首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of noninvasive approaches to facilitate the regeneration of post-traumatic nerve injury is important for clinical rehabilitation. In this study, we investigated the effective dose of noninvasive 808-nm low-level laser therapy (LLLT) on sciatic nerve crush rat injury model. Thirty-six male Sprague Dawley rats were divided into 6 experimental groups: a normal group with or without 808-nm LLLT at 8 J/cm2 and a sciatic nerve crush injury group with or without 808-nm LLLT at 3, 8 or 15 J/cm2. Rats were given consecutive transcutaneous LLLT at the crush site and sacrificed 20 days after the crush injury. Functional assessments of nerve regeneration were analyzed using the sciatic functional index (SFI) and hindlimb range of motion (ROM). Nerve regeneration was investigated by measuring the myelin sheath thickness of the sciatic nerve using transmission electron microscopy (TEM) and by analyzing the expression of growth-associated protein 43 (GAP43) in sciatic nerve using western blot and immunofluorescence staining. We found that sciatic-injured rats that were irradiated with LLLT at both 3 and 8 J/cm2 had significantly improved SFI but that a significant improvement of ROM was only found in rats with LLLT at 8 J/cm2. Furthermore, the myelin sheath thickness and GAP43 expression levels were significantly enhanced in sciatic nerve-crushed rats receiving 808-nm LLLT at 3 and 8 J/cm2. Taken together, these results suggest that 808-nm LLLT at a low energy density (3 J/cm2 and 8 J/cm2) is capable of enhancing sciatic nerve regeneration following a crush injury.  相似文献   

2.
The intercellular cell adhesion molecule-1 (ICAM-1) has been implicated in the recruitment of immune cells during inflammatory processes. Previous studies investigating its involvement in the process of Wallerian degeneration and focusing on its potential role in macrophage recruitement have come to controversial conclusions. To examine whether Wallerian degeneration is altered in the absence of ICAM-1, we have analyzed changes in the expression of axonal and Schwann cell markers following sciatic nerve crush in wildtype and ICAM-1-deficient mice. We report that the lack of ICAM-1 leads to impaired axonal degeneration and regeneration and to alterations in Schwann cell responses following sciatic nerve crush. Degradation of neurofilament protein, the collapse of axonal profiles, and the re-expression of neurofilament proteins are substantially delayed in the distal nerve segment of ICAM-1-/- mice. In contrast, the degradation of myelin, as determined by immunostaining for myelin protein zero, is unaltered in the mutants. Upregulation of GAP-43 and p75 neurotrophin receptor (p75NTR) expression, characteristic for Schwann cells dedifferentiating in response to nerve injury, is differentially altered in the mutant animals. These results indicate that ICAM-1 is essential for the normal progression of axonal degeneration and regeneration in distal segments of injured peripheral nerves.  相似文献   

3.
Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP–/–Vim–/– mice. After sciatic nerve crush in GFAP–/–Vim–/– mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics.  相似文献   

4.
As a novel cell cycle protein, Spy1 enhances cell proliferation, promotes the G1/S transition as well as inhibits apoptosis in response to UV irradiation. Spy1 levels are tightly regulated during mammary development, and overexpression of Spy1 accelerates tumorigenesis in vivo. But little is known about the role of Spy1 in the pathological process of damage and regeneration of the peripheral nervous system. Here we established a rat sciatic nerve crush (SNC) model to examine the spatiotemporal expression of Spy1. Spy1 expression was elevated gradually after sciatic nerve crush and peaked at day 3. The alteration was due to the increased expression of Spy1 in axons and Schwann cells after SNC. Spy1 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, Spy1 largely localized in axons in the crushed segment, but rarely co-localized with GAP43. These findings suggested that Spy1 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.  相似文献   

5.
S phase kinase-associated protein 2 (Skp2), an F-box protein, is required for the ubiquitination and consequent degradation of p27kip1. Previous reports have showed that p27kip1 played important roles in cell cycle regulation and neurogenesis in the developing central nervous system. But the distribution and function of p27kip1 and Skp2 in nervous system lesion and regeneration remains unclear. In this study, we observed that they were expressed mainly in both Schwann cells and axons in adult rat sciatic nerve. Sciatic nerve crush and transection resulted in a significant up-regulation of Skp2 and a down-regulation of p27kip1. By immunochemistry, we found that in the distal stumps of transected nerve from the end to the edge, the appearance of Skp2 in the edge is coincided with the decrease in p27kip1 levels. Changes of them were inversely correlated. Results obtained by coimmunoprecipitation and double labeling further showed their interaction in the regenerating process. Thus, these results indicate that p27kip1 and Skp2 likely play an important role in peripheral nerve injury and regeneration. Ai-Guo Shen and Shu-Xian Shi contributed equally to this work.  相似文献   

6.
As a novel cell cycle inhibitor, PHB2 controls the G1/S transition in cycling cells in a complex manner. Its aberrant expression is closely related to cell carcinogenesis. While its expression and role in peripheral nervous system lesion and repair were still unknown. Here, we performed an acute sciatic nerve crush (SNC) model in adult rats to examine the dynamic changes of PHB2. Temporally, PHB2 expression was sharply decreased after sciatic nerve crush and reached a valley at day 5. Spatially, PHB2 was widely expressed in the normal sciatic nerve including axons and Schwann cells. While after injury, PHB2 expression decreased predominantly in Schwann cells. The alteration was due to the decreased expression of PHB2 in Schwann cells after SNC. PHB2 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, PHB2 largely localized with GAP43 in axons in the crushed segment. Collectively, we suggested that PHB2 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.  相似文献   

7.
8.
Laminins are heterotrimeric extracellular matrix proteins that regulate cell viability and function. Laminin-2, composed of alpha2, beta1, and gamma1 chains, is a major matrix component of the peripheral nervous system (PNS). To investigate the role of laminin in the PNS, we used the Cre-loxP system to disrupt the laminin gamma1 gene in Schwann cells. These mice have dramatically reduced expression of laminin gamma1 in Schwann cells, which results in a similar reduction in laminin alpha2 and beta1 chains. These mice exhibit motor defects which lead to hind leg paralysis and tremor. During development, Schwann cells that lack laminin gamma1 were present in peripheral nerves, and proliferated and underwent apoptosis similar to control mice. However, they were unable to differentiate and synthesize myelin proteins, and therefore unable to sort and myelinate axons. In mutant mice, after sciatic nerve crush, the axons showed impaired regeneration. These experiments demonstrate that laminin is an essential component for axon myelination and regeneration in the PNS.  相似文献   

9.
10.
Current research into regeneration of the nervous system has focused on defining the molecular events that occur during regeneration. One well-characterized system for studying nerve regeneration is the sciatic nerve of rat. Numerous studies have characterized the sequence of events that occur after a crush injury to the sciatic nerve (Cajal 1928; Hall 1989). These events include axon and myelin breakdown, changes in the permeability of the blood vessels, proliferation of Schwann cells, invasion of macrophages, and the phagocytosis of myelin fragments by Schwann cells and macrophages. The distal segment of the injured sciatic nerve provides a supportive environment for the regeneration of the nerve fibres (Cajal 1928; David & Aguayo 1981). Within a period of weeks, the injured sciatic nerve is able to regrow and successfully reinnervate the appropriate targets. Some of the molecules that provide trophic support for the regrowing nerve fibres have been identified, including nerve growth factor (NGF) (Heumann et al. 1987) and glial maturation factor beta (Bosch et al. 1989). Another class of molecules show changes in their rates of synthesis during regeneration, including both proteins (Skene & Shooter 1983; Muller et al. 1986) and mRNA species (Trapp et al. 1988; Meier et al. 1989). To better understand nerve regeneration, we have taken two, parallel molecular approaches to study the events associated with regeneration. The first of these is to study in detail the mechanism of action of a molecule that has been implicated in the regeneration process, nerve growth factor. The second approach is to identify novel gene sequences which are regulated during regeneration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Abstract: That many cells express more than one connexin (Cx) led us to examine whether Cxs other than Cx32 are expressed in the PNS. In addition to Cx32 mRNA, Cx43 and Cx26 mRNAs were detected in rat sciatic nerve by northern blot analysis. Cx43 mRNA, but not Cx26 mRNA, was expressed in both the primary Schwann cell culture and immortalized Schwann cell line (T93). The steady-state levels of the Cx43 mRNA in the primary Schwann cell culture increased 2.0-fold with 100 µ M forskolin, whereas that of P0 increased 7.0-fold. Immunoreactivity to Cx43 was detected on western blots of cultured Schwann cells, T93 cells, and sciatic nerves but not on blots of PNS myelin. Immunohistochemical study using human peripheral nerves revealed that anti-Cx43 antibody stained cytoplasm around nucleus of Schwann cells but not myelin, confirming western blot results. Although P0 expression was markedly decreased by crush injury of the sciatic nerves, Cx43 expression showed no apparent change. Developmental profiles showed that Cx43 expression in the sciatic nerve increased rapidly after birth, peaked at about postnatal day 6, and then decreased gradually to a low level. In adult rats, the Cx43 mRNA value was much lower than that of Cx32. These findings suggest that Cx43 is localized in Schwann cell bodies and that, compared with P0, its expression is less influenced by axonal contact and cyclic AMP levels. The high expression on postnatal day 6 indicates that Cx43 may be related to PNS myelination. Cx43 is another gap junction, but its function appears to differ from that of Cx32, as judged by the differences in their localization and developmental profiles.  相似文献   

13.
Attenuation of inflammatory cell deposits and associated cytokines prevented the apoptosis of transplanted stem cells in a sciatic nerve crush injury model. Suppression of inflammatory cytokines by fermented soybean extracts (Natto) was also beneficial to nerve regeneration. In this study, the effect of Natto on transplanted human amniotic fluid mesenchymal stem cells (AFS) was evaluated. Peripheral nerve injury was induced in SD rats by crushing a sciatic nerve using a vessel clamp. Animals were categorized into four groups: Group I: no treatment; Group II: fed with Natto (16 mg/day for 7 consecutive days); Group III: AFS embedded in fibrin glue; Group IV: Combination of group II and III therapy. Transplanted AFS and Schwann cell apoptosis, inflammatory cell deposits and associated cytokines, motor function, and nerve regeneration were evaluated 7 or 28 days after injury. The deterioration of neurological function was attenuated by AFS, Natto, or the combined therapy. The combined therapy caused the most significantly beneficial effects. Administration of Natto suppressed the inflammatory responses and correlated with decreased AFS and Schwann cell apoptosis. The decreased AFS apoptosis was in line with neurological improvement such as expression of early regeneration marker of neurofilament and late markers of S-100 and decreased vacuole formation. Administration of either AFS, or Natto, or combined therapy augmented the nerve regeneration. In conclusion, administration of Natto may rescue the AFS and Schwann cells from apoptosis by suppressing the macrophage deposits, associated inflammatory cytokines, and fibrin deposits.  相似文献   

14.
The content of alkenyl-acyl, alkyl-acyl and diacyl types of the three major myelin glycerophospholipids such as PtdCho, PtdEtn and PtdSer was determined in myelin fractions prepared from sciatic nerve segments of rats at 12, 25 and 45 days after birth, and of adult rats (6-month-old) 90 days after crush injury. The biosynthesis and metabolic heterogeneity of lipid classes and types were also studied by incubation with [1-14C] acetate of nerve segments of young rats at different ages as well as crushed and sham-operated control nerve segments of adult rats. The analysis of composition and positional distribution in major individual molecular species extracted from light myelin and myelin-related fraction suggest that the metabolism of alkenyl-acyl-glycerophosphorylethanolamines and unsaturated species of PtdCho and PtdSer may not be regulated in the same manner during peripheral nerve myelination of developing rat and remyelination of regenerating nerve in the adult animal. The14C-radioactivity incorporation into lipid classes and alkyl and acyl moieties of the three major phospholipids of sciatic nerve segments during the developmental period investigated revealed that Schwann cells were capable of synthesizing acyl-linked fatty acids in both myelin fractions at a decreasing rate and with different patterns during development. In regenerating sciatic nerve of adult animals the labeling of myelin lipid classes and types of remyelinating nerve segment distal to the crush site was markedly higher than that of sham-operated normal one; however, the magnitude and the pattern of the specific radioactivity never approached those observed during active myelination of the nerve in young animals. These observations show that the remyelinating process of injured nerve during regeneration seems not to recapitulate nerve myelin ensheathment occurring during development.Abbreviations used PtdEtn Phosphatidylethanolamine - PtdCho Phosphatidylcholine - PtdSer Phosphatidylserine - GPE Glycero(3)phosphoethanolamine - GPC Glycero(3)phosphocholine - GPS Glycero(3)phosphoserine - DG-acetates 1,2-diradyl-3-acetyl-sn-glycerols - HPLC High performance liquid chromatography - TLC Thin-layer chromatography - BHT 2,6-di-tert-butyl-4-methylphenol  相似文献   

15.
Vinorine is a monoterpenoid indole alkaloid, a type of natural alkaloids. Growing reports exhibited the numerous pharmacology activities of vinorine such as anti-inflammation, anti-bacterial and anti-tumor. In this study, the effect of vinorine injection (7.5, 15 and 30 mg/kg) on motor function, sensation and nerve regeneration in sciatic nerve crush injury rat was investigated. The results of behavioral analysis, electrophysiological analysis and muscle histological analysis suggested that vinorine promoted the motor function recovery after sciatic nerve injury. The results of mechanical withdrawal thresholds assay and hot plate test demonstrated that vinorine improved the sensation recovery after sciatic nerve injury. The results of Fluoro-gold retrograde labeling, transmission electron microscope assay, toluidine blue and HE staining showed that vinorine attenuated the nerve damage caused by sciatic nerve injury and promoted the nerve regeneration. Furthermore, nerve growth factor (NGF) and its downstream extracellular signal-regulated kinase (ERK) signaling pathway participated in the neuro-recovery effect of vinorine after crush. In conclusion, vinorine treatment accelerated the sciatic nerve regeneration, motor function recovery and sensation recovery after crush injury via regulation of NGF and ERK activity. These results suggested that vinorine is a promising agent for never injury therapy.  相似文献   

16.
Glycosylation is one of the most important post-translational modifications. It is clear that the single step of β-1,4-galactosylation is performed by a family of β-1,4-galactosyltransferases (β-1,4-GalTs), and that each member of this family may play a distinct role in different tissues and cells. β-1,4-GalT I and V are involved in the biosynthesis of N-linked oligosaccharides. In the present study, Real-time PCR revealed that the β-1,4-GalT I and V mRNAs reached peaks at 2 w after sciatic nerve crush. In situ hybridization showed that at 1 d after sciatic nerve crush, the expression levels of β-1,4-GalT I and V mRNAs were strong at the crush site, and decreased gradually from crush site to the distal segments. In addition, combined in situ hybridization for β1,4-GalT I and V mRNAs and immunohistochemistry for S100 showed that β1,4-GalT I and V mRNAs were mainly located in Schwann cells. Lectin blot showed that the expression of Galβ1,4GlcNAc group increased at 6 h immediately, reached a peak at 12 h and remained elevated up to 4 w after sciatic nerve crush. In conclusion, β1,4-GalT I and V might play important roles in the regeneration of the injuried sciatic nerve, and upregulation of Galβ1,4GlcNAc group might be correlated with the process of the sciatic nerve injury.  相似文献   

17.
Remyelination is a critical step for functional nerve regeneration. Here we show that fibrin deposition in the peripheral nervous system after injury is a key regulator of remyelination. After sciatic nerve crush, fibrin is deposited and its clearance correlates with remyelination. Fibrin induces phosphorylation of ERK1/2 and production of p75 NGF low-affinity receptor in Schwann cells and maintains them in a nonmyelinating state, suppresses fibronectin production, and prevents synthesis of myelin proteins. In mice depleted of fibrin(ogen), remyelination of myelinated axons is accelerated due to the faster transition of the Schwann cells to a myelinating state. Regulation of fibrin clearance and/or deposition could be a key regulatory mechanism for Schwann differentiation after nerve damage.  相似文献   

18.
19.
We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1 disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss, such as Charcot-Marie-Tooth type 1 disease. Moreover, our data suggest that S100A4 is a neuroprotectant in PNS and that other S100 proteins, sharing high homology in the H3 motif, may have important functions in PNS pathologies.  相似文献   

20.
The rapid accumulation of myelin in the peripheral nervous system during the early postnatal period requires large amounts of cholesterol, a major myelin lipid. All of the cholesterol accumulating in the developing rat sciatic nerve is synthesized locally within the nerve, rather than being derived from the supply in lipoproteins in the systemic circulation (Jurevics and Morell, J. Lipid Res. 5:112–120; 1994). Since this lack of utilization of circulating cholesterol may relate to exclusion by the blood-nerve barrier, we examined the sources of cholesterol needed for regeneration following nerve injury, when the blood-nerve barrier is breached. One sciatic nerve was crushed or transected, and at various times later, the rate of cholesterol accumulation was compared with the rate of local in vivo synthesis of cholesterol within the nerve, utilizing intraperitoneally injected 3H2O as precursor. The accumulation of additional cholesterol in nerve during regeneration and remyelination could all be accounted for by that locally synthesized within the nerve. There was also an increase in cholesterol esters in injured nerve segments; in crushed nerves, these levels decreased during regeneration and remyelination, consistent with reutilization of cholesterol originally salvaged by phagocytic macrophages and Schwann cells. Thus, regeneration and remyelination following injury in sciatic nerve utilizes both salvaged cholesterol and cholesterol synthesized locally within the nerve, but not cholesterol from the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号