首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oryza australiensis, a diploid wild relative of cultivated rice, is an important source of resistance to brown planthopper (BPH) and bacterial blight (BB). Interspecific hybrids between three breeding lines of O. sativa (2n=24, AA) and four accessions of O. australiensis (2n=24, EE) were obtained through embryo rescue. The crossability ranged from 0.25% to 0.90%. The mean frequency of bivalents at diakinesis/metaphase I in F1 hybrids (AE) was 2.29 to 4.85 with a range of 0–8 bivalents. F1 hybrids were completely male sterile. We did not obtain any BC1 progenies even after pollinating 20,234 spikelets of AE hybrids with O. sativa pollen. We crossed the artificially induced autotetraploid of an elite breeding line (IR31917-45-3-2) with O. australiensis (Acc. 100882) and, following embryo rescue, produced six F1 hybrid plants (AAE). These triploid hybrids were backcrossed to O. sativa. The chromosome number of 16 BC1 plants varied from 28 to 31, and all were male sterile. BC2 plants had 24–28 chromosomes. Eight monosomic alien addition lines (MAALs) having a 2n chromosome complement of O. sativa and one chromosome of O. australiensis were selected from the BC2 F2 progenies. The MAALs resembled the primary trisomies of O. sativa in morphology, and on the basis of this morphological similarity the MAALs were designated as MAAL-1, -4, -5, -7, -9, -10, -11, and -12. The identity of the alien chromosome was verified at the pachytene stage of meiosis. The alien chromosomes paired with the homoeologous pairs to form trivalents at a frequency of 13.2% to 24.0% at diakinesis and 7.5% to 18.5% at metaphase I. The female transmission rates of alien chromosomes varied from 4.2% to 37.2%, whereas three of the eight MAALs transmitted the alien chromosome through the male gametes. BC2 progenies consisting of disomic and aneuploid plants were examined for the presence of O. australiensis traits. Alien introgression was detected for morphological traits, such as long awns, earliness, and Amp-3 and Est-2 allozymes. Of the 600 BC2 F4 progenies 4 were resistant to BPH and 1 to race 6 of BB. F3 segregation data suggest that earliness is a recessive trait and that BPH resistance is monogenic recessive in two of the four lines but controlled by a dominant gene in the other two lines.  相似文献   

2.
T Ishii  D S Brar  D S Multani  G S Khush 《Génome》1994,37(2):217-221
Restriction fragment length polymorphism analysis was carried out to tag the alien genes for brown planthopper (BPH) resistance and earliness introgressed from wild species Oryza australiensis into cultivated rice, O. sativa L. One introgression line (IR65482-4-136-2-2), resistant to biotypes 1, 2, and 3 of BPH and early in flowering, was selected from BC2F4 of the cross between O. sativa (IR31917-45-3-2) and O. australiensis (accession 100882). Recurrent parent, O. australiensis, and introgression line were surveyed for RFLP using probes of chromosomes 10 and 12. Two probes, RG457 and CDO98, detected introgression from O. australiensis. Cosegregation between introgressed characters and molecular markers was studied in F2 derived from the cross between the introgression line and recurrent parent. The gene for BPH resistance is linked with RG457 of chromosome 12 at a distance of 3.68 +/- 1.29 cM, and the gene for earliness is linked with CDO98 of chromosome 10 at a distance of 9.96 +/- 3.28 cM. Such close linkage is useful in marker-based selection while transferring BPH resistance from introgression line into other elite breeding lines. Introgression at the molecular level indicates that the mechanism of alien gene transfer is probably genetic recombination through crossing over rather than substitution of whole or large segment of chromosomes of wild species.  相似文献   

3.
Li G  Hu W  Qin R  Jin H  Tan G  Zhu L  He G 《Genetica》2008,134(2):169-180
Wild rice is a valuable resource for the genetic improvement of cultivated rice (Oryza sativa L., AA genome). Molecular markers are important tools for monitoring gene introgression from wild rice into cultivated rice. In this study, Simple sequence repeat (SSR) markers were used to analyze interspecific hybrids of O. sativa-O. officinalis (CC genome), the backcrossing progenies and the parent plants. Results showed that most of the SSR primers (335 out of 396, 84.6%) developed in cultivated rice successfully amplified products from DNA samples of wild rice O. officinalis. The polymorphism ratio of SSR bands between O. sativa and O. officinalis was as high as 93.9%, indicating differences between the two species with respect to SSRs. When the SSR markers were applied in the interspecific hybrids, only a portion of SSR primers amplified O. officinalis-specific bands in the F(1) hybrid (52.5%), BC(1) (52.5%), and MAALs (37.0%); a number of the bands disappeared. Of the 124 SSR loci that detected officinalis-specific bands in MAAL plants, 96 (77.4%) showed synteny between the A and C-genomes, and 20 (16.1%) showed duplication in the C-genome. Sequencing analysis revealed that indels, substitution and duplication contribute to the diversity of SSR loci between the genomes of O. sativa and O. officinalis.  相似文献   

4.
Monosomic alien addition lines (MAALs) are valuable materials for comparative analyses of two distinct genomes, for elucidating introgression mechanisms, and for dissecting genes controlling complex traits. In the study reported here, MAALs of rice containing the complete genome of Oryza sativa and individual chromosomes of Oryza officinalis were produced. Interspecific hybridizations were made between O. sativa L. ssp. Japonica (CV, Hejiang 19, 2 n=24, AA) and O. officinalis (Acc. HY018, 2 n=24, CC). Two backcrosses were made to the cultivated rice to obtain BC2F1 plants. Through RFLP and GISH analyses, 25 MAALs (2 n=25, AA+1C) were identified and divided into 12 syntenic groups, designated MAALs 1–12. MAALs 1, 2, 3, 5, 7 and 10 were each represented by one plant, MAALs 8, 11 and 12 by two plants, MAALs 6 and 9 by four plants, and MAAL 4 by five plants. An ideogram of the C-genome of O. officinalis was constructed, based on GISH analysis of the interspecific hybrid and the MAALs. Comparative RFLP maps showed strong syntenic associations between the A-genomes and C-genomes. Chromosomal arrangements such as translocations and duplications were detected in different alien chromosomes of the MAALs. The complete set of O. officinalis MAALs generated here provides a novel manipulation platform for exploiting and utilizing the O. officinalis genome and carrying out genetic studies.  相似文献   

5.
稻飞虱是水稻生产最严重的害虫之一。野生稻拥有丰富的抗虫基因资源,导入系是鉴定和利用野生稻有利基因的有效途径。本研究通过对371份小粒野生稻导入系进行抗褐飞虱和白背飞虱接虫鉴定,分别筛选出了11份抗、72份中抗褐飞虱的材料和7份抗、45份中抗白背飞虱的材料,其中有5份材料兼抗褐飞虱和白背飞虱,这是从小粒野生稻中鉴定出抗白背飞虱材料的首次报道。通过对2份抗性导入系材料与感虫亲本杂交构建的F1和F2群体的抗虫鉴定和分析表明:K41对褐飞虱和白背飞虱的抗性受2对显性抗虫基因通过互补作用所控制;P114对褐飞虱和白背飞虱的抗性都是由1对主效的隐性基因控制。这些结果必将有利于小粒野生稻抗稻飞虱的基因定位和育种利用。  相似文献   

6.
A preliminary screening was conducted on BC3F1 and BC4F1 backcross families developed from crossing Oryza sativa (MR219) and O. rufipogon (IRGC105491). Despite earlier results showing that O. rufipogon alleles (wild introgression) contributed to both number of panicles (qPPL-2) and tillers (qTPL-2) at loci RM250, RM208, and RM48 in line A20 of the BC2F2 population, we observed that wild introgression was lost at loci RM250 and RM208 but retained at locus RM48 in BC3F1 and BC4F1. Progeny tests conducted utilizing genotype and phenotype data on both BC4F1 and a reference population, BC2F7 (A20 line), did not show significant differences between groups having the MR219 allele and wild introgression at locus RM48. This suggests that there is no additive and transgressive effect of wild introgression in the BC3F1 and BC4F1 generated. The presence of wild introgression was largely due to gene contamination by cross-pollination during field breeding practices.  相似文献   

7.
Jin H  Tan G  Brar DS  Tang M  Li G  Zhu L  He G 《Plant molecular biology》2006,62(4-5):769-777
The wild species Oryza officinalis Wall. ex Watt (2n = 24, CC) is a valuable genetic resource for rice (O. sativa L., 2n = 24, AA) breeding and genomics research. Genomic in situ hybridization (GISH) and molecular approaches were used to determine the nature and composition of the additional chromosome in a monosomic alien addition line (MAAL) of O. officinalis and its backcross progenies. The extra wild species chromosome in the MAAL (2n = 2x = 25) was a mosaic one, comprising of the long arm of chromosome 4 from O. officinalis and the short arm from O. sativa. Comparative analysis showed that O. sativa and O. officinalis shared high synteny of restriction fragment length polymorphism (RFLP) markers and low synteny of simple sequence repeat (SSR) markers. A DNA methylation alteration was revealed at C619 in the MAAL and progenies. Analysis of progenies of the MAAL indicated that introgression segments were small in size and introgression was not evenly distributed along the long arm. One recombination hot spot between C513 and RG177 was identified, which is in a gene-rich region.  相似文献   

8.
对一个药用野生稻(Oryza officinalis Wall ex Watt,基因组型CC)异源单体附加系(monosomic alien addition line,MAAL)及其回交后代进行了分析,应用分子标记技术确定了该异源单体附加系所附加的染色体是一条嵌合的7号染色体,药用野生稻贡献了其长臂部分,而短臂和着丝粒则来源于栽培稻。将该植株与栽培稻亲本回交,得到109株回交后代,考察了回交群体的主要农艺性状并进行了分子标记分析,发现野生稻染色体片段的渗入影响了回交后代的株高、千粒重、结实率、结实密度、叶宽等农艺性状,而且这些性状之间正相关度很大。  相似文献   

9.
Distant hybridization between rice species and their genome interactions have become the hot points of genetic research. The new formed hybrid was unstable and many of the alien chromosomes would be excluded out in the meiosis procedure. In this study, we investigated the phenomenon that the monosomic alien addition lines (MAALs) of Oryza officinalis (CC)–Oryza sativa (AA) inherited in the genomic and cytoplasmic environments of cultivated rice. In a series of backcross programs, every time the MAALs were backcrossed with the recurrent parent Hejiang19, we get a portion of the backcross progenies that were similar to the female parent MAALs in morphological characters (with rolled leaves) and chromosome constitutions (2n + 1). The monosomic alien chromosome exhibited stable inheritance in the genomic and cytoplasmic environments of cultivated rice. Molecular biology and fluorescence in situ hybridization (FISH) analyses on mitotic cells showed that the alien chromosomes in MAALs were inclined to be transferred integrated into the backcross progenies with rolled leaves and no big fragments of alien chromosomes introgressing into the chromosomes of cultivated rice. By FISH analysis on the meiotic cells, we proved that the single alien chromosome performing nonstandard meiosis and behaving like a dispensable genetic factor, which would be the cytological reasons for the stable inheritance of alien chromosomes.  相似文献   

10.
江西东乡野生稻苗期抗旱基因定位   总被引:2,自引:0,他引:2  
普通野生稻是栽培稻的祖先种,其遗传多样性远远大于栽培稻,蕴涵着栽培品种中难以找到的重要性状.以江西东乡普通野生稻为供体、以桂朝2号为遗传背景的野生稻基因渗入系(BC4F5、BC4F6)为材料,利用30%的PEG人工模拟干旱环境,对渗入系二叶一心苗期进行抗旱鉴定,共定位了12个与抗旱有关的QTL,其中在第2、6和12染色体上发现了4个QTL的加性效应值为正,来自东乡野生稻的等位基因能使渗入系的抗旱性增强,特别是位于第12染色体RM17附近的qSDT12-2在多次重复中均被检测到,在PEG处理后1-8 d能稳定表达.通过对抗旱性QTL的动态分析,发现不同QTL表达时间不同.  相似文献   

11.
Three alien disomic addition lines (V35-8-8, V39-15-5 and V58-6-11) were isolated and identified from Triticum aestivum L. and Roegneria kamoji Ohwi progenies (Fs, BC1F3, BC1F4 and BC2F4), by means of morphological observation, cytogenetical analysis and chromosome C-banding technique. The value of C-banding technique in distinguishing the chromosome of R. kamoji from those of T. aestivum and other relevant points were also discussed.  相似文献   

12.
Brassica rapa var. trilocularis-B. oleracea var. alboglabra monosomic alien addition lines (MAALs) were used to assign simple sequence repeat (SSR) markers to the nine C-genome chromosomes. A total of 64 SSR markers specific to single C-chromosomes were identified. The number of specific markers for each chromosome varied from two (C3) to ten (C4, C7 and C9), where the designation of the chromosomes was according to Cheng et al. (Genome 38:313-319, 1995). Seventeen additional SSRs, which were duplicated on 2-5 C-chromosomes, were also identified. Using the SSR markers assigned to the previously developed eight MAALs and recently obtained aneuploid plants, a new Brassica rapa-B. oleracea var. alboglabra MAAL carrying the alien chromosome C7 was identified and developed. The application of reported genetically mapped SSR markers on the nine MAALs contributed to the determination of the correspondence between numerical C-genome cytological (Cheng et al. in Genome 38:313-319, 1995) and linkage group designations. This correspondence facilitates the integration of C-genome genetic information that has been generated based on the two designation systems and accordingly increases our knowledge about each chromosome. The present study is a significant contribution to genetic linkage analysis of SSR markers and important agronomic traits in B. oleracea and to the potential use of the MAALs in plant breeding.  相似文献   

13.
植物基因组研究与利用的新型工具——异源单体附加系   总被引:2,自引:0,他引:2  
谭光轩 《遗传》2008,30(1):35-45
在高等植物中, 以种间杂交和回交把有益基因从一个物种转移到另一个物种为目的育种项目中, 单个外源染色体常常被附加到含有受体细胞完整一套染色体中, 形成异源单体附加系。这种异源单体附加系是阐明基因组结构和转移基因的有效工具。它可以通过回交形成覆盖整个基因组的渗入系重叠群, 用于建立以受体物种基因组为载体的外源物种基因组文库。另外, 一套完整的异源单体附加系也可看作是一个拥有分散供体基因组成为单个染色体单位的文库, 便于精确高通量地将标记分配到单个供体染色体上, 从而可以比较供体染色体和各自的直向同源受体染色体之间的标记位置和同线性关系。同时, 也便于研究同源染色体的渗入机制和配对状态。文中介绍了异源单体附加系的培育和特性, 并着重阐明了它在遗传育种和基础研究中的应用。  相似文献   

14.
Tan GX  Weng QM  Ren X  Huang Z  Zhu LL  He GC 《Heredity》2004,92(3):212-217
The whitebacked planthopper (WBPH), Sogatella furcifera, and brown planthopper (BPH) Nilaparvata lugens St?l are important sucking insects of rice (Oryza sativa L.) crops throughout the world. Rice 'B5', which has derived its resistance genes from the wild rice O. officinalis Wall ex Watt, is a line that is highly resistant to both WBPH and BPH. Previously, two resistance genes against BPH, Qbp1, and Qbp2 in 'B5' had been mapped onto chromosome 3 and chromosome 4, respectively. In this study, we employed a mapping population composed of 187 recombinant inbred lines (RILs), produced from a cross between 'B5' and susceptible variety 'Minghui63', to locate the WBPH and BPH resistance genes. A RFLP survey of the bulked extremes from the RIL population identified two genomic regions, one on chromosome 3 and the other on chromosome 4, likely containing the resistance genes to planthoppers. QTL analysis of the RILs further confirmed that two WBPH resistance genes were mapped on the same loci as Qbp1 and Qbp2, using a linkage map with 242 molecular markers distributed on 12 rice chromosomes. Of the two WBPH resistance genes, one designated Wbph7(t) was located within a 1.1-cM region between R1925 and G1318 on chromosome 3, the other designated Wbph8(t) was within a 0.3-cM region flanked by R288 and S11182 on chromosome 4. A two-way analysis of variance showed that two loci acted independently with each other in determining WBPH resistance. The results have significant implications in studying the interactions between sucking insects and plants and in breeding programs of resistance to rice planthoppers.  相似文献   

15.
普通小麦—鹅观草异附加系的选育与鉴定初报   总被引:8,自引:0,他引:8  
应用根尖细胞染色体计数、花粉母细胞减数分裂染色体配对构型分析、植株外形特征观察、染色体C-分带技术,在普通小麦(Triticum aestivum L.)-鹅观草(Roegneria kam ojiOhw i)的杂交及回交后代F5、BC1F3、BC1F4和BC2F4群体中选育并鉴定出3个二体异附加系V39-15-5、V35-8-8 和V58-6-11。对植株外形特征观察法和C-分带技术在普通小麦-鹅观草异附加系的选育和鉴定过程中的作用等问题进行了讨论  相似文献   

16.

Key message

A complete set of monosomic alien addition lines of Brassica napus with one of the seven chromosomes of Isatis indigotica and the recombinant mitochondria was developed and characterized.

Abstract

Monosomic alien addition lines (MAALs) are valuable for elucidating the genome structure and transferring the useful genes and traits in plant breeding. Isatis indigotica (Chinese woad, 2n = 14, II) in Isatideae tribe of Brassicaceae family has been widely cultivated as a medicinal and dye plant in China. Herein, the intertribal somatic hybrid (2n = 52, AACCII) between B. napus cv. Huashuang 3 (2n = 38, AACC) and I. indigotica produced previously was backcrossed recurrently to parental B. napus, and 32 MAAL plants were isolated. Based on their phenotype, 5S and 45S rDNA loci and chromosome-specific SSR markers, these MAALs were classified into seven groups corresponding to potential seven types of MAALs carrying one of the seven I. indigotica chromosomes. One of the MAALs could be distinguishable by expressing the brown anthers of I. indigotica, other two hosted the chromosome with 5S or 45S rDNA locus, but the remaining four were identifiable by SSR markers. The simultaneous detection of the same SSR maker and gene locus in different MAALs revealed the paralogs on the chromosomes involved. The recombinant mitochondrial genome in MAALs was likely related with their male sterility with carpellody stamens, while the MAAL with normal brown anthers probably carried the restoring gene for the male sterility. The complete set of MAALs should be useful for exploiting the I. indigotica genome and for promoting the introgression of valuable genes to B. napus.  相似文献   

17.
水稻抗褐飞虱基因bph2的SSR定位和标记辅助选择   总被引:6,自引:1,他引:5  
利用综合性状较好对褐飞虱敏感的粳稻恢复系C418为父本,以含有bph2基因的抗褐飞虱品种ASD7为母本构建了包含134个F23家系的群体,利用苗期鉴定法对F2:3家系进行抗性鉴定:用SSR标记技术,将bph2基因定位在第12染色体长臂上,标记RM7102和RM463之间,其遗传距离分别为7.6cM和7.2cM。在进行表型选择的同时,利用与bph2基因连锁的SSR标记RM7102和RM463对BC1F1和BC2F1进行了标记辅助选择,选择效率分别为89.9%和91.2%,为培育高抗褐飞虱水稻品种奠定了基础。  相似文献   

18.

Background and Aims

Brassica rapa and B. oleracea are the progenitors of oilseed rape B. napus. The addition of each chromosome of B. oleracea to the chromosome complement of B. rapa results in a series of monosomic alien addition lines (MAALs). Analysis of MAALs determines which B. oleracea chromosomes carry genes controlling specific phenotypic traits, such as seed colour. Yellow-seeded oilseed rape is a desirable breeding goal both for food and livestock feed end-uses that relate to oil, protein and fibre contents. The aims of this study included developing a missing MAAL to complement an available series, for studies on seed colour control, chromosome homoeology and assignment of linkage groups to B. oleracea chromosomes.

Methods

A new batch of B. rapa–B. oleracea aneuploids was produced to generate the missing MAAL. Seed colour and other plant morphological features relevant to differentiation of MAALs were recorded. For chromosome characterization, Snow''s carmine, fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) were used.

Key Results

The final MAAL was developed. Morphological traits that differentiated the MAALs comprised cotyledon number, leaf morphology, flower colour and seed colour. Seed colour was controlled by major genes on two B. oleracea chromosomes and minor genes on five other chromosomes of this species. Homoeologous pairing was largely between chromosomes with similar centromeric positions. FISH, GISH and a parallel microsatellite marker analysis defined the chromosomes in terms of their linkage groups.

Conclusions

A complete set of MAALs is now available for genetic, genomic, evolutionary and breeding perspectives. Defining chromosomes that carry specific genes, physical localization of DNA markers and access to established genetic linkage maps contribute to the integration of these approaches, manifested in the confirmed correspondence of linkage groups with specific chromosomes. Applications include marker-assisted selection and breeding for yellow seeds.  相似文献   

19.
Oryza minuta, a tetraploid wild relative of cultivated rice, is an important source for the genetic improvement. Interspecific hybrids were obtained from the cross of O. sativa L. (IR24) and O. minuta (Acc. No. 101133) with 5.58% crossability, which ranged from 0.11% to 1.62% in the backcross generations. The chromosome numbers of the backcross progenies were 24 to 48. Seven yield-related traits of the parents, hybrid F1, and backcross progenies were evaluated. Simple sequence repeat markers analysis showed that the polymorphism ratio of SSR bands between IR24 and Acc. No. 101133 was 93.2%. The average donor segment number, length, donor genome size, and percentage of donor genome of 92 BC3F1 plants (2n=24) were 24.1, 17.8 cM, 438.4 cM and 26.2%, respectively. They were complex variation and uneven among the chromosomes. These introgression lines could be used to identify the favorable genes of O. minuta and provide a new platform for the genetic improvement of cultivated rice.  相似文献   

20.
Summary Sterile AC hybrids between cultivated Oryza sativa (AA) and a distant wild species, O. officinalis (CC), were backcross to O. sativa. Most of the BC1 progenies were allotriploid (AAC), a few were hypotriploid. AAC progenies were again backcrossed to O. sativa. BC2 progenies consisting of disomic or aneuploid individuals were examined for the presence of O. officinalis traits. Eleven different traits from O. officinalis were identified in these progenies. Segregation data in the subsequent generations suggest that these traits are monogenic in nature. Two of these genes — for resistance to BPH and WBPH — are of value in rice improvement. The extremely low recovery of recombinant progenies is in agreement with the very low amount of pairing between A and C genomes. Because of this restricted recombination, the genotype of the recurrent parent was reconstituted after two backcrosses only. Thus, the BC2 progenies look remarkably similar to O. sativa. Most of them are stable and fertile and also interfertile with other O. sativa breeding lines. Some of the BPH-and WBPH-resistant progenies are comparable in yield to the best O. sativa parents and are being evaluated as varietal possibilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号