共查询到20条相似文献,搜索用时 15 毫秒
1.
Low concentrations of oxidized low density lipoprotein (OxLDL) are cytoprotective for phagocytes, although the underlying mechanisms remain unclear. We investigated signaling pathways used by OxLDL to attenuate apoptosis in monocytic cells. OxLDL at 25-50 mug/ml inhibited staurosporine-induced apoptosis in THP-1 cells and mouse peritoneal macrophages, and it was cytoprotective in human primary monocytes upon serum withdrawal. Attenuated cell demise was reversed by blocking extracellular signal-regulated kinase (ERK) signaling. Translocation of cytochrome c to the cytosol was attenuated by OxLDL, which again demanded ERK signaling. Analysis of Bcl-2 family proteins revealed phosphorylation of Bad at serine 112 as well as ERK-dependent inhibition of Mcl-1 degradation. Although the formation of reactive oxygen species (ROS) is an established signal generated by OxLDL, ROS scavengers did not interfere with cell protection by OxLDL. Thus, activation of the ERK signaling pathway by OxLDL is important to protect phagocytes from apoptosis. 相似文献
2.
The ubiquitin ligase Nedd4 mediates oxidized low-density lipoprotein-induced downregulation of insulin-like growth factor-1 receptor 总被引:1,自引:0,他引:1
Higashi Y Sukhanov S Parthasarathy S Delafontaine P 《American journal of physiology. Heart and circulatory physiology》2008,295(4):H1684-H1689
Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 mug/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2+/-1.7 h from 24.4+/-4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events. 相似文献
3.
Jason M. Meyer Ailing Ji Lei Cai Deneys R. van der Westhuyzen 《Journal of lipid research》2014,55(8):1648-1656
Scavenger receptor-mediated uptake of oxidized LDL (oxLDL) is thought to be the major mechanism of foam cell generation in atherosclerotic lesions. Recent data has indicated that native LDL is also capable of contributing to foam cell formation via low-affinity receptor-independent LDL particle pinocytosis and selective cholesteryl ester (CE) uptake. In the current investigation, Cu2+-induced LDL oxidation was found to inhibit macrophage selective CE uptake. Impairment of selective CE uptake was significant with LDL oxidized for as little as 30 min and correlated with oxidative fragmentation of apoB. In contrast, LDL aggregation, LDL CE oxidation, and the enhancement of scavenger receptor-mediated LDL particle uptake required at least 3 h of oxidation. Selective CE uptake did not require expression of the LDL receptor (LDL-R) and was inhibited similarly by LDL oxidation in LDL-R−/− versus WT macrophages. Inhibition of selective uptake was also observed when cells were pretreated or cotreated with minimally oxidized LDL, indicating a direct inhibitory effect of this oxLDL on macrophages. Consistent with the effect on LDL CE uptake, minimal LDL oxidation almost completely prevented LDL-induced foam cell formation. These data demonstrate a novel inhibitory effect of mildly oxidized LDL that may reduce foam cell formation in atherosclerosis. 相似文献
4.
We investigated the effects of homocysteine (Hcy) and oxidized low density lipoprotein (ox-LDL) on DNA methylation in the promoter region of the estrogen receptor α (ERos) gene,and its potentialmechanism in the pathogenesis of atherosclerosis.Cultured smooth muscle cells (SMCs) of humans weretreated by Hcy and ox-LDL with different concentrations for different periods of time.The DNA methylationstatus was assayed by nested methylation-specific polymerase chain reaction,the lipids that accumulated inthe SMCs and foam cell formations were examined with Oil red O staining.The proliferation of SMCs wasassayed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method.The results showedthat ox-LDL in moderate concentrations (10-40 mg/L) induced de novo methylation in the promoter regionof the ERα gene of SMCs.However,high concentrations (50 mg/L) of ox-LDL,resulted in demethylation ofERα.The Hcy treatment resulted in de novo methylation in the promoter region of the ERα gene with aconcentration- and treating time-dependent manner,and a dose-dependent promoting effect on SMCproliferation.These data indicated that the two risk factors for atherosclerosis had the function of inducingde novo methylation in the promoter region of the ERα gene of SMCs. However,high concentrations (50rag/L) of ox-LDL induced demethylation,indicating that different risk factors of atherosclerosis with differentpotency might cause different aberrant methylation patterns in the promoter region of the ERα gene.Theatherogenic mechanism of Hcy might involve the hypermethylation of the ERα gene,leading to the proliferationof SMCs in atherosclerotic lesions. 相似文献
5.
Tinahones FJ Gómez-Zumaquero JM Garrido-Sánchez L García-Fuentes E Rojo-Martínez G Esteva I Ruiz de Adana MS Cardona F Soriguer F 《Journal of lipid research》2005,46(3):452-457
Most studies of antibodies to oxidized LDL have been undertaken in patients with different diseases and cardiovascular risk factors. However, very few studies have researched the distribution and determining factors of antibodies to oxidized LDL in the general population. A total of 1,354 persons (817 females and 537 males) aged 5-65 years were included in this study. They were selected randomly from the population census of Málaga, in southern Spain. The females had lower levels of total cholesterol and triglycerides and higher levels of HDL-cholesterol and a very significant increase (P < 0.0001) in levels of anti-oxidized LDL [low density lipoprotein modified by malondialdehyde (MDA-LDL)] antibodies but no difference in levels of immune complexes consisting of LDL and IgG antibodies (anti-LDL immune complex). Younger persons (16-35 years) had higher levels of anti-oxidized LDL (MDA-LDL) antibodies than persons older than 35 years (P = 0.05). Levels of immune complexes were significantly higher (P = 0.05) in persons aged 5-15 years than in persons older than 40 years. A very weak association was found between levels of anti-oxidized LDL (MDA-LDL) antibodies and anti-LDL immune complexes. The higher prevalence of anti-oxidized LDL (MDA-LDL) antibodies in females and young persons is in agreement with studies that found an inverse association between atherosclerosis and the level of these antibodies. 相似文献
6.
7.
【背景】研究发现铜绿假单胞菌(Pseudomonas aeruginosa)与(氧化)低密度脂蛋白(Low density lipoprotein,LDL/oxidized low density lipoprotein,ox LDL)具有特异性相互作用,有报道证实P. aeruginosa表达的Rah U蛋白可以与LDL/ox LDL特异性结合。【目的】验证Rah U蛋白是否是P.aeruginosa表面主要的LDL/ox LDL配体。【方法】大肠杆菌表达Rah U蛋白(r Rah U),ELISA验证r Rah U与LDL/ox LDL的相互作用。利用同源重组的方法构建RahU基因缺失突变株(ΔRahU菌株)作为阴性对照菌株,制备小鼠抗r Rah U抗体,经WesternBlot及ELISA分别检测抗r Rah U抗体与P.aeruginosa野生型菌株膜蛋白中RahU蛋白及菌体表面RahU蛋白的结合。通过ELISA方法对P. aeruginosa野生型菌株及ΔRahU菌株与LDL/ox LDL的结合差异进行比较,并对不同蛋白酶水解ΔRahU菌体表面蛋白后ΔRahU菌株与LDL/ox LDL结合能力的差异进行比较。【结果】经ELISA验证rRahU与LDL/oxLDL存在特异性结合。Western Blot及ELISA方法证实小鼠抗rRahU抗体可以与P. aeruginosa野生型菌株膜蛋白中RahU蛋白及菌体表面RahU蛋白特异性结合,而不与ΔRahU菌株相互作用。P.aeruginosa野生型菌株及ΔRahU菌株与LDL/oxLDL结合能力无显著差异,且蛋白酶水解后ΔRahU菌株与LDL/oxLDL的结合能力相近。【结论】RahU蛋白是P. aeruginosa表面的LDL/oxLDL配体之一,但不是唯一的配体。 相似文献
8.
Saad AF Virella G Chassereau C Boackle RJ Lopes-Virella MF 《Journal of lipid research》2006,47(9):1975-1983
Oxidized low density lipoprotein (OxLDL) is immunogenic and induces autoimmune responses in humans. OxLDL antibodies are predominantly of the proinflammatory IgG1 and IgG3 isotypes. We tested the capacity of immune complexes prepared with copper-oxidized human LDL and affinity chromatography-purified human OxLDL antibodies [OxLDL-immune complexes (ICs)] to activate complement and to induce cytokine release by MonoMac 6 (MM6) cells and by primary human macrophages. The levels of C4d and C3a were significantly higher in human serum incubated with OxLDL-ICs than after incubation with OxLDL or OxLDL antibody, indicating complement activation by the classical pathway. MM6 cells and primary human macrophages were incubated with OxLDL-ICs, with or without prior conditioning with interferon-gamma. After 18 h of incubation, both MM6 cells and primary human macrophages released significantly higher levels of proinflammatory cytokines after incubation with OxLDL-ICs than after incubation with OxLDL or with OxLDL antibody, both in primed and unprimed cells. OxLDL-ICs were more potent activators of MM6 cells than keyhole limpet hemocyanin-ICs. Blocking Fc gamma receptor I (FcgammaRI) with monomeric IgG1 significantly depressed the response of MM6 cells to OxLDL-ICs. In conclusion, human OxLDL-ICs have proinflammatory properties, as reflected by their capacity to activate the classical pathway of complement and to induce proinflammatory cytokine release from MM6 cells and primary human macrophages. 相似文献
9.
Nastaran Faghihnia Sotirios Tsimikas Elizabeth R. Miller Joseph L. Witztum Ronald M. Krauss 《Journal of lipid research》2010,51(11):3324-3330
Low-fat diets have been shown to increase plasma concentrations of lipoprotein(a) [Lp(a)], a preferential lipoprotein carrier of oxidized phospholipids (OxPLs) in plasma, as well as small dense LDL particles. We sought to determine whether increases in plasma Lp(a) induced by a low-fat high-carbohydrate (LFHC) diet are related to changes in OxPL and LDL subclasses. We studied 63 healthy subjects after 4 weeks of consuming, in random order, a high-fat low-carbohydrate (HFLC) diet and a LFHC diet. Plasma concentrations of Lp(a) (P < 0.01), OxPL/apolipoprotein (apo)B (P < 0.005), and OxPL-apo(a) (P < 0.05) were significantly higher on the LFHC diet compared with the HFLC diet whereas LDL peak particle size was significantly smaller (P < 0.0001). Diet-induced changes in Lp(a) were strongly correlated with changes in OxPL/apoB (P < 0.0001). The increases in plasma Lp(a) levels after the LFHC diet were also correlated with decreases in medium LDL particles (P < 0.01) and increases in very small LDL particles (P < 0.05). These results demonstrate that induction of increased levels of Lp(a) by an LFHC diet is associated with increases in OxPLs and with changes in LDL subclass distribution that may reflect altered metabolism of Lp(a) particles. 相似文献
10.
Scavenger receptors were originally defined by their ability to bind and internalize modified lipoproteins. Macrophages express at least six structurally different cell surface receptors for modified forms of LDL that contribute to foam cell formation in atherosclerosis. In addition to their role in the pathology of atherosclerosis, macrophage scavenger receptors, especially SR-A, play critical roles in innate immunity, apoptotic cell clearance, and tissue homeostasis. In this review, we highlight recent advances in understanding the biology of macrophage scavenger receptors as pattern recognition receptors for both infectious nonself (pathogens) and modified self (apoptotic cells and modified LDL). We critically evaluate the potential of scavenger receptors and their ligands as targets for therapeutic intervention in human disease. 相似文献
11.
《Journal of lipid research》2018,59(1):25-34
The functional heterogeneity of HDL is attributed to its diverse bioactive components. We evaluated whether the vasodilatory effects of HDL differed across HDL subpopulations, reflecting their distinct molecular composition. The capacity of five major HDL subfractions to counteract the inhibitory effects of oxidized LDL on acetylcholine-induced vasodilation was tested in a rabbit aortic rings model. NO production, an essential pathway in endothelium-dependent vasorelaxation, was studied in simian vacuolating virus 40-transformed murine endothelial cells (SVECs). Small dense HDL3 subfractions displayed potent vasorelaxing activity (up to +31% vs. baseline, P < 0.05); in contrast, large light HDL2 did not induce aortic-ring relaxation when compared on a total protein basis. HDL3 particles were enriched with sphingosine-1-phosphate (S1P) (up to 3-fold vs. HDL2), with the highest content in HDL3b and -3c that concomitantly revealed the strongest vasorelaxing properties. NO generation was enhanced by HDL3c in SVECs (1.5-fold, P < 0.01), a phenomenon that was blocked by the S1P receptor antagonist, VPC 23019. S1P-enriched reconstituted HDL (rHDL) was a 1.8-fold (P < 0.01) more potent vasorelaxant than control rHDL in aortic rings. Small dense HDL3 particles displayed potent protective effects against oxidative stress-associated endothelium dysfunction, potentially reflecting their elevated content of S1P that might facilitate interaction with S1P receptors and ensuing NO generation. 相似文献
12.
Abdominal obesity is associated with a decreased plasma concentration of HDL cholesterol and with qualitative modifications of HDL, such as triglyceride enrichment. Our aim was to determine, in isolated aorta rings, whether HDL from obese subjects can counteract the inhibitory effect of oxidized low density lipoprotein (OxLDL) on endothelium-dependent vasodilation as efficiently as HDL from normolipidemic, lean subjects. Plasma triglycerides were 74% higher (P < 0.005) in obese subjects compared with controls, and apolipoprotein A-I (apoA-I) and HDL cholesterol concentrations were 12% and 17% lower (P < 0.05), respectively. HDL from control subjects significantly reduced the inhibitory effect of OxLDL on vasodilation [maximal relaxation (E(max)) = 82.1 +/- 8.6% vs. 54.1 +/- 8.1%; P < 0.0001], but HDL from obese subjects had no effect (E(max) = 47.2 +/- 12.5% vs. 54.1 +/- 8.1%; NS). In HDL from abdominally obese subjects compared with HDL from controls, the apoA-I content was 12% lower (P < 0.05) and the triglyceride-to-cholesteryl ester ratio was 36% higher (P = 0.08)). E(max)(OxLDL + HDL) was correlated with HDL apoA-I content and triglyceride-to-cholesteryl ester ratio (r = 0.36 and r = -0.38, respectively; P < 0.05). We conclude that in abdominally obese subjects, the ability of HDL to counteract the inhibitory effect of OxLDL on vascular relaxation is impaired. This could contribute to the increased cardiovascular risk observed in these subjects. 相似文献
13.
Schneider M Witztum JL Young SG Ludwig EH Miller ER Tsimikas S Curtiss LK Marcovina SM Taylor JM Lawn RM Innerarity TL Pitas RE 《Journal of lipid research》2005,46(4):769-778
Efforts to elucidate the role of lipoprotein [a] (Lp[a]) in atherogenesis have been hampered by the lack of an animal model with high plasma Lp[a] levels. We produced two lines of transgenic mice expressing apolipoprotein [a] (apo[a]) in the liver and crossed them with mice expressing human apolipoprotein B-100 (apoB-100), generating two lines of Lp[a] mice. One had Lp[a] levels of approximately 700 mg/dl, well above the 30 mg/dl threshold associated with increased risk of atherosclerosis in humans; the other had levels of approximately 35 mg/dl. Most of the LDL in mice with high-level apo[a] expression was covalently bound to apo[a], but most of the LDL in the low-expressing line was free. Using an enzyme-linked sandwich assay with monoclonal antibody EO6, we found high levels of oxidized phospholipids in Lp[a] from high-expressing mice but not in LDL from low-expressing mice or in LDL from human apoB-100 transgenic mice (P <0.00001), even though all mice had similar plasma levels of human apoB-100. The increase in oxidized lipids specific to Lp[a] in high-level apo[a]-expressing mice suggests a mechanism by which increased circulating levels of Lp[a] could contribute to atherogenesis. 相似文献
14.
Previously, we reported that the expression of zinc-finger protein 143 (ZNF143) was induced by insulin-like growth factor-1
(IGF-1) via reactive oxygen species (ROS)- and phosphatidylinositide-3-kinase (PI3-kinase)-linked pathways in colon cancer
cells. Here, we investigated whether GAIP-interacting protein, C-terminus (GIPC), a binding partner of IGF-1R, is involved
in ZNF143 expression through IGF-1 and IGF-1R signaling in colon cancer cells. The knockdown of GIPC in colon cancer cells
reduced ZNF143 expression in response to IGF-1. IGF-1 signaling through its receptor, leading to the phosphorylation and activation
of the PI3-kinase-Akt pathway and mitogenactivated protein kinases (MAPKs) was unaffected by the knockdown of GIPC, indicating
the independence of the GIPC-linked pathway from PI3-kinase- and MAPK-linked signaling in IGF-1-induced ZNF143 expression.
In accordance with previous results in breast cancer cells (Choi et al., 2010), the knockdown of GIPC reduced ROS production
in response to IGF-1 in colon cancer cells. Furthermore, the knockdown of GIPC reduced the expression of Rad51, which is regulated
by ZNF143, in response to IGF-1 in colon cancer cells. Taken together, these data suggest that GIPC is involved in IGF-1 signaling
leading to ZNF143 expression through the regulation of ROS production, which may play a role for colon cancer tumorigenesis. 相似文献
15.
Role of oxidized human plasma low density lipoproteins in atherosclerosis: effects on smooth muscle cell proliferation 总被引:6,自引:0,他引:6
Subroto Chatterjee 《Molecular and cellular biochemistry》1992,111(1-2):143-147
The effects of oxidized human plasma low density lipoproteins (Ox-LDL) on the proliferation of cultured aortic smooth muscle cells was studied, employing viable cell counting, [3H] thymidine incorporation into DNA, and the release of lactate dehydrogenase (LDH) into the medium. Oxidized LDL (prepared by incubation of LDL with copper sulfate) exerted a concentration-dependent stimulation (2 fold, compared to control) of aortic smooth muscle cell proliferation at low concentrations (0.1 µg – 10 µg/ml medium). On the other hand, at high concentrations (25–200 µg/ml), Ox-LDL produced a pronounced decrease in viable cells, a decrease in the incorporation of [3H] thymidine into DNA, and an increase in the release of LDH in the medium. In this report, the previously postulated biological roles of oxidized-LDL in atherosclerosis are discussed in view of these findings.Abbreviations Ox-LDL
Oxidized human plasma Low Density Lipoproteins
- SMC
Smooth Muscle Cells
- LDH
Lactate Dehydrogenase
- LPC
Lysophosphatidycholine
- PC
Phosphatidylcholine
- TNF
Tumor Necrosis Factor 相似文献
16.
Lipoprotein aggregation protects human monocyte-derived macrophages from OxLDL-induced cytotoxicity 总被引:4,自引:0,他引:4
Oxidative modifications render low density lipoprotein cytotoxic and enhance its propensity to aggregate and fuse into particles similar to those found in atherosclerotic lesions. We showed previously that aggregation of oxidized LDL (OxLDL) promotes the transformation of human macrophages into lipid-laden foam cells (Asmis, R., and J. Jelk. 2000. Large variations in human foam cell formation in individuals. A fully autologous in vitro assay based on the quantitative analysis of cellular neutral lipids. Atherosclerosis. 148: 243-253). Here, we tested the hypothesis that aggregation of OxLDL enhances its clearance by human macrophages and thus may protect macrophages from OxLDL-induced cytotoxicity. We found that increased aggregation of OxLDL correlated with decreased macrophage injury. Using 3H-labeled and Alexa546-labeled OxLDL, we found that aggregation enhanced OxLDL uptake and increased cholesteryl ester accumulation but did not alter free cholesterol levels in macrophages. Acetylated LDL was a potent competitor of aggregated oxidized LDL (AggOxLDL) uptake, suggesting that scavenger receptor A plays an important role in the clearance of AggOxLDL. Inhibitors of actin polymerization, cytochalasin B, cytochalasin D, and latrunculin A, also prevented AggOxLDL uptake and restored OxLDL-induced cytotoxicity. This suggests that OxLDL-induced macrophage injury does not require OxLDL uptake and may occur on the cell surface. Our data demonstrate that aggregation of cytotoxic OxLDL enhances its clearance by macrophages without damage to the cells, thus allowing macrophages to avoid OxLDL-induced cell injury. 相似文献
17.
Ravandi A Boekholdt SM Mallat Z Talmud PJ Kastelein JJ Wareham NJ Miller ER Benessiano J Tedgui A Witztum JL Khaw KT Tsimikas S 《Journal of lipid research》2011,52(10):1829-1836
Levels of IgG and IgM autoantibodies (AA) to malondialdehyde (MDA)-LDL and apoB-immune complexes (ICs) were measured in 748 cases and 1,723 controls in the EPIC-Norfolk cohort and their association to coronary artery disease (CAD) events determined. We evaluated whether AA and IC modify CAD risk associated with secretory phospholipase A(2) (sPLA(2)) type IIA mass and activity, lipoprotein-associated PLA(2) activity, lipoprotein (a) [Lp(a)], oxidized phospholipids on apoB-100 (OxPL/apoB), myeloperoxidase, and high sensitivity C-reactive protein. IgG ICs were higher in cases versus controls (P = 0.02). Elevated levels of IgM AA and IC were inversely associated with Framingham Risk Score and number of metabolic syndrome criteria (p range 0.02-0.001). In regression analyses adjusted for age, smoking, diabetes, LDL-cholesterol, HDL-cholesterol, and systolic blood pressure, the highest tertiles of IgG and IgM AA and IC were not associated with higher risk of CAD events compared with the lowest tertiles. However, elevated levels of IgM IC reduced the risk of Lp(a) (P = 0.006) and elevated IgG MDA-LDL potentiated the risk of sPLA(2) mass (P = 0.018). This epidemiological cohort of initially healthy subjects shows that IgG and IgM AA and IC are not independent predictors of CAD events but may modify CAD risk associated with elevated levels of oxidative biomarkers. 相似文献
18.
19.
Chun-Yang Wu Zhao-Feng Zhou Bin Wang Zun-Ping Ke Zhong-Chun Ge Xian-Jin Zhang 《Journal of cellular biochemistry》2019,120(2):1643-1650
Atherosclerosis has been recognized as a chronic inflammatory disease, which can harden the vessel wall and narrow the arteries. MicroRNAs exhibit crucial roles in various diseases including atherosclerosis. However, so far, the role of miR-328 in atherosclerosis remains barely explored. Therefore, our study concentrated on the potential role of miR-328 in vascular endothelial cell injury during atherosclerosis. In our current study, we observed that oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) apoptosis and inhibited cell viability dose-dependently and time-dependently. In addition, indicated dosage of ox-LDL obviously triggered HUVECs inflammation and oxidative stress process. Then, it was found that miR-328 in HUVECs was reduced by ox-LDL. HUVECs apoptosis was greatly repressed and cell survival was significantly upregulated by overexpression of miR-328. Furthermore, mimics of miR-328 rescued cell inflammation and oxidative stress process induced by ox-LDL. Oppositely, inhibitors of miR-328 strongly promoted ox-LDL-induced endothelial cells injury in HUVECs. By using bioinformatics analysis, high-mobility group box-1 (HMGB1) was predicted as a downstream target of miR-328. HMGB1 has been reported to be involved in atherosclerosis development. The correlation between miR-328 and HMGB1 was validated in our current study. Taken these together, it was implied that miR-328 ameliorated ox-LDL-induced endothelial cells injury through targeting HMGB1 in atherosclerosis. 相似文献