首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progressive myoclonus epilepsy of the Unverricht-Lundborg type is an autosomal recessive disorder that is characterized clinically by myoclonic seizures and ataxia. The majority of affected individuals carry repeat expansions of a dodecamer in the promoter region of the cystatin B gene. The unusually high GC content of this tract is refractory to conventional polymerase chain reaction (PCR), and, as a result, a circumventive procedure involving the deamination of DNA with sodium bisulfite has been proposed. This study evaluates the effectiveness of this deamination modification for the detection of dodecamer repeat variants. An analysis of 258 healthy Japanese individuals revealed an allele with four copies of the dodecamer repeat with a frequency of 0.01, in addition to the more commonly observed two and three copy repeat alleles. Homozygous repeat expansions 600 and 680 base pairs in length were detected in the analyses of two affected individuals. For these cases, sequencing, along with an alternative PCR-stutter formation, revealed 41 and 48 copies, respectively, of the dodecamer repeat. The complete conversion of C to T was observed in the expanded tracts, indicating that no methylation occurred at the CpG sites. Based on these results, it was concluded that the use of deaminated DNA allows for a precise analysis of consecutive GC tracts.  相似文献   

2.
To investigate the mechanisms regulating the nucleotide usage in mammalian genes, we analyzed the sequences of three physically linked Hsp70 paralogs in human and mouse. We report that the sequences of HSPA1A and HSPA1B genes are almost identical, whereas the HSPA1L gene contains some regions very similar to HSPA1A/B and some regions with much higher divergence. Phylogenetic analysis reveals that gene conversion has homogenized the entire coding regions of HSPA1A/B and several fragments of HSPA1L. The regions undergoing conversion are all very GC rich, contrarily to the regions not subject to conversion. The pattern of nucleotide substitution in mammalian orthologs suggests that the mechanism increasing the GC content is still functioning. To test the possibility that the high GC content facilitates the expression of Hsp70 during heat-shock, we performed in vitro translation experiments. We failed to detect any effect of GC content on the translation efficiency at high temperatures. Taken together, our data strongly support the biased gene conversion hypothesis of GC-content evolution.  相似文献   

3.
Ribosomal DNA (rDNA) is one of the most conserved genes in eukaryotes. The multiples copies of rDNA in the genome evolve in a concerted manner, through unequal crossing over and/or gene conversion, two mechanisms related to homologous recombination. Recombination increases local GC content in several organisms through a process known as GC-biased gene conversion (gBGC). gBGC has been well characterized in mammals, birds, and grasses, but its phylogenetic distribution across the tree of life is poorly understood. Here, we test the hypothesis that recombination affects the evolution of base composition in 18S rDNA and examine the reliability of this thoroughly studied molecule as a marker of gBGC in eukaryotes. Phylogenetic analyses of 18S rDNA in vertebrates and angiosperms reveal significant heterogeneity in the evolution of base composition across both groups. Mammals, birds, and grasses experience increases in the GC content of the 18S rDNA, consistent with previous genome-wide analyses. In addition, we observe increased GC contents in Ostariophysi ray-finned fishes and commelinid monocots (i.e., the clade including grasses), suggesting that the genomes of these two groups have been affected by gBGC. Polymorphism analyses in rDNA confirm that gBGC, not mutation bias, is the most plausible explanation for these patterns. We also find that helix and loop sites of the secondary structure of ribosomal RNA do not evolve at the same pace: loops evolve faster than helices, whereas helices are GC richer than loops. We extend analyses to major lineages of eukaryotes and suggest that gBGC might have also affected base composition in Giardia (Diplomonadina), nudibranch gastropods (Mollusca), and Asterozoa (Echinodermata).  相似文献   

4.
Classical genetic studies show that gene conversion can favour some alleles over others. Molecular experiments suggest that gene conversion could favour GC over AT basepairs, leading to the concept of biased gene conversion towards GC (BGC(GC)). The expected consequence of such a process is the GC-enrichment of DNA sequences under gene conversion. Recent genomic work suggests that BGC(GC) affects the base composition of yeast, invertebrate and mammalian genomes. Hypotheses for the mechanisms and evolutionary origin of such a strange phenomenon have been proposed. Most BGC(GC) events probably occur during meiosis, which has implications for our understanding of the evolution of sex and recombination.  相似文献   

5.
The HINTW gene on the female-specific W chromosome of chicken and other birds is amplified and present in numerous copies. Moreover, as HINTW is distinctly different from its homolog on the Z chromosome (HINTZ), is a candidate gene in avian sex determination, and evolves rapidly under positive selection, it shows several common features to ampliconic and testis-specific genes on the mammalian Y chromosome. A phylogenetic analysis within galliform birds (chicken, turkey, quail, and pheasant) shows that individual HINTW copies within each species are more similar to each other than to gene copies of related species. Such convergent evolution is most easily explained by recurrent events of gene conversion, the rate of which we estimated at 10(-6)-10(-5) per site and generation. A significantly higher GC content of HINTW than of other W-linked genes is consistent with biased gene conversion increasing the fixation probability of mutations involving G and C nucleotides. Furthermore, and as a likely consequence, the neutral substitution rate is almost twice as high in HINTW as in other W-linked genes. The region on W encompassing the HINTW gene cluster is not covered in the initial assembly of the chicken genome, but analysis of raw sequence reads indicates that gene copy number is significantly higher than a previous estimate of 40. While sexual selection is one of several factors that potentially affect the evolution of ampliconic, male-specific genes on the mammalian Y chromosome, data from HINTW provide evidence that gene amplification followed by gene conversion can evolve in female-specific chromosomes in the absence of sexual selection. The presence of multiple and highly similar copies of HINTW may be related to protein function, but, more generally, amplification and conversion offers a means to the avoidance of accumulation of deleterious mutations in nonrecombining chromosomes.  相似文献   

6.
M. Kuhner  S. Watts  W. Klitz  G. Thomson    R. S. Goodenow 《Genetics》1990,126(4):1115-1126
In order to better understand the role of gene conversion in the evolution of the class I gene family of the major histocompatibility complex (MHC), we have used a computer algorithm to detect clustered sequence similarities among 24 class I DNA sequences from the H-2, Qa, and Tla regions of the murine MHC. Thirty-four statistically significant clusters were detected; individual analysis of the clusters suggested at least 25 past gene conversion or recombination events. These clusters are comparable in size to the conversions observed in the spontaneously occurring H-2K(bm) and H-2K(km2) mutations, and are distributed throughout all exons of the class I gene. Thus, gene conversion does not appear to be restricted to the regions of the class I gene encoding their antigen-presentation function. Moreover, both the highly polymorphic H-2 loci and the relatively monomorphic Qa and Tla loci appear to have participated as donors and recipients in conversion events. If gene conversion is not limited to the highly polymorphic loci of the MHC, then another factor, presumably natural selection, must be responsible for maintaining the observed differences in level of variation.  相似文献   

7.
8.
This study presents compelling evidence that recombination significantly increases the silent GC content of a genome in a selectively neutral manner, resulting in a highly significant positive correlation between recombination and "GC3s" in the yeast Saccharomyces cerevisiae. Neither selection nor mutation can explain this relationship. A highly significant GC-biased mismatch repair system is documented for the first time in any member of the Kingdom Fungi. Much of the variation in the GC3s within yeast appears to result from GC-biased gene conversion. Evidence suggests that GC-biased mismatch repair exists in numerous organisms spanning six kingdoms. This transkingdom GC mismatch repair bias may have evolved in response to a ubiquitous AT mutational bias. A significant positive correlation between recombination and GC content is found in many of these same organisms, suggesting that the processes influencing the evolution of the yeast genome may be a general phenomenon. Nonrecombining regions of the genome and nonrecombining genomes would not be subject to this type of molecular drive. It is suggested that the low GC content characteristic of many nonrecombining genomes may be the result of three processes (1) a prevailing AT mutational bias, (2) random fixation of the most common types of mutation, and (3) the absence of the GC-biased gene conversion which, in recombining organisms, permits the reversal of the most common types of mutation. A model is proposed to explain the observation that introns, intergenic regions, and pseudogenes typically have lower GC content than the silent sites of corresponding open reading frames. This model is based on the observation that the greater the heterology between two sequences, the less likely it is that recombination will occur between them. According to this "Constraint" hypothesis, the formation and propagation of heteroduplex DNA is expected to occur, on average, more frequently within conserved coding and regulatory regions of the genome. In organisms possessing GC-biased mismatch repair, this would enhance the GC content of these regions through biased gene conversion. These findings have a number of important implications for the way we view genome evolution and suggest a new model for the evolution of sex.  相似文献   

9.
Meiotic recombination ensures the correct segregation of homologous chromosomes during gamete formation and contributes to DNA diversity through both large-scale reciprocal crossovers and very localised gene conversion events, also known as noncrossovers. Considerable progress has been made in understanding factors such as PRDM9 and SNP variants that influence the initiation of recombination at human hotspots but very little is known about factors acting downstream. To address this, we simultaneously analysed both types of recombinant molecule in sperm DNA at six highly active hotspots, and looked for disparity in the transmission of allelic variants indicative of any cis-acting influences. At two of the hotspots we identified a novel form of biased transmission that was exclusive to the noncrossover class of recombinant, and which presumably arises through differences between crossovers and noncrossovers in heteroduplex formation and biased mismatch repair. This form of biased gene conversion is not predicted to influence hotspot activity as previously noted for SNPs that affect recombination initiation, but does constitute a powerful and previously undetected source of recombination-driven meiotic drive that by extrapolation may affect thousands of recombination hotspots throughout the human genome. Intriguingly, at both of the hotspots described here, this drive favours strong (G/C) over weak (A/T) base pairs as might be predicted from the well-established correlations between high GC content and recombination activity in mammalian genomes.  相似文献   

10.
A strong correlation between GC content and recombination rate is observed in many eukaryotes, which is thought to be due to conversion events linked to the repair of meiotic double-strand breaks. In several organisms, the length of conversion tracts has been shown to decrease exponentially with increasing distance from the sites of meiotic double-strand breaks. I show here that this behavior leads to a simple analytical model for the evolution and the equilibrium state of the GC content of sequences devoid of meiotic double-strand break sites. In the yeast Saccharomyces cerevisiae, meiotic double-strand breaks are practically excluded from protein-coding sequences. A good fit was observed between the predictions of the model and the variations of the average GC content of the third codon position (GC3) of S. cerevisiae genes. Moreover, recombination parameters that can be extracted by fitting the data to the model coincide with experimentally determined values. These results thus indicate that meiotic recombination plays an important part in determining the fluctuations of GC content in yeast coding sequences. The model also accounted for the different patterns of GC variations observed in the genes of Candida species that exhibit a variety of sexual lifestyles, and hence a wide range of meiotic recombination rates. Finally, the variations of the average GC3 content of human and chicken coding sequences could also be fitted by the model. These results suggest the existence of a widespread pattern of GC variation in eukaryotic genes due to meiotic recombination, which would imply the generality of two features of meiotic recombination: its association with GC-biased gene conversion and the quasi-exclusion of meiotic double-strand breaks from coding sequences. Moreover, the model points out to specific constraints on protein fragments encoded by exon terminal sequences, which are the most affected by the GC bias.  相似文献   

11.
Nucleotide sequence and gene organization of ColE1 DNA   总被引:48,自引:0,他引:48  
The primary structure of the plasmid ColE1 DNA has been determined. The plasmid DNA consists of 6646 base pairs (molecular mass of 4.43 MDa) and is 48.46% in GC content. The phi 80 trp insert of the composite plasmid of ColE1, pVH51, has also been determined. The determination of the nucleotide sequence of ColE1 DNA provides the basis for examining the relationships between the DNA sequence and the gene organization of the plasmid. The focus of this paper is to use this sequence data coupled with a review of the literature and our own work to examine the nine known functional regions of ColE1: imm (colicin E1 immunity), rep (replication function), inc (plasmid incompatibility and copy number control), bom (basis of mobility), rom (modulator of inhibition of primer formation by RNA I), mob (plasmid mobilization), cer (determinant for conversion of plasmid multimers to monomers), exc (plasmid entry exclusion), cea (structural gene for colicin E1), and kil (structural gene for the Kil protein).  相似文献   

12.
The alpha-amylase (Amy) multigene family in Drosophila pseudoobscura is located on the third chromosome, which is polymorphic for more than 40 inverted gene arrangements. The number of copies in this family ranges from one to three, depending on the arrangement in question. A previous study of the three Amy genes from the Standard (ST) arrangement suggested either that duplicated copies (Amy2 and Amy3) are functionally constrained or that they are undergoing gene conversion with Amy1. In order to elucidate further the pattern of molecular evolution in this family, we cloned and sequenced four additional Amy genes, two from the Santa Cruz (SC) and two from the Chiricahua (CH) gene arrangement. Of the two alternatives, only the hypothesis of gene conversion is supported by the sequence analysis. The homogenization effect of gene conversion has been strongest in SC, whose copies differ by only two nucleotides, less noticeable in ST, and negligible in the CH. Furthermore, the action of gene conversion is apparently localized, occurring only in the coding region. Interestingly, these results concur with the findings of other workers for the duplicated Amy genes in the Drosophila melanogaster group. Thus, the occurrence of gene conversion in the Amy multigene family seems to be a common feature in the Drosophila species studied so far.   相似文献   

13.
At less than 90 Mbp, the tiny nuclear genome of the carnivorous bladderwort plant Utricularia is an attractive model system for studying molecular evolutionary processes leading to genome miniaturization. Recently, we reported that expression of genes encoding DNA repair and reactive oxygen species (ROS) detoxification enzymes is highest in Utricularia traps, and we argued that ROS mutagenic action correlates with the high nucleotide substitution rates observed in the Utricularia plastid, mitochondrial, and nuclear genomes. Here, we extend our analysis of 100 nuclear genes from Utricularia and related asterid eudicots to examine nucleotide substitution biases and their potential correlation with ROS-induced DNA lesions. We discovered an unusual bias toward GC nucleotides, most prominently in transition substitutions at the third position of codons, which are presumably silent with respect to adaptation. Given the general tendency of biased gene conversion to drive GC bias, and of ROS to induce double strand breaks requiring recombinational repair, we propose that some of the unusual features of the bladderwort and its genome may be more reflective of these nonadaptive processes than of natural selection.  相似文献   

14.
Schmegner C  Hoegel J  Vogel W  Assum G 《Genetics》2007,175(1):421-428
The human genome is composed of long stretches of DNA with distinct GC contents, called isochores or GC-content domains. A boundary between two GC-content domains in the human NF1 gene region is also a boundary between domains of early- and late-replicating sequences and of regions with high and low recombination frequencies. The perfect conservation of the GC-content distribution in this region between human and mouse demonstrates that GC-content stabilizing forces must act regionally on a fine scale at this locus. To further elucidate the nature of these forces, we report here on the spectrum of human SNPs and base pair substitutions between human and chimpanzee. The results show that the mutation rate changes exactly at the GC-content transition zone from low values in the GC-poor sequences to high values in GC-rich ones. The GC content of the GC-poor sequences can be explained by a bias in favor of GC > AT mutations, whereas the GC content of the GC-rich segment may result from a fixation bias in favor of AT > GC substitutions. This fixation bias may be explained by direct selection by the GC content or by biased gene conversion.  相似文献   

15.
Lim S  Yoon H  Ryu S  Jung J  Lee M  Kim D 《Radiation research》2006,165(4):430-437
To study the radiosensitivity of DNA segments at the open reading frame (gene) level, real-time PCR was used to analyze DNA damages induced by ionizing radiation. After irradiation (1, 3 and 5 kGy) of genomic DNA purified from Salmonella typhimurium, real-time PCR based on SYBR Green fluorescence and melting temperature was performed using various primer sets targeting the rfbJ, rfaJ, rfaB, hilD, ssrB, pipB, sopD, pduQ, eutG, oadB, ccmB and ccmA genes. The ccmA and ccmB genes, which existed as two copies on the chromosome and had a high GC content ( approximately 70%), showed much lower radiosensitivities than the other genes tested, particularly at 5 kGy; this distinctive feature was seen only when the genes were located on the chromosome, regardless of copy number. Our results reinforce the concept that gene sensitivity to ionizing radiation depends on the base composition and/or the spatial localization of the gene on the chromosome.  相似文献   

16.
Interspersed repeats have emerged as a valuable tool for studying neutral patterns of molecular evolution. Here we analyze variation in the rate and pattern of nucleotide substitution across all autosomes in the chicken genome by comparing the present-day CR1 repeat sequences with their ancestral copies and reconstructing nucleotide substitutions with a maximum likelihood model. The results shed light on the origin and evolution of large-scale heterogeneity in GC content found in the genomes of birds and mammals--the isochore structure. In contrast to mammals, where GC content is becoming homogenized, heterogeneity in GC content is being reinforced in the chicken genome. This is also supported by patterns of substitution inferred from alignments of introns in chicken, turkey, and quail. Analysis of individual substitution frequencies is consistent with the biased gene conversion (BGC) model of isochore evolution, and it is likely that patterns of evolution in the chicken genome closely resemble those in the ancestral amniote genome, when it is inferred that isochores originated. Microchromosomes and distal regions of macrochromosomes are found to have elevated substitution rates and a more GC-biased pattern of nucleotide substitution. This can largely be accounted for by a strong correlation between GC content and the rate and pattern of substitution. The results suggest that an interaction between increased mutability at CpG motifs and fixation biases due to BGC could explain increased levels of divergence in GC-rich regions.  相似文献   

17.
18.
Vanishing GC-rich isochores in mammalian genomes   总被引:25,自引:0,他引:25  
Duret L  Semon M  Piganeau G  Mouchiroud D  Galtier N 《Genetics》2002,162(4):1837-1847
To understand the origin and evolution of isochores-the peculiar spatial distribution of GC content within mammalian genomes-we analyzed the synonymous substitution pattern in coding sequences from closely related species in different mammalian orders. In primate and cetartiodactyls, GC-rich genes are undergoing a large excess of GC --> AT substitutions over AT --> GC substitutions: GC-rich isochores are slowly disappearing from the genome of these two mammalian orders. In rodents, our analyses suggest both a decrease in GC content of GC-rich isochores and an increase in GC-poor isochores, but more data will be necessary to assess the significance of this pattern. These observations question the conclusions of previous works that assumed that base composition was at equilibrium. Analysis of allele frequency in human polymorphism data, however, confirmed that in the GC-rich parts of the genome, GC alleles have a higher probability of fixation than AT alleles. This fixation bias appears not strong enough to overcome the large excess of GC --> AT mutations. Thus, whatever the evolutionary force (neutral or selective) at the origin of GC-rich isochores, this force is no longer effective in mammals. We propose a model based on the biased gene conversion hypothesis that accounts for the origin of GC-rich isochores in the ancestral amniote genome and for their decline in present-day mammals.  相似文献   

19.
Plasmids containing heteroallelic copies of the Saccharomyces cerevisiae HIS3 gene undergo intramolecular gene conversion in mitotically dividing S. cerevisiae cells. We have used this plasmid system to determine the minimum amount of homology required for gene conversion, to examine how conversion tract lengths are affected by limited homology, and to analyze the role of flanking DNA sequences on the pattern of exchange. Plasmids with homologous sequences greater than 2 kilobases have mitotic exchange rates as high as 2 x 10(-3) events per cell per generation. As the homology is reduced, the exchange rate decreases dramatically. A plasmid with 26 base pairs (bp) of homology undergoes gene conversion at a rate of approximately 1 x 10(-10) events per cell per generation. These studies have also shown that an 8-bp insertion mutation 13 bp from a border between homologous and nonhomologous sequences undergoes conversion, but that a similar 8-bp insertion 5 bp from a border does not. Examination of independent conversion events which occurred in plasmids with heteroallelic copies of the HIS3 gene shows that markers within 280 bp of a border between homologous and nonhomologous sequences undergo conversion less frequently than the same markers within a more extensive homologous sequence. Thus, proximity to a border between homologous and nonhomologous sequences shortens the conversion tract length.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号