首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rentsch D  Schmidt S  Tegeder M 《FEBS letters》2007,581(12):2281-2289
Nitrogen is an essential macronutrient for plant growth. Following uptake from the soil or assimilation within the plant, organic nitrogen compounds are transported between organelles, from cell to cell and over long distances in support of plant metabolism and development. These translocation processes require the function of integral membrane transporters. The review summarizes our current understanding of the molecular mechanisms of organic nitrogen transport processes, with a focus on amino acid, ureide and peptide transporters.  相似文献   

2.
3.
We examined food utilization in a community of aphidophagous hoverfly larvae (Diptera: Syrphidae and Chamaemyiidae) in open lands in an urban habitat in central Japan for 3 years. The community consisted of 17 hoverfly species feeding on 20 aphid species occurring on 14 species of dominant herbaceous plants. In terms of larval prey preference, the dominant eight species of hoverfly were categorized into three groups: a polyphagous ‘generalist’ group consisting of four species,Episyrphus balteatus, Betasyrphus serarius, Syrphus vitripennis andSphaerophoria sp.; an oligophagous ‘specialist’ group consisting of three species,Metasyrphus hakiensis, Dideoides latus andParagus hemorrhous; andLeucopis puncticornis, which showed a preference for two aphid species on the plantTorilis scabra. The prey aphids of the second group have behavioral or morphological defense mechanisms that are effective for preventing attacks by generalist hoverflies; two prey aphids are aggressive toward generalist predators and the others are protected by ant-attendance. The specialist hoverflies seem to be adapted to overcome these defense mechanisms. The prey ranges overlapped little between the generalist and the specialist groups, while those within the generalist group overlapped greatly.  相似文献   

4.
毛乌素沙地旱柳生长和生理特征对遮荫的反应   总被引:15,自引:3,他引:12  
在一个控制试验中,旱柳经历了全不遮荫、部分遮荫和全部遮荫处理.比较了全不遮荫枝、全部遮荫枝、部分遮荫阳生枝(阳生枝)和部分遮荫阴生枝(阴生枝)的生长和生理特征,结果表明:阳生枝和全部遮荫枝的叶出生率和死亡率分别大于全不遮荫枝和阴生枝;遮荫处理明显影响净光合速率和夜间呼吸速率;阳生枝的分枝生物量、总校长度、枝叶生物量和枝叶重比显著大于全不遮荫枝,而阴生枝的分枝数、分枝生物量、叶面积、叶生物量、基茎、总校长度、枝叶生物量和枝叶重比都显著小于全部遮荫枝.  相似文献   

5.
6.
7.
This study investigated the effects of competition between binding substrates (organic matter and iron oxide) and between metals (cadmium and copper), on the partitioning of sedimentary copper and its subsequent bioavailability to an aquatic plant. Organic matter and a synthesized iron oxide, ferrihydrite, were added singly and in combination to a series of sand sediments, which were then dosed with environmentally realistic concentrations of cadmium and copper and planted with rice,Oryza sativa. Organic matter controlled copper partitioning and bioavailability, whereas the synthetic ferrihydrite bound negligible amounts of either metal, even in the absence of organic matter. As organic matter concentrations increased, operationally-defined leachable copper decreased, organic-associated copper increased and the survival of rice plants improved in an approximately linear fashion. At a nominal starting copper concentration of 5.8 μg g dry wt−1, plant survival after four weeks averaged 0–8% in sediments without organic matter, 25% in a sediment containing 0.18% organic matter and 58% in a sediment containing 0.36% organic matter. These results suggest that organic-associated forms of copper are unavailable to plants, and that the operational definition of ‘leachable’ copper (extracted with dilute ammonium acetate) adequately represents the species of copper that is (are) available to plants. Our study using a well-characterized artificial sediment supports the copper fractionation patterns and correlations between copper partitioning and bioavailability reported from the heterogeneous, poorly characterized sediments of natural lake and river sediments.  相似文献   

8.
During the past two decades, antibodies, antibody derivatives and vaccines have been developed for therapeutic and diagnostic applications in human and veterinary medicine. Numerous species of dicot and monocot plants have been genetically modified to produce antibodies or vaccines, and a number of diverse transformation methods and strategies to enhance the accumulation of the pharmaceutical proteins are now available. Veterinary applications are the specific focus of this article, in particular for pathogenic viruses, bacteria and eukaryotic parasites. We focus on the advantages and remaining challenges of plant-based therapeutic proteins for veterinary applications with emphasis on expression platforms, technologies and economic considerations.  相似文献   

9.
Photosynthesis, water relations, chlorophyll fluorescence, and leaf reflectance were used to evaluate stress due to freshwater and saltwater flooding in the evergreen coastal shrub, Myrica cerifera, under controlled conditions. M. cerifera forms large monospecific thickets that facilitate scaling up from leaf-level measurements to the landscape. Based on physiological responses, stress began by day 3 in flooded plants treated with 5, 10, and 15 g L−1 salinity, as seen by significant decreases in stomatal conductance and net photosynthesis relative to control plants. Decreases in physiological measurements occurred by day 9 in freshwater flooded plants. Visible signs of stress occurred by day 5 for plants treated with 15 g L−1, day 8 for flooded plants exposed to 10 g L−1, and day 10 for those treated with 5 g L−1 salinity. Significant differences in light-adapted fluorescence yield () were observed by day 3 in plants flooded with 5, 10, and 15 g L−1 salinity and day 6 in freshwater flooded plants. Non-photochemical quenching (ΦNPQ) increased with decreasing . In comparison, statistical differences in dark-adapted fluorescence yield (Fv/Fm) were observed by day 12 in plants flooded with 5, 10, and 15 g L−1 salinity, well after visible signs of stress were apparent. Fluorescence parameters were successful at detecting and distinguishing both freshwater and saltwater flooding stress. A positive, linear correlation (r2 = 0.80) was observed between and the physiological reflectance index (PRI). Xanthophyll-cycle dependent energy dissipation appears to be the underlying mechanism in protecting photosystem II from excess energy in saltwater flooded plants. was useful in detecting stress-induced changes in the photosystem before any visible signs of damage were evident at the leaf-level. This parameter may be linked to hyperspectral reflectance data for rapid detection of stress at the canopy-level.  相似文献   

10.
The movement of gases within plants is crucial for species that live in flood-prone areas with limited soil oxygen. These plants adapt to hypoxia/anoxia not by using oxygen more efficiently, but by ensuring a steady oxygen supply to their cells. Wetland plants typically form gas-filled spaces (aerenchyma) in their tissues, providing a low-resistance pathway for gas movement between shoots and roots, especially when the shoots are above water, and the roots are submerged. Oxygen movement in plant roots is mainly through diffusion. However, in certain species, such as emergent and floating-leaved plants, pressurized flows can also facilitate the movement of gases within their stems and rhizomes. Three types of pressurized (convective) flows have been identified: humidity-induced pressurization (positive pressure), thermal osmosis (positive pressure with air flow against the heat gradient), and venturi-induced suction (negative pressure) caused by wind passing over broken culms. A clear diel variation in pressurized flows exists, with higher pressures and flows during the day and negligible pressures and flows during the night. This article discusses some key aspects of these mechanisms for oxygen movement.  相似文献   

11.
12.
Many studies have described the response mechanisms of plants to salinity and heat applied individually; however, under field conditions some abiotic stresses often occur simultaneously. Recent studies revealed that the response of plants to a combination of two different stresses is specific and cannot be deduced from the stresses applied individually. Here, we report on the response of tomato plants to a combination of heat and salt stress. Interestingly, and in contrast to the expected negative effect of the stress combination on plant growth, our results show that the combination of heat and salinity provides a significant level of protection to tomato plants from the effects of salinity. We observed a specific response of plants to the stress combination that included accumulation of glycine betaine and trehalose. The accumulation of these compounds under the stress combination was linked to the maintenance of a high K+ concentration and thus a lower Na+/K+ ratio, with a better performance of the cell water status and photosynthesis as compared with salinity alone. Our findings unravel new and unexpected aspects of the response of plants to stress combination and provide a proposed list of enzymatic targets for improving crop tolerance to the abiotic field environment.  相似文献   

13.
植物表型可塑性研究进展   总被引:11,自引:4,他引:7  
王姝  周道玮 《生态学报》2017,37(24):8161-8169
表型可塑性已成为生态进化发育生物学的核心概念,很大程度上由于植物可塑性研究的主要贡献,但人们仍远未完全了解表型可塑性的原因和结果。从整体角度理出表型可塑性研究发展的基本脉络,介绍研究内容、途径和简史,聚焦于几个主要方面的研究进展及发展方向。现代可塑性研究的兴盛始于关于可塑性的进化学重要性的一篇综述,从现象的描述、对其遗传基础和可塑性本身进化的讨论,发展到探索其背后的发育机制、植物生长与适应策略、生态学影响等。未来可塑性研究应在重新理解和评价表型可塑性及其适应性的基础上,更关注自然条件下环境因子和可塑响应的复杂性。表型可塑性的生态-进化学意义仍将是未来研究的重点。  相似文献   

14.
Latent antithrombin (L-AT), a heat-denatured form of native antithrombin (AT), is a potent inhibitor of pathological tumor angiogenesis. In the present study, we have investigated whether L-AT has comparable antiangiogenic effects on physiological angiogenesis of ovarian tissue. For this purpose, preovulatory follicles of Syrian golden hamsters were mechanically isolated and transplanted into dorsal skinfold chambers chronically implanted in L-AT- or AT-treated hamsters. Non-treated animals served as controls. Over 14 days after transplantation neovascularization of the follicular grafts was assessed in vivo by quantitative analysis of the newly developed microvascular network, its microvessel density, the diameter of the microvessels, their red blood cell velocity and volumetric blood flow as well as leukocyte-endothelial cell interaction using fluorescence microscopic techniques. In each group, all of the grafted follicles were able to induce angiogenesis. At day 3 after transplantation, sinusoidal sacculations and capillary sprouts could be observed, finally developing complete glomerulum-like microvascular networks within 5 to 7 days. Overall revascularization of grafted follicles did not differ between the groups studied. Interestingly, follicular grafts in L-AT- and AT-treated hamsters presented with higher values of microvessel diameters and volumetric blood flow, when compared to non-treated controls, which may be best interpreted as a reactive response to an increased release of vasoactive mediators. In conclusion, the present study demonstrates, that L-AT has no adverse effects on physiological angiogenesis of freely transplanted ovarian follicles. Thus, L-AT may be an effective drug in tumor therapy, which blocks tumor growth by selective suppression of tumor vascularization without affecting new vessel formation in the female reproductive system.  相似文献   

15.
This article examines the functional and clinical impact of time delays that arise in human physiological systems, especially control systems. An overview of the mathematical and physiological contexts for considering time delays will be illustrated, from the system level to cell level, by examining models that incorporate time delays. This examination will highlight how such delays in combination with other system structures and parameters influence system dynamics. Model analysis that reveals the influence of delays can also reveal related physiological effects which may have medical consequences and clinical applications.  相似文献   

16.
17.
DNA methylation is a major epigenetic marking mechanism regulating various biological functions in mammals and plant. The crucial role of DNA methylation has been observed in cellular differentiation, embryogenesis, genomic imprinting and X‐chromosome inactivation. Furthermore, DNA methylation takes part in disease susceptibility, responses to environmental stimuli and the biodiversity of natural populations. In plant, different types of environmental stress have demonstrated the ability to alter the archetype of DNA methylation through the genome, change gene expression and confer a mechanism of adaptation. DNA methylation dynamics are regulated by three processes de novo DNA methylation, methylation maintenance and DNA demethylation. These processes have their similarities and differences between mammals and plants. Furthermore, the dysregulation of DNA methylation dynamics represents one of the primary molecular mechanisms of developing diseases in mammals. This review discusses the regulation and dysregulation of DNA methylation in plants and mammals. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Summary Leaf longevity in 29 herbaceous plant species of Central Europe was studied by inspecting tagged leaves at weekly intervals. About half of the species are elements of the lowland meadow flora, the other half comprises a representative sample of species from the highest sites where vascular plants grow in the Alps. Shaded and water-stressed sites were avoided. Overall mean leaf longevity did not differ significantly between sites and amounted to 71±5 days at low and 68±4 days at high altitude. Leaf life spans ranged (with no clear altitudinal trend) from 41 to 95 days. Low-altitude forbs and grasses produced several leaf cohorts during their growth period, while most alpine species produced only one. Correlations were found between leaf duration and percent nitrogen content and carbon-cost/carbon-gain ratios, but not with leaf dry mass per unit leaf area and photosynthetic capacity alone. As leaf life spans increase, more C tends to be invested per unit CO2 uptake and less N is invested per unit invested C. Thus, mass relationships rather than area relationships seem to be linked to leaf life span in these species, suggesting that leaf duration is associated with properties other than the efficiency of light utilization (e.g. mechanical strength, herbivory or pathogen resistance). It seems that the explanations of leaf duration that have been developed for evergreen/deciduous plants and for plants along steep light gradients do not apply to the variable life spans in leaves of perennial herbaceous plants of open habitats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号