首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The adeno-associated virus (AAV) genome encodes four Rep proteins, all of which contain an SF3 helicase domain. The larger Rep proteins, Rep78 and Rep68, are required for viral replication, whereas Rep40 and Rep52 are needed to package AAV genomes into preformed capsids; these smaller proteins are missing the site-specific DNA-binding and endonuclease domain found in Rep68/78. Other viral SF3 helicases, such as the simian virus 40 large T antigen and the papillomavirus E1 protein, are active as hexameric assemblies. However, Rep40 and Rep52 have not been observed to form stable oligomers on their own or with DNA, suggesting that important determinants of helicase multimerization lie outside the helicase domain. Here, we report that when the 23-residue linker that connects the endonuclease and helicase domains is appended to the adeno-associated virus type 5 (AAV5) helicase domain, the resulting protein forms discrete complexes on DNA consistent with single or double hexamers. The formation of these complexes does not require the Rep binding site sequence, nor is it nucleotide dependent. These complexes have stimulated ATPase and helicase activities relative to the helicase domain alone, indicating that they are catalytically relevant, a result supported by negative-stain electron microscopy images of hexameric rings. Similarly, the addition of the linker region to the AAV5 Rep endonuclease domain also confers on it the ability to bind and multimerize on nonspecific double-stranded DNA. We conclude that the linker is likely a key contributor to Rep68/78 DNA-dependent oligomerization and may play an important role in mediating Rep68/78's conversion from site-specific DNA binding to nonspecific DNA unwinding.  相似文献   

3.
Rep68 is a multifunctional protein of the adeno-associated virus (AAV), a parvovirus that is mostly known for its promise as a gene therapy vector. In addition to its role as initiator in viral DNA replication, Rep68 is essential for site-specific integration of the AAV genome into human chromosome 19. Rep68 is a member of the superfamily 3 (SF3) helicases, along with the well-studied initiator proteins simian virus 40 large T antigen (SV40-LTag) and bovine papillomavirus (BPV) E1. Structurally, SF3 helicases share two domains, a DNA origin interaction domain (OID) and an AAA+ motor domain. The AAA+ motor domain is also a structural feature of cellular initiators and it functions as a platform for initiator oligomerization. Here, we studied Rep68 oligomerization in vitro in the presence of different DNA substrates using a variety of biophysical techniques and cryo-EM. We found that a dsDNA region of the AAV origin promotes the formation of a complex containing five Rep68 subunits. Interestingly, non-specific ssDNA promotes the formation of a double-ring Rep68, a known structure formed by the LTag and E1 initiator proteins. The Rep68 ring symmetry is 8-fold, thus differing from the hexameric rings formed by the other SF3 helicases. However, similiar to LTag and E1, Rep68 rings are oriented head-to-head, suggesting that DNA unwinding by the complex proceeds bidirectionally. This novel Rep68 quaternary structure requires both the DNA binding and AAA+ domains, indicating cooperativity between these regions during oligomerization in vitro. Our study clearly demonstrates that Rep68 can oligomerize through two distinct oligomerization pathways, which depend on both the DNA structure and cooperativity of Rep68 domains. These findings provide insight into the dynamics and oligomeric adaptability of Rep68 and serve as a step towards understanding the role of this multifunctional protein during AAV DNA replication and site-specific integration.  相似文献   

4.
Adeno-associated virus (AAV) is the only eukaryotic virus with the property of establishing latency by integrating site-specifically into the human genome. The integration site known as AAVS1 is located in chromosome 19 and contains multiple GCTC repeats that are recognized by the AAV non-structural Rep proteins. These proteins are multifunctional, with an N-terminal origin-binding domain (OBD) and a helicase domain joined together by a short linker. As a first step to understand the process of site-specific integration, we proceeded to characterize the recognition and assembly of Rep68 onto the AAVS1 site. We first determined the x-ray structure of AAV-2 Rep68 OBD in complex with the AAVS1 DNA site. Specificity is achieved through the interaction of a glycine-rich loop that binds the major groove and an α-helix that interacts with a downstream minor groove on the same face of the DNA. Although the structure shows a complex with three OBD molecules bound to the AAVS1 site, we show by using analytical centrifugation and electron microscopy that the full-length Rep68 forms a heptameric complex. Moreover, we determined that a minimum of two direct repeats is required to form a stable complex and to melt DNA. Finally, we show that although the individual domains bind DNA poorly, complex assembly requires oligomerization and cooperation between its OBD, helicase, and the linker domains.  相似文献   

5.
We report here the crystal structure of an SF3 DNA helicase, Rep40, from adeno-associated virus 2 (AAV2). We show that AAV2 Rep40 is structurally more similar to the AAA(+) class of cellular proteins than to DNA helicases from other superfamilies. The structure delineates the expected Walker A and B motifs, but also reveals an unexpected "arginine finger" that directly implies the requirement of Rep40 oligomerization for ATP hydrolysis and helicase activity. Further, the Rep40 AAA(+) domain is novel in that it is unimodular as opposed to bimodular. Altogether, the structural connection to AAA(+) proteins defines the general architecture of SF3 DNA helicases, a family that includes simian virus 40 (SV40) T antigen, as well as provides a conceptual framework for understanding the role of Rep proteins during AAV DNA replication, packaging, and site-specific integration.  相似文献   

6.
The Rep78 and Rep68 proteins of adeno-associated virus type 2 (AAV) are multifunctional proteins which are required for viral replication, regulation of AAV promoters, and preferential integration of the AAV genome into a region of human chromosome 19. These proteins bind the hairpin structures formed by the AAV inverted terminal repeat (ITR) origins of replication, make site- and strand-specific endonuclease cuts within the AAV ITRs, and display nucleoside triphosphate-dependent helicase activities. Additionally, several mutant Rep proteins display negative dominance in helicase and/or endonuclease assays when they are mixed with wild-type Rep78 or Rep68, suggesting that multimerization may be required for the helicase and endonuclease functions. Using overlap extension PCR mutagenesis, we introduced mutations within clusters of charged residues throughout the Rep68 moiety of a maltose binding protein-Rep68 fusion protein (MBP-Rep68Δ) expressed in Escherichia coli cells. Several mutations disrupted the endonuclease and helicase activities; however, only one amino-terminal-charge cluster mutant protein (D40A-D42A-D44A) completely lost AAV hairpin DNA binding activity. Charge cluster mutations within two other regions abolished both endonuclease and helicase activities. One region contains a predicted alpha-helical structure (amino acids 371 to 393), and the other contains a putative 3,4 heptad repeat (coiled-coil) structure (amino acids 441 to 483). The defects displayed by these mutant proteins correlated with a weaker association with wild-type Rep68 protein, as measured in coimmunoprecipitation assays. These experiments suggest that these regions of the Rep molecule are involved in Rep oligomerization events critical for both helicase and endonuclease activities.  相似文献   

7.
The Rep68 and Rep78 proteins of adeno-associated virus type 2 (AAV) are multifunctional proteins which contain overlapping amino acid sequences. They are required for viral replication and preferential integration of the AAV genome into a region of human chromosome 19. During the terminal resolution process of AAV DNA replication, these proteins make a site-specific and strand-specific endonuclease cut within the AAV inverted terminal repeat DNA. The Rep68 and Rep78 proteins also have helicase and DNA-binding activities. The endonuclease activity is believed to involve the covalent attachment of Rep68 or Rep78 at the cut site via a phosphotyrosine linkage. In an attempt to identify the active-site tyrosine residue of Rep78 and Rep68, tyrosine residues were site specifically mutated to phenylalanines by overlap extension PCR, and the resulting PCR fragments were cloned into a maltose binding protein-Rep68 fusion (MBP-Rep68delta) expression vector. The mutant MBP-Rep68delta proteins were expressed in Escherichia coli cells, purified with amylose resin, and assayed in vitro for Rep68-specific activities. Although several of the mutations disrupted the endonuclease activity, only the mutation of tyrosine 152 abrogated the endonuclease activity with no discernible effect on the helicase or DNA-binding activities. Our data therefore suggest that there are distinct active sites for the helicase and endonuclease activities.  相似文献   

8.
A subset of DNA replication proteins of herpes simplex virus (HSV) comprising the single-strand DNA-binding protein, ICP8 (UL29), and the helicase-primase complex (UL5, UL8, and UL52 proteins) has previously been shown to be sufficient for the replication of adeno-associated virus (AAV). We recently demonstrated complex formation between ICP8, AAV Rep78, and the single-stranded DNA AAV genome, both in vitro and in the nuclear HSV replication domains of coinfected cells. In this study the functional role(s) of HSV helicase and primase during AAV DNA replication were analyzed. To differentiate between their necessity as structural components of the HSV replication complex or as active enzymes, point mutations within the helicase and primase catalytic domains were analyzed. In two complementary approaches the remaining HSV helper functions were either provided by infection with HSV mutants or by plasmid transfection. We show here that upon cotransfection of the minimal four HSV proteins (i.e., the four proteins constituting the minimal requirements for basal AAV replication), UL52 primase catalytic activity was not required for AAV DNA replication. In contrast, UL5 helicase activity was necessary for fully efficient replication. Confocal microscopy confirmed that all mutants retained the ability to support formation of ICP8-positive nuclear replication foci, to which AAV Rep78 colocalized in a manner strictly dependent on the presence of AAV single-stranded DNA (ssDNA). The data indicate that recruitment of AAV Rep78 and ssDNA to nuclear replication sites by the four HSV helper proteins is maintained in the absence of catalytic primase or helicase activities and suggest an involvement of the HSV UL5 helicase activity during AAV DNA replication.  相似文献   

9.
The human adeno-associated virus (AAV) has generated much enthusiasm as a transfer vector for human gene therapy. Although clinical gene therapy trials have been initiated using AAV vectors, much remains to be learned regarding the basic mechanisms of virus replication, gene expression, and virion assembly. AAV encodes four nonstructural, or replication (Rep), proteins. The Rep78 and Rep68 proteins regulate viral DNA replication, chromosomal integration, and gene expression. The Rep52 and Rep40 proteins mediate virus assembly. To better understand Rep protein function, we have expressed the Rep40 protein in Escherichia coli and purified it to near homogeneity. Like the other Rep proteins, Rep40 possesses helicase and ATPase activity. ATP is the best substrate, and Mg2+ is the most efficient divalent metal ion for helicase activity. A Lys to His mutation in the purine nucleotide-binding site results in a protein that inhibits helicase activity in a dominant negative manner. Rep40 unwinds double-stranded DNA containing a 3' single-stranded end, or blunt end, unlike the Rep68 and Rep52 enzymes, which have a strict requirement for DNA duplexes containing a 3' single-stranded end. Values for KATP in the ATPase assay are 1.1 +/- 0.2 mM and 1.2 +/- 0.2 mM in the absence and presence, respectively, of single-stranded DNA. Values for Vmax are 220 +/- 10 and 1,500 +/- 90 nmol/min/mg in the absence and presence, respectively, of single-stranded DNA. These studies provide the first enzymatic characterization of the AAV Rep40 protein and elucidate important functional differences between the AAV helicases.  相似文献   

10.
11.
The adeno-associated virus type 2 (AAV) replication (Rep) proteins Rep78 and 68 (Rep78/68) exhibit a number of biochemical activities required for AAV replication, including specific binding to a 22-bp region of the terminal repeat, site-specific endonuclease activity, and helicase activity. Individual and clusters of charged amino acids were converted to alanines in an effort to generate a collection of conditionally defective Rep78/68 proteins. Rep78 variants were expressed in human 293 cells and analyzed for their ability to mediate replication of recombinant AAV vectors at various temperatures. The biochemical activities of Rep variants were further characterized in vitro by using Rep68 His-tagged proteins purified from bacteria. The results of these analyses identified a temperature-sensitive (ts) Rep protein (D40,42,44A-78) that exhibited a delayed replication phenotype at 32 degrees C, which exceeded wild-type activity by 48 h. Replication activity was reduced by more than threefold at 37 degrees C and was undetectable at 39 degrees C. Stability of the Rep78 protein paralleled replication levels at each temperature, further supporting a ts phenotype. Replication differences resulted in a 3-log-unit difference in virus yields between the permissive and nonpermissive temperatures (2.2 x 10(6) and 3 x 10(3), respectively), demonstrating that this is a relatively tight mutant. In addition to the ts Rep mutant, we identified a nonconditional mutant with a reduced ability to support viral replication in vivo. Additional characterization of this mutant demonstrated an Mg(2+)-dependent phenotype that was specific to Rep endonuclease activity and did not affect helicase activity. The two mutants described here are unique, in that Rep ts mutants have not previously been described and the D412A Rep mutant represents the first mutant in which the helicase and endonuclease functions can be distinguished biochemically. Further understanding of these mutants should facilitate our understanding of AAV replication and integration, as well as provide novel strategies for production of viral vectors.  相似文献   

12.
Mutational analysis of the adeno-associated virus rep gene.   总被引:5,自引:4,他引:1       下载免费PDF全文
Q Yang  A Kadam    J P Trempe 《Journal of virology》1992,66(10):6058-6069
  相似文献   

13.
D S Im  N Muzyczka 《Cell》1990,61(3):447-457
Genetic studies of adeno-associated virus (AAV) indicate that two AAV genes are required for viral DNA replication: the palindromic terminal repeat, which is the origin for DNA replication, and the rep gene, which codes for a family of at least four viral nonstructural proteins. To determine the biochemical function of the Rep proteins, we have purified the AAV Rep68 protein to apparent homogeneity. We find that it contains a site-specific and strand-specific endonuclease activity that specifically cuts the AAV origin at the terminal resolution site (TRS). The TRS endonuclease requires the presence of ATP for activity and becomes covalently attached to the 5' end at the cut site. In addition to the specific endonuclease activity, Rep68 also contains a DNA helicase activity. These results demonstrate that the large AAV Rep proteins have a direct role in AAV DNA replication; namely, they provide the activities required for the resolution of covalently joined AAV termini.  相似文献   

14.
We have used differential cell extraction and conventional chromatography to separate and partially purify the four adeno-associated virus (AAV) nonstructural proteins Rep78, Rep68, Rep52, and Rep40. In the cytoplasmic extracts Rep52 and Rep40 were present in greater abundance than Rep68 and Rep78, with Rep78 being the least abundant. In nuclear extracts the four Rep proteins were approximately equal in abundance. Regardless of the subcellular fraction examined, three of the Rep proteins (Rep78, Rep68, and Rep40) consisted of two protein species with slightly different mobilities during polyacrylamide gel electrophoresis. In contrast, Rep52 consisted of only one protein species. Both Rep78 and Rep68 were capable of binding efficiently to AAV terminal hairpin DNA substrates, but we could not detect site-specific DNA binding by Rep52 and Rep40. Like Rep68, Rep78 had both an ATP-dependent trs endonuclease and a DNA helicase activity. Both Rep78 and Rep68 cut the terminal AAV sequence at the same site (nucleotide 124). The binding, trs endonuclease, and DNA helicase activities comigrated during sucrose density gradient centrifugation with a mobility expected for a monomer of the protein, suggesting that the three biochemical activities were intrinsic properties of the larger Rep proteins. The chromatographic behavior and the DNA-binding properties of the four Rep proteins identified at least two domains within the rep coding region, an exposed hydrophobic domain within the C-terminal end (amino acids 578 to 621) and a region within the N terminus (amino acids 1 to 214) which was necessary for binding to the terminal repeat sequence. No site-specific nuclease activity was seen in the presence of nucleotide analogs ATP-gamma-S or AMP-PNP, suggesting that ATP hydrolysis was required for the endonuclease reaction. Furthermore, although ATP was the only cofactor which would support the trs endonuclease activity of Rep78, Rep68 nuclease activity was seen in the presence of several other nucleotide cofactors, including CTP, GTP, and UTP.  相似文献   

15.
E. coli Rep protein is a 3' to 5' SF1 superfamily DNA helicase which is monomeric in the absence of DNA, but can dimerize upon binding either single-stranded or duplex DNA. A variety of biochemical studies have led to proposals that Rep dimerization is important for its helicase activity; however, recent structural studies of Bacillus stearothermophilus PcrA have led to suggestions that SF1 helicases, such as E. coli Rep and E. coli UvrD, function as monomeric helicases. We have examined the question of whether Rep oligomerization is important for its DNA helicase activity using pre-steady state stopped-flow and chemical quenched-flow kinetic studies of Rep-catalyzed DNA unwinding. The results from four independent experiments demonstrate that Rep oligomerization is required for initiation of DNA helicase activity in vitro. No DNA unwinding is observed when only a Rep monomer is bound to the DNA substrate, even when fluorescent DNA substrates are used that can detect partial unwinding of the first few base-pairs at the ss-ds-DNA junction. In fact, under these conditions, ATP hydrolysis causes dissociation of the Rep monomer from the DNA, rather than DNA unwinding. These studies demonstrate that wild-type Rep monomers are unable to initiate DNA unwinding in vitro, and that oligomerization is required.  相似文献   

16.
17.
The adeno-associated virus (AAV) Rep78 and Rep68 proteins play essential roles in viral DNA replication, trans activation of viral gene expression, and suppression of oncogene-mediated cellular transformation. By using an extensive set of linker insertion and deletion mutations in the replication gene, we mapped the regions of the Rep78 protein that mediate binding to the AAV origin of replication in vitro. Deletions that removed amino acid codons 25 to 62, 88 to 113, 125 to 256, and 346 to 400 abolished binding. Alterations in several other regions of the protein affected the binding affinity of the mutant proteins. All of the mutant proteins that support AAV DNA replication or p40 trans activation bound to the terminal repeat sequence, thus verifying the importance of binding for these functions. Several mutant rep genes that failed to suppress oncogene-mediated cellular transformation produced proteins that were capable of binding to the AAV terminal repeat sequences.  相似文献   

18.
19.
20.
Although precluded from using splicing to produce multiple small Rep proteins, adeno-associated virus type 5 (AAV5) generates a Rep40-like protein by alternative translation initiation at an internal AUG. A defined region upstream of the internal AUG was both required and sufficient to program internal initiation within AAV5 and may act similarly in heterologous contexts. The internally initiated AAV5 Rep40-like protein was functional and had helicase activity similar to that of AAV2 Rep40. Surprisingly, both the AAV5 Rep40-like protein and Rep52 were able to be translated from the AAV5 upstream P7-generated RNAs; however, the relative level of small to large Rep proteins was reduced compared to that of the wild type. A P19 mutant AAV5 infectious clone generated near-wild-type levels of the double-stranded monomer replicative form (mRF) replicative intermediate but reduced levels of virus, consistent with the previously defined role of Rep40-like proteins in genome encapsidation. Levels of mutant virus were dramatically reduced upon amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号