首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Puddu P  Valenti P  Gessani S 《Biochimie》2009,91(1):11-18
Lactoferrin (Lf) is an 80 kDa iron-binding protein of the transferrin family that is abundantly expressed in most biological fluids. It is now recognized that this glycoprotein is a key element in the mammalian immune system, playing an important role in host defence against infection and excessive inflammation. Although the mechanisms underlying Lf immunomodulatory properties have not been fully elucidated yet, evidence indicates that the capacity of this molecule to directly interact with antigen presenting cells (APCs), i.e. monocytes/macrophages and dendritic cells (DCs), may play a critical role. At the cellular level, Lf modulates important aspects of APC biology, including migration and cell activation, whereas at the molecular level it affects expression of soluble immune mediators, such as cytokines, chemokines and other effector molecules, thus contributing to the regulation of inflammation and immunity. While the iron-binding property was originally believed to be solely responsible for the plethora of host defence activities ascribed to Lf, it is now known that other mechanisms contribute to the broad spectrum of anti-infective and anti-inflammatory properties of this protein. Recent results suggest that at least some of the immunomodulatory effects of Lf rely on its capacity to form complexes with lipopolysaccharide (LPS). This review focuses on the effects of Lf on APC biology and function, highlighting known and putative mechanisms that underlie Lf immunomodulatory effects. The importance of LPS-binding capacity of Lf and LPS receptors, as well as of Lf-induced type 1 interferon (IFN) expression in some of these effects is also discussed.  相似文献   

2.
Lactoferrin, a key molecule in immune and inflammatory processes   总被引:1,自引:0,他引:1  
Lactoferrin (Lf) belongs to the family of antimicrobial molecules that constitute the principal defense line of nonvertebrate organisms. In human immunity, their roles are considerably extended, and actually exceed mere direct antimicrobial properties. As a result, Lf is involved in both innate and adaptive immunities where its modulating effects not only help the host fight against microbes but also protect the host against harmful effects of inflammation. Such beneficial effects have been noticed in studies using dietary Lf, without the experimenters always explaining the exact modes of action of Lf. Effects on mucosal and systemic immunities are indeed often observed, which make the roles of Lf tricky to decipher. It is now known that the immunomodulatory properties of Lf are due to its ability to interact with numerous cellular and molecular targets. At the cellular level, Lf modulates the migration, maturation, and functions of immune cells. At the molecular level, in addition to iron binding, interactions of Lf with a plethora of compounds, either soluble or cell-surface molecules, account for its modulatory properties. This paper reviews our current understanding of the mechanisms that explain the regulatory properties of Lf in immune and inflammatory processes.  相似文献   

3.
The surface of the eye provides an inert barrier against infection. Through its unique combination of antimicrobial action and anti-inflammatory activities lactoferrin (Lf) in the tear film plays an important role in the maintenance of ocular health. In order to maintain clarity the eye must provide immunological defense without immunopathology. Along with physical barriers, soluble plasma factors and other proteins such as lysozyme, Lf produced by the acinar cells of the lacrimal gland serves a number of roles in defense for this purpose. Lf in tears provides antimicrobial efficacy by binding free iron thus reducing the availability of iron necessary for microbial growth and survival as well as pathogenesis. Lf has been shown to inhibit biofilm formation and thus may play a role in protecting contact lens surfaces from colonization. Virus particles' entry into epithelial cells is inhibited by Lf while an excess of Lf in tear film is thought to limit the opportunistic Lf-mediated bridging of adenovirus and host cell that occurs in other tissues. Lf dampens the classical complement activation pathway by binding to markers of inflammation and immune activation while pathogen-associated molecular patterns such as lipopolysaccharide (LPS) are targeted by Lf for removal through tears and hydrodynamic flushing. This review focuses on the role of Lf in human tear film and its contribution to ocular health during contact lens wear.  相似文献   

4.
A critical review of the roles of host lactoferrin in immunity   总被引:5,自引:0,他引:5  
Lactoferrin (Lf) is an essential element of innate immunity, which refers to antigen-nonspecific defense mechanisms that a host uses immediately or within hours after exposure to an antigen. Following infection, Lf is released from neutrophils (PMNs) in blood and inflamed tissues and, such as other soluble pattern-recognition receptors of the innate immunity, Lf recognizes unique microbial molecules called pathogen-associated molecular patterns (PAMPs): LPS from the gram-negative cell wall and bacterial unmethylated CpG DNA. However, unlike classical PAMPs receptors involved in the activation of immune cells, Lf may act either as a competitor for these receptors or as a partner molecule, depending on the physiological status of the organism. These immunomodulatory properties are explained by the ability of Lf to interact with proteoglycans and receptors on the surface of mammalian cells: cells of the innate (NK cells, neutrophils, macrophages, basophils, neutrophils and mast cells) and adaptive [lymphocytes and antigen-presenting cells (APCs)] immune systems, and also epithelial and endothelial cells. Through these interactions, Lf is able to modulate the migration, maturation and functions of immune cells, and thus to influence both adaptive and innate immunities. The understanding of the roles of the host-expressed Lf in immunity comes from in vivo and in vitro studies with exogenous Lf which, although informative, rarely reflect the pathological, or non-pathological, conditions in the organism. In this review, the data from the literature will be critically analyzed in order to present a real picture of the regulatory roles of host Lf in immunity.  相似文献   

5.
In recent years, Lf has gained increasing interest as a result of its protective effects against a variety of diseases. While iron binding and interactions with mammalian receptors and microbial components are the best described mechanisms of action, recent studies have provided evidence that Lf properties may be related to immunoregulatory effects on Th1/Th2 cell activities. In vitro and in vivo experiments show that Lf is able to stimulate the differentiation of T cells from their immature precursors through the induction of the CD4 antigen. Studies performed under nonpathogenic conditions have shown distinct results with regard to the ability of Lf to support the proliferation and differentiation of Th cells into the Th1 or the Th2 phenotype. In addition, Lf plays different roles in diseases by affecting the Th1/Th2 cytokine balance in a manner dependent on the host's immune status. Thus, Lf could cause a Th1 polarization in diseases in which the ability to control infection or tumor relies on a strong Th1 response. Lf may also reduce the Th1 component to limit excessive inflammatory responses. Finally, Lf may provide protection against Th1- or Th2-induced diseases, such as autoimmune or allergic diseases, through correction of the Th1/Th2 imbalance.  相似文献   

6.
NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-alpha, IFN-gamma), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-kappaB pathways related with immune response. Our results demonstrated that ATRA suppressed NF-kappaB activity and prevented IkappaBalpha degradation in a dose-dependent way, inhibited IFN-gamma production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo.  相似文献   

7.
This study focuses on the possible therapeutic utility of liposomes in the local treatment of inflammatory disorders, specifically rheumatoid arthritis (RA). Our purpose was to design a depot delivery system of an anti-inflammatory glycoprotein, lactoferrin (Lf), using positive multivesicular liposomes and to investigate its in vivo efficiency. Lactoferrin (Lf) has previously been shown to have therapeutic potential in mice with collagen-induced arthritis (CIA) after intra-articular (i.a.) injection. In order to protect Lf from enzymatic degradation and to maintain an adequate concentration in the joint, liposomes have been used as carriers for controlled drug delivery. Based on our previous findings we compared the ability of free Lf and Lf encapsulated in liposomes to suppress established joint inflammation and to modulate the cytokine response of lymph node (LN) T lymphocytes in DBA/1 mice with CIA. The anti-inflammatory effect of Lf formulated in positive liposomes was more pronounced compared with the free protein. After a single i.a. injection of liposomal Lf the arthritic score significantly decreased continuously for 2 weeks while in the case of free Lf for only 3-4 days. The cytokine levels produced by LN T cells showed decreased pro-inflammatory cytokines (TNF-alpha and IFN-gamma) accompanied by increased anti-inflammatory cytokines (IL-5 and especcialy IL-10) in encapsulated compared with free Lf. When compared with free Lf, liposomal Lf decreased the expression of costimulatory molecules on DCs, reduced pro-inflammatory (TNF) and increased anti-inflammatory (IL-10) cytokine production. Using CIA model we have studied the liposome trafficking following i.a. administration and we have identified DCs as a target for liposomes in the draining LN. Our results suggest that the entrapment of Lf in liposomes may modify its pharmacodynamic profile and could have great potential as controlled delivery system in the treatment of RA and other local inflammatory conditions.  相似文献   

8.
Although both lactoferrin (Lf), a component of the innate immune system of living organisms, and its N-terminal pepsin cleavage product lactoferricin (Lfcin) have anti-herpes activity, the precise mechanisms by which Lf and Lfcin bring about inhibition of herpes infections are not fully understood. In the present study, experiments were carried out to characterize the activity of bovine Lf and Lfcin (BLf and BLfcin) against the Herpes simplex virus-1 (HSV-1). HSV-1 cellular uptake and intracellular trafficking were studied by immunofluorescence microscopy. In comparison to the untreated infected control cells, both the BLf- and BLfcin-treated cells showed a significant reduction in HSV-1 cellular uptake. The few virus particles that were internalized appeared to have a delayed intracellular trafficking. Thus, in addition to their interference with the uptake of the virus into host cells, Lf and Lfcin also exert their antiviral effect intracellularly.  相似文献   

9.
Phosphorylcholine (PC) is increasingly becoming recognised as a carbohydrate-associated component of a wide variety of procaryotic and eucaryotic pathogens. Studies employing nematode PC-containing molecules indicate that it possesses a plethora of immunomodulatory activities. ES-62 is a PC-containing glycoprotein, which is secreted by the rodent filarial nematode Acanthocheilonema viteae and which provides a model system for the dissection of the mechanisms of immune evasion induced by related PC-containing glycoproteins expressed by human filarial nematodes. At concentrations equivalent to those found for PC-containing molecules in the bloodstream of parasitised humans, ES-62 is able to inhibit antigen receptor-stimulated proliferation of B and T lymphocytes in vitro and in vivo. The active component of ES-62 appears to be PC, as PC conjugated to albumin or even PC alone broadly mimic the results obtained with ES-62. PC-induced impaired lymphocyte responsiveness appears to reflect uncoupling of the antigen receptors from key intracellular proliferative signalling events such as the phosphoinositide 3-kinase, protein kinase C and Ras mitogen-activating protein kinase pathways. Although PC-ES-62 can desensitise B and T cells, not all cells are affected, and in fact it is still possible to generate an antibody response to the molecule. Dissection of this response indicates that it is of the TH-2 type. This appears to reflect the ability of ES-62 to direct the polarity of the T cell response by suppressing the production of proinflammatory cytokines, inducing the induction of anti-inflammatory cytokines and by driving the maturation of dendritic cells that direct TH-2 T cell responses.  相似文献   

10.
This study focuses on the possible therapeutic utility of liposomes in the local treatment of inflammatory disorders, specifically rheumatoid arthritis (RA). Our purpose was to design a depot delivery system of an anti-inflammatory glycoprotein, lactoferrin (Lf), using positive multivesicular liposomes and to investigate its in vivo efficiency. Lactoferrin (Lf) has previously been shown to have therapeutic potential in mice with collagen-induced arthritis (CIA) after intra-articular (i.a.) injection. In order to protect Lf from enzymatic degradation and to maintain an adequate concentration in the joint, liposomes have been used as carriers for controlled drug delivery. Based on our previous findings we compared the ability of free Lf and Lf encapsulated in liposomes to suppress established joint inflammation and to modulate the cytokine response of lymph node (LN) T lymphocytes in DBA/1 mice with CIA. The anti-inflammatory effect of Lf formulated in positive liposomes was more pronounced compared with the free protein. After a single i.a. injection of liposomal Lf the arthritic score significantly decreased continuously for 2 weeks while in the case of free Lf for only 3–4 days. The cytokine levels produced by LN T cells showed decreased pro-inflammatory cytokines (TNF-α and IFN-γ) accompanied by increased anti-inflammatory cytokines (IL-5 and especcialy IL-10) in encapsulated compared with free Lf. When compared with free Lf, liposomal Lf decreased the expression of costimulatory molecules on DCs, reduced pro-inflammatory (TNF) and increased anti-inflammatory (IL-10) cytokine production. Using CIA model we have studied the liposome trafficking following i.a. administration and we have identified DCs as a target for liposomes in the draining LN. Our results suggest that the entrapment of Lf in liposomes may modify its pharmacodynamic profile and could have great potential as controlled delivery system in the treatment of RA and other local inflammatory conditions.  相似文献   

11.
Salmi M  Jalkanen S 《FEBS letters》2011,585(11):1543-1550
Homing-associated molecules are of fundamental importance for proper functioning of our immune system as they direct the cells to sites of inflammation to create an immune response. However, they are also responsible for harmful cell trafficking, which takes place in acute and chronic inflammations as well as in tumor progression and metastatic spread of cancer. Therefore, these molecules are potential targets for developing drugs to prevent harmful inflammation and metastases of cancer. In this review, we will discuss about the most recent advances in studies elucidating the role of two homing-associated ecto-enzymes in physiological and pathological cell trafficking and their use as drug targets.  相似文献   

12.
The antimicrobial activity of lactoferrin: Current status and perspectives   总被引:12,自引:0,他引:12  
Nicola Orsi 《Biometals》2004,17(3):189-196
Lactoferrin (Lf) is a multifunctional iron glycoprotein which is known to exert a broad-spectrum primary defense activity against bacteria, fungi, protozoa and viruses. Its iron sequestering property is at the basis of the bacteriostatic effect, which can be counteracted by bacterial pathogens by two mechanisms: the production of siderophores which bind ferric ion with high affinity and transport it into cells, or the expression of specific receptors capable of removing the iron directly from lactoferrin at the bacterial surface. A particular aspect of the problem of iron supply occurs in bacteria (e.g. Legionella) which behave as intracellular pathogens, multiplying in professional and non professional macrophages of the host. Besides this bacteriostatic action, Lf can show a direct bactericidal activity due to its binding to the lipid A part of bacterial LPS, with an associated increase in membrane permeability. This action is due to lactoferricin (Lfc), a peptide obtained from Lf by enzymatic cleavage, which is active not only against bacteria, but even against fungi, protozoa and viruses. Additional antibacterial activities of Lf have also been described. They concern specific effects on the biofilm development, the bacterial adhesion and colonization, the intracellular invasion, the apoptosis of infected cells and the bactericidal activity of PMN. The antifungal activity of Lf and Lfc has been mainly studied towards Candida, with direct action on Candida cell membranes. Even the sensitivity of the genus tricophyton has been studied, indicating a potential usefulness of this molecule. Among protozoa, Toxoplasma gondii is sensitive to Lf, both in vitro and in vivo tests, while Trichomonads can use lactoferrin for iron requirements. As to the antiviral activity, it is exerted against several enveloped and naked viruses, with an inhibition which takes place in the early phases of viral invection, as a consequence of binding to the viral particle or to the cell receptors for virus. The antiviral activity of Lf has also been demonstrated in in vivo model invections and proposed for a selective delivery of antiviral drugs. The new perspectives in the studies on the antimicrobial activity of Lf appear to be linked to its potential prophylactic and therapeutical use in a considerable spectrum of medical conditions, taking advantage of the availability of the recombinant human Lf. But the historical evolution of our knowledge on Lf indicates that its antimicrobial activity must be considered in a general picture of all the biological properties of this multifunctional protein.  相似文献   

13.
Natural killer (NK) cells are a cell of the innate immune system that play an important role in the early response to viral infections and tumours. Natural killer cells are cytolytic, and secrete cytokines that influence the developing antigen-specific immune response. In the present article the NK cell surface molecules regulating effector function, the NK cell effector mechanisms involved in apoptosis, and the role of NK cell effector mechanisms in immune responses are reviewed.  相似文献   

14.
Cancer progression is attributed in part to immune evasion strategies that include lack of co-stimulation, down-regulation of cell surface MHC molecules, and secretion of immunosuppressive factors, such as transforming growth factor-beta (TGF-beta). Gene therapy has been employed to counter these mechanisms of immune evasion by transference of B7.1, IFN-gamma or antisense TGF-beta genes into tumor cells, resulting in cell surface expression of B7.1, upregulation of MHC class I and class II molecules, or elimination of tumor-derived TGF-beta, respectively. Although each of these transgenes has been shown to alter tumorigenicity in murine models, a direct comparison of their efficacy has not been performed. In this study, we have employed a very aggressive, poorly immunogenic and highly metastatic mammary model, 4T1, to compare the efficacy of B7.1, IFN-gamma and antisense TGF-beta gene transfer in stimulating an anti-tumor response. We demonstrate that both IFN-gamma and antisense TGF-beta gene expression significantly reduced the tumorigenicity of these cells compared to mock transduced cells, with IFN-gamma having a greater effect. In contrast, B7.1 gene transfer did not affect the tumorigenicity of 4T1 cells. The anti-tumor response directed against antisense TGF-beta-expressing 4T1 tumors was mediated by CD4+ and CD8+ T cells. However, CD8+ T cells, and not CD4+ T cells, appeared to mediate the anti-tumor response against IFN-gamma-expressing tumors. Treatment of tumor-bearing animals with IFN-gamma or antisense TGF-beta gene-modified tumor cell vaccines reduced the number of clonogenic metastases to the lungs and liver compared to treatment with mock-transduced cells. Finally, in a residual disease model in which the primary tumor was excised and mice were vaccinated with irradiated tumor cells, treatment of mice with vaccinations consisting of 4T1 cells expressing both antisense TGF-beta and IFN-gamma genes was the most effective in prolonging survival.  相似文献   

15.
Apoptotic recognition is innate and linked to a profound immune regulation (innate apoptotic immunity [IAI]) involving anti-inflammatory and immunosuppressive responses. Many of the molecular and mechanistic details of this response remain elusive. Although immune outcomes can be quantified readily, the initial specific recognition events have been difficult to assess. We developed a sensitive, real-time method to detect the recognition of apoptotic cells by viable adherent responder cells, using a photonic crystal biosensor approach. The method relies on characteristic spectral shifts resulting from the specific recognition and dose-dependent interaction of adherent responder cells with nonadherent apoptotic targets. Of note, the biosensor provides a readout of early recognition-specific events in responder cells that occur distal to the biosensor surface. We find that innate apoptotic cell recognition occurs in a strikingly species-independent manner, consistent with our previous work and inferences drawn from indirect assays. Our studies indicate obligate cytoskeletal involvement, although apoptotic cell phagocytosis is not involved. Because it is a direct, objective, and quantitative readout of recognition exclusively, this biosensor approach affords a methodology with which to dissect the early recognition events associated with IAI and immunosuppression.  相似文献   

16.
Function and therapeutic potential of host defence peptides.   总被引:9,自引:0,他引:9  
Cationic host defence (antimicrobial) peptides are an important component of the innate immune systems of a wide variety of plants, animals, and bacteria. Although most of these compounds have direct antimicrobial activities under specific conditions, a greater appreciation for the diversity of functions of these molecules is beginning to develop in the field. In addition to their directly antimicrobial activities, they also have a broad spectrum of activity on the host immune system, with both pro-inflammatory and anti-inflammatory effects being invoked. Increasingly sophisticated approaches to understand the role of host defence peptides in modulating innate immunity are already serving to guide the development of novel therapeutics.  相似文献   

17.
Zhou CL  Lu R  Lin G  Yao Z 《Peptides》2011,32(2):408-414
In the past few years, many researches have provided us with much data demonstrating the abilities of synthetic peptides to impact immune response in vitro and in vivo. These peptides were designed according to the structure of some important protein molecules which play a key role in immune response, so they act with specific targets. The class I and II MHC-derived peptides inhibit the TCR recognition of antigen peptide-MHC complex. Rationally designed CD80 and CD154-binding peptides block the interaction between cell surface costimulatory molecules on antigen-presenting cells (APCs) and T cells. Some peptides were designed to inhibit the activities of cell signal proteins, including JNK, NF-κB and NFAT. Some peptide antagonists competitively bind to important cytokines and inhibit their activities, such as TNF-α, TGF-β and IL-1β inhibitory peptides. Adhesion molecule ICAM-1 derived peptides block the T cell adhesion and activation. These immunoregulatory peptides showed therapeutic effect in several animal models, including collagen-induced arthritis (CIA), autoimmune cystitis model, murine skin transplant model and cardiac allograft model. These results give us important implications for the development of a novel therapy for immune mediated diseases.  相似文献   

18.
Lactoferrin (Lf) is a major iron-binding and multi-functional protein in exocrine fluids such as breast milk and mucosal secretions. The functions of Lf appear dependent upon the iron saturation of the Lf protein and are postulated to be mediated through Lf internalization by a Lf receptor (LfR). However, mechanisms by which LfR mediates Lf internalization in enterocytes are unknown. We now demonstrate that a LfR previously cloned from the small intestine mediates Lf endocytosis in a human enterocyte model (Caco-2 cells). LfR was detected at the plasma membrane by cell surface biotinylation; both apo-Lf and holo-Lf uptake were significantly inhibited in cells transfected with LfR siRNA. Treatments of hypertonic sucrose and clathrin siRNA and co-immunoprecipitation of LfR with clathrin adaptor AP2 indicate that LfR regulates Lf endocytosis via clathrin-mediated endocytosis. Although both iron-free Lf (apo-Lf) and iron-saturated Lf (holo-Lf) enter Caco-2 cells via a similar mechanism and no significant differences were observed in the binding and uptake of apo- and holo-Lf in Caco-2 cells, apo-Lf but not holo-Lf stimulates proliferation of Caco-2 cells. Interestingly, apo-Lf stimulated extracellular signal-regulated mitogen-activated protein kinase (ERK) cascade to a significantly greater extent than holo-Lf and the apo-Lf induced proliferation was significantly inhibited by an ERK cascade inhibitor (U0126) and clathrin siRNA. Taken together, our data suggest that LfR is a major pathway through which Lf is taken up by enterocytes, which occurs independently of iron saturation through clathrin-mediated endocytosis. The differential effects of apo- and holo-Lf are not due to differences in cellular internalization mechanisms.  相似文献   

19.
Proteolytic ectodomain release, a process known as "shedding", has been recognised as a key mechanism for regulating the function of a diversity of cell surface proteins. A Disintegrin And Metalloproteinases (ADAMs) have emerged as the major proteinase family that mediates ectodomain shedding. Dysregulation of ectodomain shedding is associated with autoimmune and cardiovascular diseases, neurodegeneration, infection, inflammation and cancer. Therefore, ADAMs are increasingly regarded as attractive targets for novel therapies. ADAM10 and its close relative ADAM17 (TNF-alpha converting enzyme (TACE)) have been studied in particular in the context of ectodomain shedding and have been demonstrated as key molecules in most of the shedding events characterised to date. Whereas the level of expression of ADAM10 may be of importance in cancer and neurodegenerative disorders, ADAM17 mainly coordinates pro- and anti-inflammatory activities during immune response. Despite the high therapeutical potential of ADAM inhibition, all clinical trials using broad-spectrum metalloprotease inhibitors have failed so far. This review will cover the emerging roles of both ADAM10 and ADAM17 in the regulation of major physiological and developmental pathways and will discuss the suitability of specifically modulating the activities of both proteases as a feasible way to inhibit inflammatory states, cancer and neurodegeneration.  相似文献   

20.
Activation of the aryl hydrocarbon receptor (AhR) by its most potent ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), leads to immune suppression in mice. Although the underlying mechanisms responsible for AhR-mediated immune suppression are not known, previous studies have shown that activation of the AhR must occur within the first 3 days of an immune response and that CD4+ T cells are primary targets. Using the B6-into-B6D2F1 model of an acute graft-vs-host response, we show that activation of AhR in donor T cells leads to the generation of a subpopulation of CD4+ T cells that expresses high levels of CD25, along with CD62L(low), CTLA-4, and glucocorticoid-induced TNFR. These donor-derived CD4+ CD25+ cells also display functional characteristics of regulatory T cells in vitro. These findings suggest a novel role for AhR in the induction of regulatory T cells and provide a new perspective on the mechanisms that underlie the profound immune suppression induced by exposure to TCDD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号