effects of chloroform and penicillin treatments. These results suggest the possibility that A25 phage-associated lysin may have a mechanism similar to the mechanism of an autolysin or that cell lysis may be due to the activation of an autolysin.  相似文献   

3.
Summary The structural gene of streptococcal pyrogenic exotoxin type C (SPE C) was cloned from the chromosome of Streptococcus pyogenes strain T18P into Escherichia coli using pBR328 as the vector plasmid. Subcloning enabled the localization of the gene (speC) to a 1.7 kb fragment. Partially purified E. coli-derived SPE C and purified streptococcal-derived SPE C, were shown to have the same molecular weight (23 800) and biological activities. A DNA probe, prepared from cloned speC, cross-hybridized with the structural genes of SPE A and SPE B indicating relatedness at the nucleotide level. The speC-derived probe also hybridized to a fragment of CS112 bacteriophage DNA containing the phage attachment site.  相似文献   

4.
Summary Bacteriophage T12 is the prototype phage carrying the streptococcal erythrogenic toxin A (speA) gene. To examine more closely the phages involved in lysogenic conversion, we examined 300 group A streptococcal strains, and identified and isolated two new phages that carry the speA gene. The molecular sizes of these phage genomes were between 32 and 40 kb, similar to that of phage T12 (35 kb). However, as ascertained by restriction analysis, the physical maps of the new phage genomes were different from phage T12 and from each other. Hybridization analysis also showed that all of these phages were only partially related to one another and the speA gene was always located close to the phage attachment site. Additionally, colony hybridization showed that whereas phage T12 or one of its close relatives is the most common phage associated with the group A streptococci, phage 49 has a much stronger association with the speA gene. A defective phage was also found following pulsed field gel electrophoresis of total phage DNA. This phage appears to be a resident of strain T253c and is found only following induction of a T253c lysogen. Restriction enzyme analysis of the isolated defective phage DNA suggests that it is the source of the submolar amounts of DNA previously found in association with phage T12 digestion patterns. Additionally, the defective phage may serve as the site of integration of the speA gene-carrying phages described above.  相似文献   

5.
High-density functional display of proteins on bacteriophage lambda   总被引:4,自引:0,他引:4  
We designed a bacteriophage lambda system to display peptides and proteins fused at the C terminus of the head protein gpD of phage lambda. DNA encoding the foreign peptide/protein was first inserted at the 3' end of a DNA segment encoding gpD under the control of the lac promoter in a plasmid vector (donor plasmid), which also carried lox P(wt) and lox P(511) recombination sequences. Cre-expressing cells were transformed with this plasmid and subsequently infected with a recipient lambda phage that carried a stuffer DNA segment flanked by lox P(wt) and lox P(511) sites. Recombination occurred in vivo at the lox sites and Amp(r) cointegrates were formed. The cointegrates produced recombinant phage that displayed foreign protein fused at the C terminus of gpD. The system was optimised by cloning DNA encoding different length fragments of HIV-1 p24 (amino acid residues 1-72, 1-156 and 1-231) and the display was compared with that obtained with M13 phage. The display on lambda phage was at least 100-fold higher than on M13 phage for all the fragments with no degradation of displayed products. The high-density display on lambda phage was superior to that on M13 phage and resulted in selective enrichment of epitope-bearing clones from gene-fragment libraries. Single-chain antibodies were displayed in functional form on phage lambda, strongly suggesting that correct disulphide bond formation takes place during display.This lambda phage display system, which avoids direct cloning into lambda DNA and in vitro packaging, achieved cloning efficiencies comparable to those obtained with any plasmid system. The high-density display of foreign proteins on bacteriophage lambda should be extremely useful in studying low-affinity protein-protein interactions more efficiently compared to the M13 phage-based system.  相似文献   

6.
The paper reports on the influence of polymerizing activity of DNA-polymerase I on different developmental stages of temperate bacteriophage Mu in Escherichia coli K-12 cells. This activity is shown to be necessary for optimization of phage Mu primary integration into cell chromosomes. The relative frequency of Mu integration into bacterial chromosomes is 5-6 times lower in polA cells than in isogenic polA+ control strains, the phage yield from cells being delayed during the phage infectious development, but not in the course of induction from the prophage state. Data have been obtained that show the process of phage Mu DNA integration into the plasmid pRP1 .2 and the process of Mu transposition from the cell chromosome into the plasmid to be independent of the polymerizing activity of DNA-polymerase I.  相似文献   

7.
Several phage hosts of group A streptococci became resistant to lysis by bacteriophage as a consequence of having acquired the ability to grow in the presence of chloramphenicol. The phage was adsorbed to the streptococcal cell, and P(32)-labeling of the phage showed that the phage genome penetrated the chloramphenicol (CM)- resistant cells as it did the parent cells. However, artificial lysis of the infected CM-resistant cells with chloroform or enzymes revealed no intracellular mature phage particles. Lysates of infected CM-resistant cells contained no phage-related antigenic materials which possessed serum-blocking power, although they were readily detected in lysates of infected parent cells. The CM-resistant cells were not lysogenized by the phage. Only cells resistant to more than 10 mug/ml of chloramphenicol were resistant to phage, and this threshold effect was taken as an indication of at least two different loci of chloramphenicol resistance on the streptococcal genome. Strains resistant to high levels of other antibiotics, such as streptomycin and erythromycin, showed no resistance to lysis by phage. Evidence indicated that the mutant cells were deficient in an essential function associated with the phage genome.  相似文献   

8.
Reciprocal recombination between T4 DNA cloned in plasmid pBR322 and homologous sequences in bacteriophage T4 genomes leads to integration of complete plasmid molecules into phage genomes. Indirect evidence of this integration comes from two kinds of experiments. Packaging of pBR322 DNA into mature phage particles can be detected by a DNA--DNA hybridization assay only when a T4 restriction fragment is cloned in the plasmid. The density of the pBR322 DNA synthesized after phage infection is also consistent with integration of plasmid vector DNA into vegetative phage genomes. Direct evidence of plasmid integration into phage genomes in the region of DNA homology comes from genetic and biochemical analysis of cytosine-containing DNA isolated from mature phage particles. Agarose gel electrophoresis of restriction endonuclease-digested DNA, followed by Southern blot analysis with nick-translated probes, shows that entire plasmid molecules become integrated into phage genomes in the region of T4 DNA homology. In addition, this analysis shows that genomes containing multiple copies of complete plasmid molecules are also formed. Among phage particles containing at least one integrated copy, the average number of integrated plasmid molecules is almost ten. A cloning experiment done with restricted DNA confirms these conclusions and illustrates a method for walking along the T4 genome.  相似文献   

9.
Lysogenic conversion has been suggested as a mechanism of control of group A streptococcal pyrogenic exotoxin type A production. Digestion of DNA from two converting bacteriophages, 3GL16 and T12, with a variety of restriction endonucleases yielded identical DNA fragments upon electrophoresis in agarose gels. Several known A toxin-positive strains that did not appear to produce converting phage upon induction were analyzed for toxin and phage DNA. Strains, including NY5, 594, and C203S, were shown by hybridization studies to carry the A toxin gene (speA) adjacent to chromosomally inserted phage fragments, homologous to phage T12 DNA, which may represent defective converting phages. The phage T12 att site mapped adjacent to speA. These data suggest that phage T12 acquired the A toxin gene from the bacterial genome. All streptococcal strains tested that were A toxin negative by Ouchterlony immunodiffusion failed to show any hybridization to speA-specific probes.  相似文献   

10.
The region of temperate bacteriophage T12 responsible for integration into the chromosome of Streptococcus pyogenes has been identified. The integrase gene ( int ) and the phage attachment site ( attP ) are found immediately upstream of the gene for speA , the latter of which is known to be responsible for the production of erythrogenic toxin A (also known as pyrogenic exotoxin A). The integrase gene has a coding capacity for a protein of 41 457 Da, and the C-terminus of the deduced protein is similar to other conserved C-terminal regions typical of phage integrases. Upstream of int is a second open reading frame, which is capable of encoding an acidic protein of 72 amino acids (8744 Da); the position of this region in relation to int suggests it to be the phage excisionase gene ( xis ). The arms flanking the integrated prophage ( attL and attR ) were identified, allowing determination of the sequences of the phage ( attP ) and bacterial ( attB ) attachment sites. A fragment containing the integrase gene and attP was cloned into a streptococcal suicide vector; when introduced into S. pyogenes by electrotransformation, this plasmid stably integrated into the bacterial chromosome at attB . The insertion site for the phage into the S. pyogenes chromosome was found to be in the anticodon loop of a putative type II gene for a serine tRNA. attP and attB share a region of identity that is 96 bp in length; this region of identity corresponds to the 3' end of the tRNA gene such that the coding sequence remains intact after integration of the prophage. The symmetry of the core region of att may set this region apart from previously described phage attachment sites (Campbell, 1992), and may play a role in the biology of this medically important bacteriophage.  相似文献   

11.
Characteristics of group A streptococcal bacteriophages   总被引:14,自引:4,他引:10  
Friend, Patric L. (Northwestern University Medical School, Chicago, Ill.), and Hutton D. Slade. Characteristics of group A streptococcal bacteriophages. J. Bacteriol. 92:148-154. 1966.-A medium for the growth of group A streptococcal phages is described, consisting of Brain Heart Infusion broth supplemented with 0.2% yeast extract, 10(-4)m CaCl(2), and 10 mug/ml of dl-tryptophan. Cell and phage growth in this medium was excellent, and did not require the addition of serum or other proteins as indicated by other workers. Growth of one phage has also been achieved in a completely synthetic medium. The adsorption characteristics of two group A phages in protein broth and synthetic broth were studied, and the initial adsorption of phage was found to be more extensive in synthetic broth. However, the final amounts of adsorption in both were similar. The addition of purified group A carbohydrate antigen to the adsorption mixture in synthetic broth had no effect on the adsorption, and cells containing type-specific M protein adsorbed phage at the same rate as those lacking M protein. It was concluded that neither the group antigen nor the type antigen was the primary site of phage adsorption. One-step growth curves of the two phages showed a second step or burst occurring. Sonic oscillation of the bacterial cultures, which broke up the chains to single cells, abolished the second step of the growth curve. It appears that the second step is a function of the chain formation of streptococcal cells.  相似文献   

12.
All of the previously described effects of integration host factor (IHF) on bacteriophage Mu development have supported the view that IHF favours transposition-replication over the alternative state of lysogenic phage growth. In this report we show that, consistent with a model in which Mu repressor binding to its operators requires a particular topology of the operator DNA, IHF stimulates repressor binding to the O1 and O2 operators and enhances Mu repression. IHF would thus be one of the keys, besides supercoiling and the H-NS protein, that lock the operator region into the appropriate topological conformation for high-affinity binding not only of the phage transposase but also of the phage repressor.  相似文献   

13.
Bacteriophage T12, the prototypic bacteriophage of Streptococcus pyogenes carrying the erythrogenic toxin A gene (speA), integrates into the bacterial chromosome at a gene for a serine tRNA (W. M. McShan, Y.-F. Tang, and J. J. Ferretti, Mol. Microbiol. 23:719-728, 1997). This phage is a member of a group of related temperate phages, and we show here that not all speA-carrying phages in this group use the same attachment site for integration into the bacterial chromosome. Additionally, other phages in the group use the same serine tRNA gene attachment site as phage T12 and yet do not carry speA. The evidence suggests that recombination between phage genomes has been an important means of generating diversity and disseminating virulence-associated genes like speA.  相似文献   

14.
Filamentous bacteriophage M13 is a single-stranded DNA phage about 65 A in diameter and 9300 A long. X-ray diffraction studies of magnetically oriented fibers of native, mercury and iodine-labeled phage particles have been used to determine the arrangement of the major coat protein, the gene 8 product, in the virion. The coat protein is made up of a single gently curving alpha-helix extending from approximately Pro6 to near the carboxyl terminus. The axis of the alpha-helix is tilted about 20 degrees from the viral axis and wraps around the axis in a right-handed helical sense. The surface of the virus is made up largely of polar residues in the amino-terminal half of the protein including the segment of alpha-helix extending from Pro6 to Tyr24. The interior surface of the protein coat faces the DNA and consists of an amphipathic helical segment extending from Thr36 to Ser50. The alpha-helices form a tightly packed 15 to 20 A thick cylindrical coat around the DNA. This structural model provides insight into the potential sites for incorporating foreign protein domains that may act as functional binding sites on the surface of M13.  相似文献   

15.
The FASTPlaqueTB assay is an established diagnostic aid for the rapid detection of Mycobacterium tuberculosis from human sputum samples. Using the FASTPlaqueTB assay reagents, viable Mycobacterium avium subsp. paratuberculosis cells were detected as phage plaques in just 24 h. The bacteriophage used does not infect M. avium subsp. paratuberculosis alone, so to add specificity to this assay, a PCR-based identification method was introduced to amplify M. avium subsp. paratuberculosis-specific sequences from the DNA of the mycobacterial cell detected by the phage. To give further diagnostic information, a multiplex PCR method was developed to allow simultaneous amplification of either M. avium subsp. paratuberculosis or M. tuberculosis complex-specific sequences from plaque samples. Combining the plaque PCR technique with the phage-based detection assay allowed the rapid and specific detection of viable M. avium subsp. paratuberculosis in milk samples in just 48 h.  相似文献   

16.
E Gertman  D Berry  A M Kropinski 《Gene》1987,52(1):51-57
D3 is a temperate serotype-converting bacteriophage of Pseudomonas aeruginosa. A restriction map, based upon BamHI, PstI, PvuI, HindIII and SmaI sites, indicates that the phage genome is 56.4 kb long, and that it possesses cohesive ends. The prophage map suggests a unique insertion site in the strain AK1380 genome. Phage DNA integration occurs upon the circularization of D3 genome with the integration point approximately equidistant from the two ends.  相似文献   

17.
Thirty-three virulent and five temperate phages of Streptococcus lactis and Streptococcus cremoris were differentiated into three groups by DNA homology. A complete lack of DNA homology was demonstrated between the phage groups. Within each group, large parts of the phage genomes were homologous except for a few phages. One group consisted of five temperate and two virulent phages suggesting that virulent phages isolated during abnormal fermentations and temperate phages isolated after induction from lactic streptococcal starter cultures may be related to one another. We observed a good correlation between the grouping of phages by DNA homology and by their protein composition since within the same DNA homology group, the protein composition of a phage exhibited some similarities with that of the other phages of the group. Therefore, the DNA homologies seemed to be located, at least, in the region coding for the structural proteins. By immunoblotting, we confirmed the relatedness between the proteins of the phages belonging to the same DNA homology group. The important host range factor in bacterium-phage interactions appeared to be an unreliable criterion in determining phage taxonomy.  相似文献   

18.
Myxophage MX8 can initiate a lysogenic cycle in Myxococcus xanthus. The lysogenic phage was gentically stable in vegetative cells and persisted in the latent state through many cell generations in the absence of extracellular phage reinfection. The latent state also was stable during the host developmental cycle, since myxospores transmitted latent MX8 genetic information to future progeny cells. DNA hybridization experiments to probe the structure of the lysogenic phage provided physical evidence that MX8 formed a prophage. During lysogenization, MX8 DNA was cut at a specific site (attP) on phage DNA, and we have concluded that genetic recombination between attP and a bacterial DNA site (attB) leads to integration of MX8 DNA and formation of stable MX8 prophage. The genetic and physical properties of MX8 that we describe should make MX8 useful in the analysis of development of M. xanthus by genetic methods.  相似文献   

19.
Properties of a virulent Brevibacterium flavum bacteriophage phi BSh6 were studied. The phage was placed in morphological group B1 according to Ackerman classification, head diameter being 74-3 nm, tail length being 337 +/- 15 nm. The phage was shown to have double stranded DNA as a genetic material. The chromosome is linear having cohesive ends. Chromosome length was estimated to be about 71 kbp by restriction analysis and electron microscopy. A unique EcoRI-EcoRI fragment of bacteriophage DNA (0.8 kbp) was cloned in Escherichia coli. Restriction chart of cos region was determined, the dyad symmetry being absent from cos sequence. Deletion mutant of the phage was obtained and restriction map of the corresponding genome region was constructed. The phage phi BSh6 was shown to be a close relative to phages phi B and BB14 described earlier.  相似文献   

20.
In vivo mutagenesis of bacteriophage Mu transposase.   总被引:5,自引:1,他引:4       下载免费PDF全文
We devised a method for isolating mutations in the bacteriophage Mu A gene which encodes the phage transposase. Nine new conditional defective A mutations were isolated. These, as well as eight previously isolated mutations, were mapped with a set of defined deletions which divided the gene into 13 100- to 200-base-pair segments. Phages carrying these mutations were analyzed for their ability to lysogenize and to transpose in nonpermissive hosts. One Aam mutation, Aam7110, known to retain the capacity to support lysogenization of a sup0 host (M. M. Howe, K. J. O'Day, and D. W. Shultz, Virology 93:303-319, 1979) and to map 91 base pairs from the 3' end of the gene (R. M. Harshey and S. D. Cuneo, J. Genet. 65:159-174, 1987) was shown to be able to complement other A mutations for lysogenization, although it was incapable of catalyzing either the replication of Mu DNA or the massive conservative integration required for phage growth. Four Ats mutations which map at different positions in the gene were able to catalyze lysogenization but not phage growth at the nonpermissive temperature. Phages carrying mutations located at different positions in the Mu B gene (which encodes a product necessary for efficient integration and lytic replication) were all able to lysogenize at the same frequency. These results suggest that the ability of Mu to lysogenize is not strictly correlated with its ability to perform massive conservative and replicative transposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号