首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Neural tube defects are one of the commonest human birth defects, with more than 0.5% of some populations affected. Mouse models are being used in an attempt to identify genes that could be involved in these malformations. Only two mouse mutations are known to lead to craniorachischisis, failure of closure of almost the entire neural tube. Two recent papers report that the gene for one of these, Loop-tail, has now been identified and sequenced.1, 2 It has been given the designation Ltap/Lpp1 and appears to function in floor plate formation. It will be of great interest to investigate the role of this gene in human neural tube defects.  相似文献   

4.
The posterior nervous system, including the hindbrain and the spinal cord, has been shown to be formed by the transformation of neural plate of anterior character by signals derived from non-axial mesoderm. Although secreted factors, such as fibroblast growth factors (FGFs), Wnts, retinoic acid (RA) and Nodal, have been proposed to be the posteriorizing factors, the mechanism how neural tissue of posterior character is induced and subsequently specified along the anteroposterior axis remains elusive. To identify intercellular signaling molecules responsible for posteriorization of the neural plate as well as to find molecules induced intracellularly by the posteriorizing signal in the caudal neural plate, we screened by in situ hybridization for genes specifically expressed in posterior tissues, including the posterior neural plate and non-axial mesoderm when posteriorization of the neural plate takes place. From a subtracted library differentiating anterior versus posterior neural plate, 420 cDNA clones were tested, out of which 76 cDNA fragments showed expression restricted to the posterior tissue. These clones turned out to represent 32 different genes, including one novel secreted factor and one transmembrane protein. Seven genes were induced by non-axial mesodermal implants and bFGF beads, suggesting that these are among the early-response genes of the posteriorizing signal. Thus, our approach employing cDNA subtraction and subsequent expression pattern screening allows us to clone candidate genes involved in a novel signaling pathway contributing to the formation of the posterior nervous system.  相似文献   

5.
The neural crest is a multipotent population of migratory cells unique to the vertebrate embryo. Neural crest arises at the lateral edge of the neural plate and migrates throughout the embryo to give rise to a wide variety of cell types including peripheral and enteric neurons and glia, craniofacial cartilage and bone, smooth muscle, and pigment cells. Here we review recent studies that have addressed the role of several signaling pathways in the induction of the neural crest. Work in the mouse, chick, Xenopus, and zebrafish have shown that a complex network of genes is activated at the neural plate border in response to neural crest-inducing signals. We also summarize some of these findings and discuss how the differential activation of these genes may contribute to the establishment of neural crest diversity.  相似文献   

6.
To study early responses to neural inducing signals from the organizer (Hensen's node), a differential screen was performed in primitive streak stage chick embryos, comparing cells that had or had not been exposed to a node graft for 5 hours. Three of the genes isolated have been implicated in Programmed Cell Death (PCD): Defender Against Cell Death (Dad1), Polyubiquitin II (UbII) and Ferritin Heavy chain (fth1). We therefore explored the potential involvement of PCD in neural induction. Dad1, UbII and fth1 are expressed in partly overlapping domains during early neural plate development, along with the pro-apoptotic gene Cas9 and the death effector Cas3. Dad1 and UbII are induced by a node graft within 3 hours. TUNEL staining revealed that PCD is initially random, but both during normal development and following neural induction by a grafted node, it becomes concentrated at the border of the forming neural plate and anterior non-neural ectoderm and downregulated from the neural plate itself. PCD was observed in regions of Caspase expression that are free from Dad1, consistent with the known anti-apoptotic role of Dad1. However, gain- and loss-of-function of any of these genes had no detectable effect on cell identity or on neural plate development. This study reveals that early development of the neural plate is accompanied by induction of putative pro- and anti-apoptotic genes in distinct domains. We suggest that the neural plate is protected against apoptosis, confining cell death to its border and adjacent non-neural ectoderm.  相似文献   

7.
8.
9.
Neurulation, formation of the neural tube, requires both intrinsic forces (i.e., those generated within the neural plate) and extrinsic forces (i.e., those generated outside the neural plate in adjacent tissues), but the precise origin of these forces is unclear. In this study, we addressed the question of which tissue produces the major extrinsic force driving bending of the neural plate. We have previously shown that 1) extrinsic forces are required for bending and 2) such forces are generated lateral to the neural plate. Three tissues flank the neural plate prior to its bending: surface epithelium, mesoderm, and endoderm. In the present study, we removed two of these layers, namely, the endoderm and mesoderm, underlying and lateral to the neural plate; bending still occurred, often with complete formation of a neural tube, although the latter usually rotated toward the side of tissue depletion. These results suggest that the surface epithelium, the only tissue remaining after microsurgery, provides the major extrinsic force for bending of the neural plate and that the mesoderm (and perhaps endoderm) stabilizes the neuraxis, maintaining its proper orientation and position on the midline.  相似文献   

10.
11.
12.
13.
14.
We have isolated three cDNA clones that are preferentially expressed in the cement gland of early Xenopus laevis embryos. These clones were used to study processes involved in the induction of this secretory organ. Results obtained show that the induction of this gland coincides with the process of neural induction. Genes specific for the cement gland are expressed very early in the anterior neural plate of stage-12 embryos. This suggests that the anteroposterior polarity of the neural plate is already established during gastrulation. At later stages of development, two of the three genes have secondary sites of expression. The expression of these genes can be induced in isolated animal caps by incubation in 10 mM-NH4Cl, a treatment that is known to induce cement glands.  相似文献   

15.
16.
There has long been controversy concerning the role of the axial mesoderm in the induction and rostrocaudal patterning of the vertebrate nervous system. Here we investigate the neural inducing and regionalising properties of defined rostrocaudal regions of head process/prospective notochord in the chick embryo by juxtaposing these tissues with extraembryonic epiblast or neural plate explants. We localise neural inducing signals to the emerging head process and using a large panel of region-specific neural markers, show that different rostrocaudal levels of the head process derived from headfold stage embryos can induce discrete regions of the central nervous system. However, we also find that rostral and caudal head process do not induce expression of any of these molecular markers in explants of the neural plate. During normal development the head process emerges beneath previously induced neural plate, which we show has already acquired some rostrocaudal character. Our findings therefore indicate that discrete regions of axial mesendoderm at headfold stages are not normally responsible for the establishment of rostrocaudal pattern in the neural plate. Strikingly however, we do find that caudal head process inhibits expression of rostral genes in neural plate explants. These findings indicate that despite the ability to induce specific rostrocaudal regions of the CNS de novo, signals provided by the discrete regions of axial mesendoderm do not appear to establish regional differences, but rather refine the rostrocaudal character of overlying neuroepithelium.  相似文献   

17.
18.
The secreted molecule Sonic hedgehog (Shh) is crucial for floor plate and ventral brain development in amniote embryos. In zebrafish, mutations in cyclops (cyc), a gene that encodes a distinct signal related to the TGF(beta) family member Nodal, result in neural tube defects similar to those of shh null mice. cyc mutant embryos display cyclopia and lack floor plate and ventral brain regions, suggesting a role for Cyc in specification of these structures. cyc mutants express shh in the notochord but lack expression of shh in the ventral brain. Here we show that Cyc signalling can act directly on shh expression in neural tissue. Modulation of the Cyc signalling pathway by constitutive activation or inhibition of Smad2 leads to altered shh expression in zebrafish embryos. Ectopic activation of the shh promoter occurs in response to expression of Cyc signal transducers in the chick neural tube. Furthermore an enhancer of the shh gene, which controls ventral neural tube expression, is responsive to Cyc signal transducers. Our data imply that the Nodal related signal Cyc induces shh expression in the ventral neural tube. Based on the differential responsiveness of shh and other neural tube specific genes to Hedgehog and Cyc signalling, a two-step model for the establishment of the ventral midline of the CNS is proposed.  相似文献   

19.
20.
Gene duplication is a fundamental source of a new gene in the process of evolution. A duplicated gene is able to accept many kinds of mutations that could lead to loss of function or novel phenotypic diversity. Alternatively, the duplicated genes complementarily lose part of their functions to play original roles as a set of genes, a process called subfunctionalization. Pseudotetraploid frog Xenopus laevis has four sets of genes, and it is generally thought that the alloalleles in X. laevis have mutually indistinguishable functions. In this paper, we report differences and similarities between Xhairy2a and Xhairy2b in the neural crest, floor plate, and prechordal plate. Knockdown studies showed that Xhairy2a seems not to function in the neural crest, although both of them are required in the floor plate and the prechordal plate. Temporal expression pattern analysis revealed that Xhairy2a is a maternal factor having lower zygotic expression than Xhairy2b, while Xhairy2b is not loaded in the egg but has high zygotic expression. Spatial expression pattern analysis demonstrated that future floor plate expression is shared by both alloalleles, but Xhairy2b expression in the neural crest is much higher than Xhairy2a expression, consistent with the results of individual knockdown experiments. Therefore, our data suggest that subfunctionalization occurs in Xhairy2. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号