首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2007,42(10):1429-1435
In this study, decolorization of Remazol Brillant Blue Royal (RBBR) and Drimaren Blue CL-BR (DB) was investigated using three white rot fungi named as Pleurotus ostreatus (P. ostreatus), Coriolus versicolor (C. versicolor) and Funalia trogii (F. trogii). Decolorization studies were continued for 48 h under static conditions at 30 °C and pH 5.0. The degree of pH, dry mycelium weight (DMW), dye concentration, laccase activity and protein content were analyzed; the enzyme responsible for decolorization was detected for both dyes. Maximum and minimum decolorizations were obtained by F. trogii and P. ostreatus, respectively. Both dyes at all concentrations were found to be toxic for P. ostreatus growth, whereas only DB above 60 mg/L was found to be toxic for C. versicolor growth. Maximum and minimum laccase activities were detected in decolorization media of F. trogii and P. ostreatus, respectively. Results of activity staining following SDS-PAGE showed that laccase is the only enzyme that is responsible for decolorization of DB and RBBR.  相似文献   

2.
Oxidative transformation of tyrosol catalysed by Trametes trogii laccases in aqueous solution was investigated. LC–MS analysis shows that tyrosol was converted to its dimer. The enzymatic reaction was also investigated by 1H and 13C nuclear magnetic resonance, and the product formed was identified as a dimeric tetracyclic ketone. The bactericidal and fungicidal properties of tyrosol dimer were investigated using the NCCLS broth dilution and EN 1276 standard methods. High bactericidal and fungicidal effect of concentrations ranged between 1–0.5 g L−1 and 8–4 g L−1 were obtained. Dimer concentrations of 33 g L−1 and 66 g L−1 allowed reductions in viability higher than 5 log units per mL for Pseudomonas aeruginosa ATCC 15442, Escherichia coli ATCC 10536 and Enterococcus hirae ATCC 10541, Staphylococcus aureus ATCC 9144 respectively, within a contact time of 5 min under dirty conditions. The effect of this product on Tuta absoluta, a harmful pest of tomato in the world, was also evaluated. The results showed high insecticidal activity against this insect at a concentration of 16.5 g L−1. Germinability experiments on Lycopersicum esculetum were conducted in order to evaluate the potential of a laccase treatment in removing tyrosol phytotoxicity. The results showed that tyrosol dimer was nonphytotoxic. This study presents the first comprehensive results of biological characterisation of the product obtained by the action of laccase on tyrosol transformation with T. trogii laccases.  相似文献   

3.
《Process Biochemistry》2007,42(4):681-685
The potential application of dry biomass of a cyanobacterium Anacystis nidulans as a supplement in SSF for the production of laccase from Pleurotus ostreatus was evaluated. Experiments were carried out in solid culture using groundnut shell as a basic substrate supplemented with four independent nitrogen sources (ammonium sulphate, urea, yeast extract and dry powder of cyanobacteria). All the four supplements enhanced the enzyme yield, and yeast extract showed precedence over inorganic nitrogenous sources. However, when dry biomass of A. nidulans was used as an additive to groundnut shell (agricultural residues), it supported maximum cell growth (56.83 ± 5.56 mg/g dry substrate) and laccase production (49.21 ± 4.89 U/g dry substrate). Addition of 1 mM copper salt in the medium containing groundnut shell supplemented with yeast extract gave laccase activity of 32.64 ± 3.4 U/g dry substrate. When dry powder of cyanobacterial biomass was used as N-supplement, laccase production enhanced to 65.42 ± 6.48 U/g dry substrate. In addition to the enhancement to enzyme production inhibitory effects of high concentrations of copper was also diminished in the medium having dry cyanobacterial biomass. This study, forms the first report on the potential application of cyanobacterial biomass as an additive for production of laccase by Pleurotus ostraetus MTCC 1804 in solid state fermentation and has relevance in scale-up production of this fungal enzyme of commercial significance.  相似文献   

4.
This study presents a combined method to analyze extracellular fungal laccases using a new anti-laccase antibody together with the identification of tryptic laccase peptides by mass spectrometry (nanoLC–ESI–MS/MS). The polyclonal anti-laccase antibody LccCbr2 was raised against peptides designed from the copper binding region II of fungal laccases using in silico data obtained from GenBank database. As a consequence, detection requires denaturation of the enzymes due to the stable conformation of the copper binding region II. The specificity of the antibody was shown with denatured laccase Lcc1 of Coprinopsis cinerea and laccase of Hypholoma fasciculare. LccCbr2 detected amounts as low as 5 ng of highly purified laccase, indicating a possible use of the antibody for quantification of laccase proteins. Denatured extracellular laccases from culture supernatants of the basidiomycetes C. cinerea, H. fasciculare, Lentinula edodes, Mycena sp., Piriformospora indica, Pleurotus cornucopiae, Pleurotus ostreatus, Pycnoporus cinnabarinus, Trametes versicolor and furthermore the ascomycete Verpa conica were detected with apparent molecular masses between 60 and 70 kDa by LccCbr2. The identity of extracellular laccases from C. cinerea, H. fasciculare, P. ostreatus, P. cinnabarinus and T. versicolor were verified by tryptic peptides using nanoLC–ESI–MS/MS.  相似文献   

5.
This study examined the feasibility of Trametes versicolor to actively degrade atrazine (0.5 μg g?1) in non-sterile calcareous clay soil (Algarve, Portugal) microcosms for up to 24 weeks (20 °C), under low water availability (soil water potentials of ?0.7 and ?2.8 MPa). Soil respiration, laccase activity, and atrazine quantification by high-performance liquid chromatography (HPLC) were assessed. Respiration was significantly (p < 0.05) enhanced in soil containing the inoculant, particularly in the presence of atrazine, indicating that it remained metabolically active throughout the study. Furthermore, up to 98% and 85% (at ?0.7 and ?2.8 MPa, respectively) of atrazine was degraded in soil containing both the atrazine and the inoculant, compared to 96% and 50% in soil containing atrazine only. The contribution of T. versicolor to atrazine degradation was only significant (p < 0.005) under the driest soil treatment conditions. The strategies used for enhancing colonisation and biodegradation capabilities of the inoculant, as well as the selection of sawdust as carrier, were thus effective. However, there were no differences (p > 0.05) in quantified laccase activity in soil containing the inoculant and the control. Overall, this study demonstrated that T. versicolor was a strong candidate for atrazine bioremediation in soil with low moisture and organic matter contents, such as that found in semi-arid and Mediterranean-like ecosystems.  相似文献   

6.
A lab-scale anaerobic filter process was operated for the treatment of purified terephthalic acid (PTA) wastewater, and the influences of organic loading disturbances on the process performance were investigated. After about 15 month operation, the COD removal efficiency was maintained at 79% under the volumetric loading rate of 5.05 kg-COD/m3/d and the hydraulic retention time (HRT) of 50 h. Interestingly, this performance could be further enhanced over 85% by applying a step-increase/decrease of the HRT, which was mainly due to the increased p-toluate degradation. In the shock loading tests of four major pollutants (benzoate, acetate, terephthalate and p-toluate), it was found that the overall process performance was adversely affected by all the shock loadings, indicating that the syntrophic microbial consortium involved in the PTA wastewater treatment is highly sensitive to the organic loading disturbances. The complex inhibition effects of the benzoate and acetate on the terephthalate and p-toluate degradations were mainly responsible for this sensitivity.  相似文献   

7.
Cross-linked Sepharose beads were treated with laccase–TEMPO system for oxidation of the primary alcohol groups on the sugar moieties. Optimal activation conditions using Trametes versicolor laccase were at pH 5 and 22 °C, giving an aldehyde content of 55 μmol g−1 Sepharose with 28 units g−1 of laccase and 12.5 mM TEMPO. The activated Sepharose was used for immobilization of trypsin as model protein. Highest degree of immobilization was obtained at pH 10.5 but the activity yield was only 31% of that loaded on the gel. The yield of gel bound trypsin activity was increased to 76% (corresponding to about 43 U g−1 Sepharose) when the immobilization was performed in the presence of trypsin inhibitor, benzamidine. The immobilization yields were comparable to that obtained on the matrix activated using sodium periodate (containing 72 μmol aldehyde per g Sepharose). Recycling and storage of the immobilized trypsin preparations showed high stability of the enzyme bound to laccase–TEMPO activated gel.  相似文献   

8.
Extracellular laccase produced by the wood-rotting fungus Cerrena unicolor was immobilized covalently on the mesostructured siliceous cellular foams (MCFs) functionalised using various organosilanes with amine and glycidyl groups. The experiments indicated that laccase bound via glutaraldehyde to MCFs modified using 2-aminoethyl-3-aminopropyltrimethoxysilane remains very active. In the best biocatalyst activity was about 42,700 U mL?1 carrier (66,800 U mg?1 bound protein), and hence significantly higher than ever reported before. Optimisation of the immobilization procedure with respect to protein concentration, pH of coupling mixture and the enzyme purity afforded the biocatalyst with activity of about 90,980 U mL?1. For the best preparation, thermal- and pH-stability, and activity profiles were determined. Experiments carried out in a batch reactor showed that kcat/Km for immobilized enzyme (0.88 min?1 μM?1) was acceptable lower than the value obtained for the native enzyme (2.19 min?1 μM?1). Finally, potentials of the catalysts were tested in the decolourisation of indigo carmine without redox-mediators. Seven consecutive runs with the catalysts separated by microfiltration proved that adsorption of the dye onto the carrier and enzymatic oxidation contribute to the efficient decolourisation without loss of immobilized enzyme activity.  相似文献   

9.
In the present study laccase production potential of a photosynthetic, non nitrogen fixing cyanobacteria Arthrospira maxima (SAE-25780) was investigated for their probable use in synthetic dye decolorization which poses environmental pollution problem in aquatic bodies. A. maxima (SAE-25780) showed a constitutive production of laccase which increased up to 80% in the presence of inducer guaiacol. The optimal condition for laccase was 30 °C, 10 mM sucrose as a carbon source, 10 mM sodium nitrate as a nitrogen source, and 2 mM copper as metal activator. The partially purified laccase showed 84% and 49% decolorization potential for the two anthroquinonic dyes-Reactive Blue 4 and Remazol Brilliant Blue R, respectively (RBBR) within 96 h without any mediator. Therefore the laccase extracted from A. maxima (SAE-25780) can be used efficiently in bioremediation of synthetic dyes from paper, pulp and textile industries.  相似文献   

10.
The properties of Trematosphaeria mangrovei laccase enzyme purified on Sephadex G-100 column were investigated. SDS–PAGE of the purified laccase enzyme showed a single band at 48 kDa. The pure laccase reached its maximal activity at temperature 65 °C, pH 4.0 with Km equal 1.4 mM and Vmax equal 184.84 U/mg protein. The substrate specificity of the purified laccase was greatly influenced by the nature and position of the substituted groups in the phenolic ring. The pure laccase was tested with some metal ions and inhibitors, FeSO4 completely inhibited laccase enzyme and also highly affected by (NaN3) at a concentration of 1 mM. Amino acid composition of the pure enzyme was also determined. Carbohydrate content of purified laccase enzyme was 23% of the enzyme sample. The UV absorption spectra of the purified laccase enzyme showed a single peak at 260–280 nm.  相似文献   

11.
In the present paper, overproduction of laccase by microbe interaction was studied. When Trametes versicolor was co-cultured with Candida sp. HSD07A in submerged fermentation, laccase activity could be improved significantly and reached 10500 ± 160 U/l, 11.8 times more than that of the contrast group. Fermentation tests of the yeast indicated that it could produce amylase and cellulase, but couldn’t excrete laccase and the overproductive laccase was produced by T. versicolor; the interaction mechanism between T. versicolor and Candida sp. HSD07A was investigated and the results showed that amylase and cellulose could hydrolyze cell walls of T. versicolor; however, the degree of hydrolysis was at a very low level, could not lead to overproduction of laccase; glucose starvation state made by the yeast was the real reason why T. versicolor could overproduce laccase; moreover, this study also proved that making glucose starvation using the yeast was a novel and effective method.  相似文献   

12.
A highly efficient laccase-producing fungus was isolated from soil and identified as Coltricia perennis SKU0322 by its morphology and by comparison of its internal transcribed spacer (ITS) rDNA gene sequence. Extracellular laccase (Cplac) from C. perennis was purified to homogeneity by anion-exchange and gel filtration chromatography. Cplac is a monomeric glycoprotein with 12% carbohydrate content and a molecular mass of 66 kDa determined by polyacrylamide-gel electrophoresis. Ultraviolet-visible absorption spectroscopy observed type 1 and type 3 copper signals from Cplac. The enzyme acted optimally at pH 3–4 and 75 °C. Its optimal activity was with 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS), it also oxidized various lignin-related phenols. The enzyme was characterized as a multi-copper blue laccase by its substrate specificity and internal amino acid sequence. It showed a higher catalytic efficiency towards ABTS (kcat/Km = 18.5 s?1 μM?1) and 2,6-dimethoxyphenol (kcat/Km = 13.9 s?1 μM?1) than any other reported laccase. Its high stability and catalytic efficiency suggest its suitability for industrial applications: it detoxified phenolic compounds in acid-pretreated rice straw and enhanced saccharification yield.  相似文献   

13.
PurposeAngiogenesis, a multistep process that results in new blood vessel formation from preexisting vasculature is essential for both the growth of solid tumour and for metastasis. Stimulation of vascular endothelial growth factor receptor (VEGFR), a transmembrane glycoprotein, results in mitogenesis. Within this family of receptors, VEGFR 2/kinase-insert-domain containing receptor appears to be principally upregulated during tumorigenesis. The aim of this study was to determine the expression of VEGFR-2/kinase-insert-domain containing receptor (KDR) and its correlation with angiotensin receptor type 1 (AT1-R) and clinical factors in endometrial carcinoma.MethodsThe expression of KDR and AT1-R was studied in endometrial carcinoma and normal endometrium by Real-time RT-PCR and Western blot analysis in 136 samples. The expression profile was correlated with the clinicopathological characteristics of endometrial adenocarcinoma.ResultsWe noted a significant correlation between the expression of KDR and AT1-R in tumour grade G1, G2 and G3 (Rs = 0.50; p = 0.002, Rs = 0.69; p = 0.0001, Rs = 0.52; p = 0.005, respectively). In stage I and stage II carcinoma, a significant correlation was also found between the expression of KDR and AT1-R (Rs = 0.70, p = 0.0001, Rs = 0.67; p = 0.001, respectively). Moreover significant correlation was observed between both KDR and AT1-R in tissue with different myometrial invasion (Rs = 0.54, p = 0.0001, Rs = 0.68; p = 0.0001; respectively for tumours with invasion into the inner half and invasion into the outer half).ConclusionsBasing on received correlation between AT1-R and KDR expression and previous results we speculate that angiotensin through AT1-R modulates KDR expression and thus have influence on local VEGF level. However, further studies are required to clarify the biological interaction between KDR, AT1-R and other hormonal regulators in endometrial carcinoma.  相似文献   

14.
Loblolly pine kraft pulp was bleached in a totally chlorine-free sequence that involved treatment with culture supernatants from the white-rot fungus Trametes trogii followed by a peroxide stage. The whole process was performed at 28 °C, and did not require mediator addition in the enzymatic stage. Different operating conditions in the peroxide stage (pH, peroxide concentration and treatment time), were tested by using response surface methodology based on a Doehlert experimental design, in order to describe their effects and normalize a biobleaching protocol. The results showed that all three independent variables had significant effect on the luminance (L*) and Chroma (C*) of the enzyme-treated pulp. Best results were obtained after 1 h of enzyme incubation (352 U laccase, 2 U Mn-peroxidase per g of oven-dry pulp), followed by 96 h treatment with 2.5% hydrogen peroxide in sodium succinate buffer pH 6 (5% consistency). We obtained a noteworthy increase in L* = 94.45 (compared with 94.5 of the white reference standard (titanium oxide), 69.94 of the initial pulp, and 83.11 of the peroxide-bleached control), a decrease in C* (9.85), with minor pulp yield loss (less than 5%), under essentially mild conditions, using a low-cost source of enzyme.  相似文献   

15.
《Phytomedicine》2014,21(7):942-945
Bakuchiol was an active antifungal compound isolated from Psoraleae Fructus by means of bioassay-guided fractionation in our previous study. The present work aimed to investigate the underlying mechanisms and the therapeutic effect of bakuchiol in Trichophyton mentagrophytes-induced tinea pedis. After exposure to bakuchiol at 0.25-fold, 0.5-fold and 1-fold of minimum inhibitory concentration (MIC) (3.91 μg/ml) for 24 h, the fungal conidia of T. mentagrophytes demonstrated a significant dose-dependent increase in membrane permeability. Moreover, bakuchiol at 1-fold MIC elicited a 187% elevation in reactive oxygen species (ROS) level in fungal cells after a 3-h incubation. However, bakuchiol did not induce DNA fragmentation. In a guinea pig model of tinea pedis, bakuchiol at 1%, 5% or 10% (w/w) concentration in aqueous cream could significantly reduce the fungal burden of infected feet (p < 0.01–0.05). In conclusion, this is the first report to demonstrate that bakuchiol is effective in relieving tinea pedis and in inhibiting the growth of the dermatophyte T. mentagrophytes by increasing fungal membrane permeability and ROS generation, but not via induction of DNA fragmentation.  相似文献   

16.
17.
《Process Biochemistry》2014,49(7):1196-1204
Laccase from a tree legume, Leucaena leucocephala, was purified to homogeneity using a quick two-step procedure: alginate bead entrapment and celite adsorption chromatography. Laccase was purified 110.6-fold with an overall recovery of 51.0% and a specific activity of 58.5 units/mg. The purified laccase was found to be a heterodimer (∼220 kDa), containing two subunits of 100 and 120 kDa. The affinity of laccase was found to be highest for catechol and lowest for hydroquinone, however, highest Kcat and Kcat/Km were obtained for hydroquinone. Purified laccase exhibited pH and temperature optima of 7.0 and 80 °C, respectively. Mn2+, Cd2+, Fe2+, Cu2+ and Na+ activated laccase while Ca2+ treatment increased laccase activity up to 3 mM, beyond which it inhibited laccase. Co2+, Hg2+, DTT, SDS and EDTA showed an inhibition of laccase activity. The Leucaena laccase was found to be fairly tolerant to organic solvents; upon exposure for 1 h individually to 50% (v/v) each of ethanol, DMF, DMSO and benzene, more than 50% of the activity was retained, while in the presence of 50% (v/v) each of methanol, isopropanol and chloroform, a 40% residual activity was observed. The purified laccase efficiently decolorized synthetic dyes such as indigocarmine and congo red in the absence of any redox mediator.  相似文献   

18.
19.
A new laccase from Shiraia sp.SUPER-H168 was purified by ion exchange column chromatography and gel permeation chromatography and the apparent molecular mass of this enzyme was 70.78 kDa, as determined by MALDI/TOF-MS. The optimum pH value of the purified laccase was 4, 6, 5.5 and 3 with 2,6-dimethoxyphenol (DMP), syringaldazine, guaiacol and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) as substrates, respectively. The optimum temperature of the purified laccase was 50 °C using DMP, syringaldazine and guaiacol as substrates, but 60 °C for ABTS. Inhibitors and metal ions of SDS, NaN3, Ag+ and Fe3+ showed inhibition on enzyme activity of 10.22%, 7.86%, 8.13% and 67.50%, respectively. Fe2+ completely inhibited the purified laccase. The Kcat/Km values of the purified laccase toward DMP, ABTS guaiacol and syringaldazine were 3.99 × 106, 3.74 × 107, 8.01 × 104 and 2.35 × 107 mol?1 L S?1, respectively. The N-terminal amino acid sequence of the purified laccase showed 36.4% similarity to Pleurotus ostrestus. Approximately 66% of the Acid Blue 129 (100 mg L?1) was decolorized by 2.5 U of the purified laccase after a 120 min incubation at 50 °C. Acid Red 1 (20 mg L?1) and Reactive Black 5 (50 mg L?1) were decolorized by the purified laccase after the addition of Acid Blue 129 (100 mg L?1).  相似文献   

20.
A putative laccase gene was cloned from Shigella dysenteriae W202 and expressed in Escherichia coli as a soluble fusion protein with high yield. The purified product (Wlac) was characterized as the CueO-like laccase from E. coli, a monomer of molecular mass 55 kDa, with a maximum activity of 24.4 U/mg (Km = 0.086) and a pH optimum of 2.5, in a standard assay using ABTS (2,2′-azino-di(3-ethyl-benzthiazoline-6-sulfonate) as the substrate. Activity was stable at 0–25 °C but inhibited above 40 °C. Purified Wlac was completely inhibited by 200 mM EDTA and partially by 32 mM SDS, 50 mM NaN3 and 60 mM thioglycolic acid. Activity was stimulated by Cu2+; other metal ions had only slight or negative effects. Two mutated variants, WlacS and WlacD, were obtained by substituting Glu 106 with Phe 106, and adding a deletion of an α-helix domain (from Leu 351 to Gly 378). WlacS had a 2.2-fold (52.9 U/mg) and WlacD a 3.5-fold (85.1 U/mg) higher enzyme activity than the wild-type laccase and WlacD showed greater thermostability at higher temperatures. Sce VMA intein-associated fusion proteins maintained ~80% of total enzyme activity. Thus, deletion and site-directed mutagenesis of laccases are capable of promoting both enzymatic activity and thermostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号