首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP synthase (F(0)F(1)) is made of two motors, a proton-driven motor (F(0)) and an ATP-driven motor (F(1)), connected by a common rotary shaft, and catalyzes proton flow-driven ATP synthesis and ATP-driven proton pumping. In F(1), the central γ subunit rotates inside the α(3)β(3) ring. Here we report structural features of F(1) responsible for torque generation and the catalytic ability of the low-torque F(0)F(1). (i) Deletion of one or two turns in the α-helix in the C-terminal domain of catalytic β subunit at the rotor/stator contact region generates mutant F(1)s, termed F(1)(1/2)s, that rotate with about half of the normal torque. This helix would support the helix-loop-helix structure acting as a solid "pushrod" to push the rotor γ subunit, but the short helix in F(1)(1/2)s would fail to accomplish this task. (ii) Three different half-torque F(0)F(1)(1/2)s were purified and reconstituted into proteoliposomes. They carry out ATP-driven proton pumping and build up the same small transmembrane ΔpH, indicating that the final ΔpH is directly related to the amount of torque. (iii) The half-torque F(0)F(1)(1/2)s can catalyze ATP synthesis, although slowly. The rate of synthesis varies widely among the three F(0)F(1)(1/2)s, which suggests that the rate reflects subtle conformational variations of individual mutants.  相似文献   

2.
Monoclonal and polyclonal antibodies directed against peptides of F1-ATPase or F1F0-ATPase synthase provide new and efficient tools to study structure-function relationships and mechanisms of such complex membrane enzymes. This review summarizes the main results obtained using this approach. Antibodies have permitted the determination of the nature of subunits involved in the complex, their stoichiometry, their organization, neighboring interactions, and vectorial distribution within or on either face of the membrane. Moreover, in a few cases, amino acid sequences exposed on a face of the membrane or buried inside the complex have been identified. Antibodies are very useful for detecting the role of each subunit, especially for those subunits which appear to have no direct involvement in the catalytic mechanism. Concerning the mechanisms, the availability of monoclonal antibodies which inhibit (or activate) ATP hydrolysis or ATP synthesis, which modify nucleotide binding or regulation of activities, which detect specific conformations, etc. brings many new ways of understanding the precise functions. The specific recognition by monoclonal antibodies on the subunit of epitopes in the proximity of, or in the catalytic site, gives information on this site. The use of anti- monoclonal antibodies has shown asymmetry of in the complex as already shown for . In addition, the involvement of with respect to nucleotide site cooperativity has been detected. Finally, the formation of F1F0-antibody complexes of various masses, seems to exclude the functional rotation of F1 around F0 during catalysis.Abbreviations IF1 natural protein inhibitor of the ATPase-ATP synthase - OSCP oligomycin sensitivity-conferring protein - DCCD dicyclohexylcarbodiimide - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoreses - F1 F1-ATPase, coupling factor F1 of ATPase - F1F0 F1F0-ATP synthase, ATPase-ATP synthase complex  相似文献   

3.
4.
A stator is proposed as necessary to prevent futile rotation of the F(1) catalytic sector of mitochondrial ATP synthase (mtATPase) during periods of ATP synthesis or ATP hydrolysis. Although the second stalk of mtATPase is generally believed to fulfil the role of a stator capable of withstanding the stress produced by rotation of the central rotor, there is little evidence to directly support this view. We show that interaction between two candidate proteins of the second stalk, OSCP and subunit b, fused at their C-termini to GFP variants and assembled into functional mtATPase can be monitored in mitochondria using fluorescence resonance energy transfer (FRET). Substitution of native OSCP with a variant containing a glycine 166 to asparagine (G166N) substitution yielded a metastable complex. In contrast to the enzyme containing native OSCP, FRET could be irreversibly lowered for the enzyme containing G166N at a rate that correlated closely with the rate of enzyme activity (ATP hydrolysis). The non-hydrolysable ATP analogue, AMP-PCP did not have this effect. We conclude that two candidate proteins of the stator stalk, OSCP and b, are subject to stresses during enzyme catalytic activity commensurate with their role as a part of a stator stalk.  相似文献   

5.
The rotation of an asymmetric core of subunits in F0F1-ATP synthases has been proposed as a means of coupling the exergonic transport of protons through F0 to the endergonic conformational changes in F1 required for substrate binding and product release. Here we review earlier evidence both for and against subunit rotation and then discuss our most recent studies using reversible intersubunit disulfide cross-links to test for rotation. We conclude that the subunit of F1 rotates relative to the surrounding catalytic subunits during catalytic turnover by both soluble F1 and membrane-bound F0F1. Furthermore, the inhibition of this rotation by the modification of F0 with DCCD suggests that rotation in F1 is obligatorily coupled to rotation in F0 as an integral part of the coupling mechanism.  相似文献   

6.
The reaction of histone F1 with tetranitromethane was used to study the environment of the single tyrosine residue in the molecule. It was found that at a 10-fold molar excess of tetranitromethane over tyrosine approx. 40 min were needed to convert 85% of the tyrosine residues to nitrotyrosine. The rate and extent of nitration of F1 in dilute salt solutions was used as a reference against which the rate and extent of nitration under conditions known to affect the conformation of F1 was measured. In 1.0 M NaCl solutions the rate of nitration decreased, suggesting that the presence of salt may cause a conformational change in the tyrosine containing region of the histone. When the histone is complexed with polyanions such as DNA, RNA or poly-L-glutamic acid the accessibility of the tyrosine to nitration is markedly reduced. The results indicate that upon association with polyanions the non-cationic, tyrosine-containing, region in F1 undergoes a conformational change or alternatively, this tyrosine containing region is tightly associated with the polyanion.  相似文献   

7.
The F1F0 complex of Paracoccus denitrificans (PdF1F0) is the fastest ATP synthase but the slowest ATPase. Sulfite exerts maximal activation of the PdF1F0-ATPase (Pacheco-Moisés, F., García, J. J., Rodríguez-Zavala, J. S., and Moreno-Sánchez, R. (2000). Eur. J. Biochem. 267, 993–1000) but its effect on the PdF1F0-ATP synthase activity remains unknown. Therefore, we studied the effect of sulfite on ATP synthesis and 32Pi ATP exchange reactions of inside-out membrane vesicles of P. denitrificans. Sulfite inhibited both reactions under conditions of maximal pH and normal sensitivity to dicyclohexylcarbodiimide. Sulfite increased by 10- and 5-fold the K 0.5 for Mg2+-ADP and Pi during ATP synthesis, respectively, and by 4-fold the IC50 of Mg2+-ADP for inhibition of the PdF1F0-ATPase activity. Thus, sulfite exerts opposite effects on the forward and reverse functioning of the PdF1F0 complex. These effects are not due to membrane or PdF1F0 uncoupling. Kinetic and structural modifications that could account for these results are discussed.  相似文献   

8.
The stator in F(1)F(0)-ATP synthase resists strain generated by rotor torque. In Escherichia coli, the b(2)delta subunit complex comprises the stator, bound to subunit a in F(0) and to the alpha(3)beta(3) hexagon of F(1). To quantitatively characterize binding of b subunit to the F(1) alpha(3)beta(3) hexagon, we developed fluorimetric assays in which wild-type F(1), or F(1) enzymes containing introduced Trp residues, were titrated with a soluble portion of the b subunit (b(ST34-156)). With five different F(1) enzymes, K(d)(b(ST34-156)) ranged from 91 to 157 nm. Binding was strongly Mg(2+)-dependent; in EDTA buffer, K(d)(b(ST34-156)) was increased to 1.25 microm. The addition of the cytoplasmic portion of the b subunit increases the affinity of binding of delta subunit to delta-depleted F(1). The apparent K(d)(b(ST34-156)) for this effect was increased from 150 nm in Mg(2+) buffer to 1.36 microm in EDTA buffer. This work demonstrates quantitatively how binding of the cytoplasmic portion of the b subunit directly to F(1) contributes to stator resistance and emphasizes the importance of Mg(2+) in stator interactions.  相似文献   

9.
Previously identified mutations in subunits a and b of the F0 sector of the F1F0-ATPase from Escherichia coli are further characterized by isolating detergent-solubilized, partially purified F1F0 complexes from cells bearing these mutations. The composition of the various F1F0 complexes was judged by quantitating the amount of each subunit present in the detergent-solubilized preparations. The composition of the F0 sectors containing altered polypeptides was determined by quantitating the F0 subunits that were immunoprecipitated by antibodies directed against the F1 portion. In this way, the relative amounts of F0 subunits (a, b, c) which survived the isolation procedure bound to F1 were determined for each mutation. This analysis indicates that both missense mutations in subunit a (aser206----leu and ahis245----tyr) resulted in the isolation of F1F0 complexes with normal subunit composition. The nonsense mutation in subunit a (atyr235----end) resulted in isolation of a complex containing the b and c subunits. The bgly131----asp mutation in the b subunit results in an F0 complex which does not assemble or survive the isolation. The isolated F1F0 complex containing the mutation bgly9----asp in the b subunit was defective in two regards: first, a reduction in F1 content relative to F0 and second, the absence of the a subunit. Immunoprecipitations of this preparation demonstrated that F1 interacts with both c and mutant b subunits. A strain carrying the mutation, bgly9----asp, and the compensating suppressor mutation apro240----leu (previously shown to be partially unc+) yielded an F1F0 ++ complex that remained partially defective in F1 binding to F0 but normal in the subunit composition of the F0 sector. The assembly, structure, and function of the F1F0-ATPase is discussed.  相似文献   

10.
11.
12.
RB-E2F1     
《Autophagy》2013,9(8):1216-1217
  相似文献   

13.
Synthesis of ATP from ADP and phosphate, catalyzed by F(0)F(1)-ATP synthases, is the most abundant physiological reaction in almost any cell. F(0)F(1)-ATP synthases are membrane-bound enzymes that use the energy derived from an electrochemical proton gradient for ATP formation. We incorporated double-labeled F(0)F(1)-ATP synthases from Escherichia coli into liposomes and measured single-molecule fluorescence resonance energy transfer (FRET) during ATP synthesis and hydrolysis. The gamma subunit rotates stepwise during proton transport-powered ATP synthesis, showing three distinct distances to the b subunits in repeating sequences. The average durations of these steps correspond to catalytic turnover times upon ATP synthesis as well as ATP hydrolysis. The direction of rotation during ATP synthesis is opposite to that of ATP hydrolysis.  相似文献   

14.
The regulation of membrane-bound proton F0F1ATPase by the protonmotive force and nucleotides was studied in yeastmitochondria. Activation occurred in whole mitochondria and the ATPaseactivity was measured just after disrupting the membranes with Triton X-100.Deactivation occurred either in whole mitochondria uncoupled with FCCP, or indisrupted membranes. No effect of Triton X-100 on the ATPase was observed,except a slow reactivation observed only in the absence of MgADP. BothAMPPNP and ATP increased the ATPase deactivation rate, thus indicating thatoccupancy of nucleotidic sites by ATP is more decisive than catalyticturnover for this process. ADP was found to stimulate the energy-dependentATPase activation. ATPase deactivated at the same rate in uncoupled anddisrupted mitochondria. This suggests that deactivation is not controlled byrebinding of some soluble factor, like IF1, but rather by the conversion ofthe F1.IF1 complex into an inactive form.  相似文献   

15.
In order to observe mechanically driven proton flux in F(0)F(1)-ATPase coupled with artificial driven rotation on F(1) simultaneously, a double channel observation system was established. An artificial delta-free F(0)F(1)-ATPase was constructed with alpha(3), beta(3), epsilon, gamma, and c(n) subunits as rotator and a, b(2) as stator. The chromatophore was immobilized on the glass surface through biotin-streptavidin-biotin system, and the magnetic bead was attached to the beta subunit of delta-free F(0)F(1)-ATPase. The mechanically driven proton flux was indicated by the fluorescence intensity change of fluorescein reference standard (F1300) and recorded by a cooled digital CCD camera. The mechanochemical coupling stoichiometry between F(0) and F(1) is about 4.15 +/- 0.2H(+)/rev when the magnetic field rotated at 0.33 Hz (rps).  相似文献   

16.
The structure of the dimeric ATP synthase from yeast mitochondria was analyzed by transmission electron microscopy and single particle image analysis. In addition to the previously reported side views of the dimer, top view and intermediate projections served to resolve the arrangement of the rotary c10 ring and the other stator subunits at the F0-F0 dimeric interface. A three-dimensional reconstruction of the complex was calculated from a data set of 9960 molecular images at a resolution of 27 Å. The structural model of the dimeric ATP synthase shows the two monomers arranged at an angle of ∼45°, consistent with our earlier analysis of the ATP synthase from bovine heart mitochondria (Minauro-Sanmiguel, F., Wilkens, S., and Garcia, J. J. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 12356–12358). In the ATP synthase dimer, the two peripheral stalks are located near the F1-F1 interface but are turned away from each other so that they are not in contact. Based on the three-dimensional reconstruction, a model of how dimeric ATP synthase assembles to form the higher order oligomeric structures that are required for mitochondrial cristae biogenesis is discussed.  相似文献   

17.
Inter-subunit rotation and elastic power transmission in F0F1-ATPase   总被引:3,自引:0,他引:3  
ATP synthase (F-ATPase) produces ATP at the expense of ion-motive force or vice versa. It is composed from two motor/generators, the ATPase (F1) and the ion translocator (F0), which both are rotary steppers. They are mechanically coupled by 360 degrees rotary motion of subunits against each other. The rotor, subunits gamma(epsilon)C10-14, moves against the stator, (alphabeta)3delta(ab2). The enzyme copes with symmetry mismatch (C3 versus C10-14) between its two motors, and it operates robustly in chimeric constructs or with drastically modified subunits. We scrutinized whether an elastic power transmission accounts for these properties. We used the curvature of fluorescent actin filaments, attached to the rotating c ring, as a spring balance (flexural rigidity of 8.10(-26) N x m2) to gauge the angular profile of the output torque at F0 during ATP hydrolysis by F1. The large average output torque (56 pN nm) proved the absence of any slip. Angular variations of the torque were small, so that the output free energy of the loaded enzyme decayed almost linearly over the angular reaction coordinate. Considering the three-fold stepping and high activation barrier (>40 kJ/mol) of the driving motor (F1) itself, the rather constant output torque seen by F0 implied a soft elastic power transmission between F1 and F0. It is considered as essential, not only for the robust operation of this ubiquitous enzyme under symmetry mismatch, but also for a high turnover rate under load of the two counteracting and stepping motors/generators.  相似文献   

18.
Bovine heart submitochondrial particles depleted of F1, OSCP (oligomycin sensitivity-conferring protein), and F6 require the presence of cations to rebind F1. Among the cations tested, NH4+, Cs+, and Rb+ were most efficient, followed by K+, Na+, Li+, Ca2+, and Mg2+. The extent of F1 binding approached that occurring upon supplementation with F6 and/or OSCP, and was similar to the F1 content of particles prior to depletion. In the absence of cations, F6 and/or OSCP were ineffective in promoting the binding of F1 to the depleted particles. The F1 bound to the particles in the presence of cations alone was completely insensitive to oligomycin. It remained bound to the particles after removal of the cation, and could be rendered partially (approximately 50%) or maximally (less than 80%) oligomycin-sensitive upon the subsequent addition of OSCP or of F6 and OSCP, respectively. The surface potential of the particles, as determined by microelectrophoresis, was screened by all cations tested, regardless of their ability to promote the binding of F1; this was in contrast to earlier findings with particles depleted of F1 only, where the ability of cations to promote the rebinding of F1 paralleled their efficiency to neutralize the surface charge of the particle membrane. It is concluded that the effect of cations on the binding of F1 to F1-, F6-, and OSCP-depleted particles is due to a specific interaction of the cations with certain segments or components of the membrane. The results suggest the existence of a binding site for F1 on F0 in addition to the binding site(s) provided by F6 and OSCP.  相似文献   

19.
The presence of F3-F2a1 dimers and F1 oligomers in chromatin.   总被引:9,自引:0,他引:9  
The oligomeric structure of histones in nuclei and chromatin has been studied by crosslinking nuclei and chromatin with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. Crosslinked histones were detected as new high molecular weight components on SDS gels, and the protomers of the crosslinked histones were identified by their characteristic 125I-fingerprints. The results show that a considerable portion of histones F3 and F2a1 exist in nuclei and chromatin as an F3-F2a1 dimer. Evidence is presented that histone F1 probably exists in chromatin as large oligomers.  相似文献   

20.
In order to identify the subunits constituting the rat liver F0F1-ATP synthase, the complex prepared by selective extraction from the mitochondrial membranes with a detergent followed by purification on a sucrose gradient has been compared to that obtained by immunoprecipitation with an anti-F1 serum. The subunits present in both preparations that are assumed to be authentic components of the complex have been identified. The results show that the total rat liver F0F1-ATP synthase contains at least 13 different proteins, seven of which can be attributed to F0. The following F0 subunits have been identified: the subunit b (migrating as a 24 kDa band in SDS-PAGE), the oligomycin-sensitivity-conferring protein (20 kDa), and F6 (9 kDa) that have N-terminal sequences homologous to the beef-heart ones; the mtDNA encoded subunits 6 (20 kDa) and 8 (less than 7 kDa) that can be synthesized in isolated mitochondria; an additional 20 kDa protein that could be equivalent to the beef heart subunit d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号