首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonance energy transfer (RET) is typically limited to distances below 60 A, which can be too short for some biomedical assays. We examined a new method for increasing the RET distances by placing donor- and acceptor-labeled DNA oligomers between two slides coated with metallic silver particles. A N,N'-(dipropyl)-tetramethylindocarbocyanine donor and a N,N'-(dipropyl)-tetramethylindodicarbocyanine acceptor were covalently bound to opposite 5' ends of complementary 23 base pair DNA oligomers. The transfer efficiency was 25% in the absence of silver particles or if only one slide was silvered, and it increased to an average value near 64% between two silvered slides. The average value of the Forster distance increased from 58 to 77 A. The energy transfer data were analyzed with a model assuming two populations of donor-acceptor pairs: unaffected and affected by silver island films. In an affected fraction of about 28%, the apparent energy transfer efficiency is near 87% and the Forster distance increases to 119 A. These results suggest the use of metallic silver particles to increase the distances over which RET occurs in biomedical and biotechnology assays.  相似文献   

2.
We examined the effects of metallic silver particles on resonance energy transfer (RET) between fluorophores covalently bound to DNA. A coumarin donor and a Cy3 acceptor were positioned at opposite ends of a 23-bp double helical DNA oligomer. In the absence of silver particles the extent of RET is near 9%, consistent with a Forster distance R(0) near 50 A and a donor to acceptor distance near 75 A. The transfer efficiency increased when the solution of AMCA-DNA-Cy3 was placed between two quartz plates coated with silver island films to near 64%, as determined by both steady-state and time-resolved measurements. The apparent R(0) in the presence of silver island films increases to about 110 A. These values of the transfer efficiency and R(0) represent weighted averages for donor-acceptor pairs near and distant from the metallic surfaces, so that the values at an optimal distance are likely to be larger. The increased energy transfer is observed only between two sandwiched silvered slides. When we replaced one silvered slide with a quartz plate the effect vanished. Also, the increased energy transfer was not observed for silvered slides separated more than a few micrometers. These results suggest the use of metal-enhanced RET in PCR, hybridization, and other DNA assays, and the possibility of controlling energy transfer by the distance between silver surfaces.  相似文献   

3.
Murata S  Herman P  Lakowicz JR 《Cytometry》2001,43(2):94-100
BACKGROUND: Fluorescence lifetime imaging microscopy (FLIM) is becoming an important tool in cellular imaging. In FLIM, the image contrast is concentration insensitive, whereas it is sensitive to the local environment and interactions of fluorophores such as fluorescence resonance energy transfer (RET). METHODS: Fluorescence microscopy, lifetime imaging, and texture analysis were used to study the spatial distribution of fluorophores bound to nuclear DNA. 3T3-Swiss albino mice fibroblast nuclei were labeled with Hoechst 33258 (Ho), an AT-specific dye, and 7-aminoactinomycin D (7-AAD), a GC-specific dye. Ho is a RET donor to the 7-AAD acceptor. RESULTS: Texture analysis of 50 alcohol-fixed nuclei quantitatively showed changes of spatial distribution of apparent donor lifetimes. RET increased the spatial heterogeneity in the phase and modulation lifetime images. In most of the doubly stained cells (about 80%), the phase and modulation lifetime distributions were spatially homogeneous. In about 20% of the cells, we noticed that lower phase and modulation lifetimes caused by RET were correlated with regions of high Ho intensity in the nuclei. CONCLUSIONS: The spatial lifetime heterogeneity of Ho in presence of 7-AAD seems to be caused by RET between closely spaced strands in the three dimensionally condensed regions of DNA.  相似文献   

4.
Murata S  Herman P  Lin HJ  Lakowicz JR 《Cytometry》2000,41(3):178-185
BACKGROUND: DNA fluorescence dyes have been used to study DNA dynamics, chromatin structure, and cell cycle analysis. However, most microscopic fluorescence studies of DNA use only steady-state measurements and do not take advantage of the additional information content of the time-resolved fluorescence. In this paper, we combine fluorescence imaging of DNA with time-resolved measurements to examine the proximity of donors and acceptors bound to chromatin. METHODS: We used frequency-domain fluorescence lifetime imaging microscopy to study the spatial distribution of DNA-bound donors and acceptors in fixed 3T3 nuclei. Over 50 cell nuclei were imaged in the presence of an AT-specific donor, Hoechst 33258 (Ho), and a GC-specific acceptor, 7-aminoactinomycin D (7-AAD). RESULTS: The intensity images of Ho alone showed a spatially irregular distribution due to the various concentrations of DNA or AT-rich DNA throughout the nuclei. The lifetime imaging of the Ho-stained nuclei was typically flat. Addition of 7-AAD decreased the fluorescence intensity and lifetime of the Ho-stained DNA. The spatially dependent phase and modulation values of Ho in the presence of 7-AAD showed that the Ho decay becomes nonexponential, as is expected for a resonance energy transfer (RET) with multiple acceptors located over a range of distances. In approximately 40 nuclei, the intensity and lifetime decrease was spatially homogeneous. In approximately 10 nuclei, addition of 7-AAD resulted in a spatially nonhomogeneous decrease in intensity and lifetime. The RET efficiency was higher in G(2)/M than in G(0/1) phase cells. CONCLUSIONS: Because RET efficiency depends on the average distance between Ho and 7-AAD, data suggest that the heterogeneity of lifetimes and spatial variation of the RET efficiency are caused by the presence of highly condensed regions of DNA in nuclei.  相似文献   

5.
Membrane fusion of a phospholipid vesicle with a planar lipid bilayer is preceded by an initial prefusion stage in which a region of the vesicle membrane adheres to the planar membrane. A resonance energy transfer (RET) imaging microscope, with measured spectral transfer functions and a pair of radiometrically calibrated video cameras, was used to determine both the area of the contact region and the distances between the membranes within this zone. Large vesicles (5-20 microns diam) were labeled with the donor fluorophore coumarin- phosphatidylethanolamine (PE), while the planar membrane was labeled with the acceptor rhodamine-PE. The donor was excited with 390 nm light, and separate images of donor and acceptor emission were formed by the microscope. Distances between the membranes at each location in the image were determined from the RET rate constant (kt) computed from the acceptor:donor emission intensity ratio. In the absence of an osmotic gradient, the vesicles stably adhered to the planar membrane, and the dyes did not migrate between membranes. The region of contact was detected as an area of planar membrane, coincident with the vesicle image, over which rhodamine fluorescence was sensitized by RET. The total area of the contact region depended biphasically on the Ca2+ concentration, but the distance between the bilayers in this zone decreased with increasing [Ca2+]. The changes in area and separation were probably related to divalent cation effects on electrostatic screening and binding to charged membranes. At each [Ca2+], the intermembrane separation varied between 1 and 6 nm within each contact region, indicating membrane undulation prior to adhesion. Intermembrane separation distances < or = 2 nm were localized to discrete sites that formed in an ordered arrangement throughout the contact region. The area of the contact region occupied by these punctate attachment sites was increased at high [Ca2+]. Membrane fusion may be initiated at these sites of closest membrane apposition.  相似文献   

6.
Resonance energy transfer (RET) is widely used to detect proximity between biomolecules. In transparent solution the maximum donor-to-acceptor distance for RET is about 70 A. We measured the effects of metallic silver island films on RET from the intrinsic tryptophan of a protein to a bound probe as the acceptor. These preliminary experiments revealed a dramatic increase in the apparent F?rster distance increasing from 28.6 to 63 A. These results suggest the use of silver island films for detecting long range proximity between biomolecules and for biotechnology applications based on RET.  相似文献   

7.
Previous studies have shown that Ebola virus' secretory glycoprotein (sGP) binds to Fc gamma RIIIB (CD16b) and inhibits L-selectin shedding. In this study, we test the hypothesis that sGP interferes with the physical linkage between CR3 and Fc gamma RIIIB. Neutrophils were stained with rhodamine-conjugated anti-CD16b mAb (which does not inhibit sGP binding) and fluorescein-conjugated anti-CR3 mAb reagents and then incubated in media with or without sGP. Physical proximity between fluorochrome-labeled CR3 and Fc gamma RIIIB on individual cells was measured by resonance energy transfer (RET) imaging, quantitative RET microfluorometry, and single-cell imaging spectrophotometry. Cells incubated with control supernatants displayed a significant RET signal, indicative of physical proximity (<7 nm) between CR3 and Fc gamma RIIIB. In contrast, cells exposed to sGP showed a significant reduction in the CR3-Fc gamma RIIIB RET signal using these methods. Interestingly, colocalization and cocapping of CR3 and Fc gamma RIIIB were not affected, suggesting that the proximity of these two receptors is reduced without triggering dissociation. Thus, sGP alters the physical linkage between Fc gamma RIIIB and CR3.  相似文献   

8.
Resonance energy transfer (RET) between the tryptophan residues of lysozyme as donors and anthrylvinyl-labeled phosphatidylcholine (AV-PC) or phosphatidylglycerol (AV-PG) as acceptors has been examined to gain insight into molecular level details of the interactions of lysozyme with the lipid bilayers composed of PC with 10, 20, or 40 mol% PG. Energy transfer efficiency determined from the enhanced acceptor fluorescence was found to increase with content of the acidic lipid and surface coverage. The results of RET experiments performed with lipid vesicles containing 40 mol% PG were quantitatively analyzed in terms of the model of energy transfer in two-dimensional systems taking into account the distance dependence of orientation factor. Evidence for an interfacial location of the two predominant lysozyme fluorophores, Trp62 and Trp108, was obtained. The RET enhancement observed while employing AV-PG instead of AV-PC as an energy acceptor was interpreted as arising from the ability of lysozyme to bring about local demixing of the neutral and charged lipids in PC/PG model membranes.  相似文献   

9.
Resonance energy transfer (RET) between the tryptophan residues of lysozyme as donors and anthrylvinyl-labeled phosphatidylcholine (AV-PC) or phosphatidylglycerol (AV-PG) as acceptors has been examined to gain insight into molecular level details of the interactions of lysozyme with the lipid bilayers composed of PC with 10, 20, or 40 mol% PG. Energy transfer efficiency determined from the enhanced acceptor fluorescence was found to increase with content of the acidic lipid and surface coverage. The results of RET experiments performed with lipid vesicles containing 40 mol% PG were quantitatively analyzed in terms of the model of energy transfer in two-dimensional systems taking into account the distance dependence of orientation factor. Evidence for an interfacial location of the two predominant lysozyme fluorophores, Trp62 and Trp108, was obtained. The RET enhancement observed while employing AV-PG instead of AV-PC as an energy acceptor was interpreted as arising from the ability of lysozyme to bring about local demixing of the neutral and charged lipids in PC/PG model membranes.  相似文献   

10.
Some applications of resonance energy transfer (RET) method to distance estimation in membrane systems are considered. The model of energy transfer between donors and acceptors randomly distributed over parallel planes localized at the outer and inner membrane leaflets is presented. It is demonstrated that RET method can provide evidence for specific orientation of the fluorophore relative to the lipid-water interface. An approach to estimating the depth of the protein penetration in lipid bilayer is suggested.  相似文献   

11.
The model of resonance energy transfer (RET) in membrane systems containing donors randomly distributed over two parallel planes separated by fixed distance and acceptors confined to a single plane is presented. Factors determining energy transfer rate are considered with special attention being given to the contribution from orientational heterogeneity of the donor emission and acceptor absorption transition dipoles. Analysis of simulated data suggests that RET in membranes, as compared to intramolecular energy transfer, is substantially less sensitive to the degree of reorientational freedom of chromophores due to averaging over multiple donor-acceptor pairs. The uncertainties in the distance estimation resulting from the unknown mutual orientation of the donor and acceptor are analyzed.  相似文献   

12.
Protein labeling with green fluorescent protein derivatives has become an invaluable tool in cell biology. Protein quantification, however, is difficult when cells express constructs with overlapping fluorescent emissions. Under these conditions, signal separation using emission filters is inherently inefficient. Spectral imaging solves this problem by recording emission spectra directly. Unfortunately, linear unmixing, the algorithm used for quantifying individual fluorophores from emission spectra, fails when resonance energy transfer (RET) is present. We therefore sought to develop an unmixing algorithm that incorporates RET. An equation for spectral emission incorporating RET was derived and an assay based on this formalism, spectral RET (sRET), was developed. Standards with defined RET efficiencies and with known Cerulean/Venus ratios were constructed and used to test sRET. We demonstrate that sRET analysis is a comprehensive, photon-efficient method for imaging RET efficiencies and accurately determines donor and acceptor concentrations in living cells.  相似文献   

13.
The resonance energy transfer (RET) from a cylindrical assembly of donors to acceptors in a plane was investigated, and the dependence the average RET rate (kT) on the cylinder's size, shape, and proximity to the acceptor plane was determined. This geometry provides a model for the RET from a donor-containing protein to acceptors embedded in an associated phospholipid mono- or bilayer. The determination of kT for a series of acceptors at different levels in the phospholipid layer is shown to provide information on the protein's relationship to the phospholipid layer. Two models for the donor (D) and acceptor (A) distributions are employed: (a) The D's and A's are uniformly distributed in the cylinder and the plane, respectively, and analytical expressions for kT in terms of experimental parameters are derived. (b) The RET rates between all D, A pairs within the cylinder and in the plane are calculated and averaged for a large number of random D and A distributions. The average transfer rates obtained by the two approaches are in agreement and the width of the frequency distribution of kT for the latter provides an estimate of the error to be expected when, as is usually the case, the true D and A locations are unknown. This methodology is illustrated by analyzing RET from the 37 tryptophan residues of the apo-B100 protein to a series of pyrenylphosphatidylcholine acceptors inserted in the phospholipid monolayer of the human low-density lipoprotein particle, and it is concluded that significant portions of the protein penetrate the phospholipid layer.  相似文献   

14.
Celiac disease (CD) is an immune-mediated disorder affecting genetically predisposed subjects. It is caused by the ingestion of wheat gluten and related prolamins. A final diagnosis for this disease can be obtained by examination of jejunal biopsies. Nevertheless, different analytical approaches have been established to detect the presence of anti-tissue transglutaminase antibodies that represent a serological hallmark of the disease. In this work, we explored a new method for the diagnosis of CD based on the detection of serum anti-transglutaminase antibodies by resonance energy transfer (RET) between donor molecules and acceptor molecules. In particular, we labeled the liver transglutaminase (tTG) enzyme from guinea pig and the rabbit anti-tTG antibodies with a couple of fluorescence probes that are able to make RET if they are located within with Förster distance. We labeled tTG with the fluorescence probe DyLight 594 as donor and the anti-tTG antibodies with the fluorescence probe DyLight 649 as acceptor. However, due to the large size of the formed complex (tTG/anti-tTG), and consequently to the low efficiency energy transfer process between the donor–acceptor molecules, we explored a new experimental approach that allows us to extend the utilizable range of RET between donor:acceptor pairs by using one single molecule as donor and multiple molecules as energy acceptors, instead of using a single acceptor molecule as usually occurs in RET experiments. The obtained results clearly show that the use of one donor and multiacceptor strategy enables for a simple and rapid detection of serum anti-transglutaminase antibodies. In addition, our results point out that it is possible to consider this approach as a new method for a wide variety of analytical assays.  相似文献   

15.
A conventional fluorescence microscope was modified to observe the sites of resonance energy transfer (RET) between fluorescent probes in model membranes and in living cells. These modifications, and the parameters necessary to observe RET between membrane-bound fluorochromes, are detailed for a system that uses N-4-nitrobenzo-2-oxa-1,3-diazole (NBD) or fluorescein as the energy donor and sulforhodamine as the energy acceptor. The necessary parameters for RET in this system were first optimized using liposomes. Both quenching of the energy donor and sensitized fluorescence of the energy acceptor could be directly observed in the microscope. RET microscopy was then used in cultured fibroblasts to identify those intracellular organelles labeled by the lipid probe, N-SRh-decylamine (N-SRh-C10). This was done by observing the sites of RET in cells doubly labeled with N-SRh-C10 and an NBD-labeled lipid previously shown to label the endoplasmic reticulum, mitochondria, and nuclear envelope. RET microscopy was also used in cells treated with fluorescein-labeled Lens culinaris agglutinin and a sulforhodamine derivative of phosphatidylcholine to examine the internalization of plasma membrane lipid and protein probes. After internalization, the fluorescent lectin resided in most, but not all of the intracellular compartments labeled by the fluorescent lipid, suggesting sorting of the membrane-bound lectin into a subset of internal compartments. We conclude that RET microscopy can co-localize different membrane-bound components at high resolution, and may be particularly useful in examining temporal and spatial changes in the distribution of fluorescent molecules in membranes of the living cell.  相似文献   

16.
Johnson EA  Evron Y  McCarty RE 《Biochemistry》2001,40(6):1804-1811
The intrinsic fluorescence of the catalytic portion of the chloroplast ATP synthase (CF1) is quenched when cysteine 322, the penultimate amino acid of the gamma subunit, is specifically labeled with pyrene maleimide (PM). The epsilon subunit of CF1 contains the only two residues of tryptophan, which dominate the intrinsic fluorescence of unlabeled CF1. CF1 deficient in the epsilon subunit (CF1-epsilon) was reconstituted with mutant epsilon subunits in which phenylalanine replaced tryptophan at position 15 (epsilonW15F) and position 57 (epsilonW15/57F). CF1(epsilonW15F) containing a single tryptophan, epsilonW57, was labeled with PM at gammaC322. Resonance energy transfer (RET) from epsilonW57 to PM on gammaC322 occurred with an efficiency of energy transfer of 20%. RET was also observed from epsilonW57 to PM attached to the disulfide thiols of the gamma subunit (gammaC199,205) with an efficiency of approximately 45%. The R(o) (the distance at which the efficiency of energy transfer is 50%) for the epsilonW57 and PM donor/acceptor pair is 30 A, indicating that both gammaC322 and gammaC199,205 must be within 40 A of epsilonW57. These RET measurements show that both gammaC322 and gammaC199,205 are located near the base of the alpha/beta hexamer. This places the C-terminus of CF1 gamma much closer to epsilon than hypothesized based on homology to crystal structures of mitochondrial F1. These new RET measurements also allow the alignment of the predicted epsilon subunit structure. The orientation is similar to that predicted from cross-linking and mutational studies for the epsilon subunit of Escherichia coli F1.  相似文献   

17.
Radical ion pairs generated by photoinduced electron transfer may undergo return electron transfer (RET) in pairs of singlet or triplet multiplicity. RET efficiencies are determined by the free energy of RET and the topologies of the potential surfaces of parent molecule, radical ion and triplet state. If radical ion geometries are different from the corresponding triplet states, RET occurs either with cleavage ("dissociative" RET; 1,2-diphenylcyclopropane radical cations) or formation of C-C bonds ("associative" RET; norbornadiene radical cation). Radical ions of some strained ring compounds spontaneously undergo ring-opening; RET to such species form ring-opened triplets without major geometry changes. CIDNP spectroscopy offers unique insights into triplet RET.  相似文献   

18.
We propose a broadband mid-infrared super-resolution imaging system comprising a metallic nanorod-bridged dimer array. The imaging array enables super-resolution imaging of shaped dipole sources in the near field. A charge transfer plasmon (CTP) appears in a metallic nanorod-bridged dimer. By varying the radius of the junction, the plasmon resonance wavelength of CTP mode can be tuned into the mid-infrared region. Here, we investigate the broadband super-resolution imaging of the incoherent and coherent dipole sources at mid-infrared wavelengths. With the array pitch varying, we calculate the cross-sectional field intensity distributions at the source plane and the image plane by using the finite element method. The simulation results indicate that the broadband incoherent and coherent super-resolution imaging can be realized at mid-infrared wavelengths with the imaging array. The image quality is sensitively dependent on the source coherent, the array pitch, and the distance from the image plane to the array. In the same structural parameters, the image quality of coherent source of in-phase is lower than that of incoherent source. Increasing the array pitch improves the image quality but it also increases the size of the array. By reasonably choosing the array pitch of the array, the spatial resolution of ~λ/109 and ~λ/73 is obtained corresponding to the incoherent imaging case and coherent imaging case at the mid-infrared wavelength of 4390 nm. Moreover, the larger image-array distance results in the lower image quality.  相似文献   

19.
Resonance energy transfer (RET) between anthrylvinyl-labeled phosphatidylcholine (AV-PC) or phosphatidylglycerol (AV-PG) as donors and the heme groups of cytochrome c (cyt c) as acceptors was examined in PC/PG model membranes containing 10, 20 or 40 mol% PG with an emphasis on evaluating lipid demixing caused by this protein. The differences between AV-PC and AV-PG RET profiles observed at PG content 10 mol% were attributed to cyt c ability to produce segregation of acidic lipids into lateral domains. The radius of lipid domains recovered using Monte-Carlo simulation approach was found not to exceed 4 nm pointing to the local character of cyt c-induced lipid demixing. Increase of the membrane PG content to 20 or 40 mol% resulted in domain dissipation as evidenced by the absence of any RET enhancement while recruiting AV-PG instead of AV-PC.  相似文献   

20.
Bussiek M  Tóth K  Schwarz N  Langowski J 《Biochemistry》2006,45(36):10838-10846
The effect of the salt concentration, linker histone H1, and histone acetylation on the structure of trinucleosomes reconstituted on a 608 bp DNA containing one centered nucleosome positioning signal was studied. Fluorescence resonance energy transfer (FRET) in solution and scanning force microscopy (SFM) measurements in liquid were done on the same samples. The distance between the DNA ends decreases under the effect of an increasing salt concentration and also by the incorporation of the H1 linker histone. A decrease of internucleosomal center-to-center (cc) distances by H1 was observed that was limited to a minimal value of about 20 nm. The distribution of the angle formed between consecutive nucleosomes was narrowed by H1. The effect of acetylation of all histones leads to decompaction, measured as an increased distance between the DNA ends, and also increased the internucleosomal distances. Selective acetylation of histone H4, however, compacts the structure as measured by FRET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号