首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Several enzymatic sources of reactive oxygen species (ROS) were described as potential reasons of eNOS uncoupling in diabetes mellitus. In the present study, we investigated the effects of AT(1)-receptor blockade with chronic telmisartan (25 mg/kg/day, 6.5 weeks) therapy on expression of the BH(4)-synthesizing enzyme GTP-cyclohydrolase I (GCH-I), eNOS uncoupling, and endothelial dysfunction in streptozotocin (STZ, 60 mg/kg iv, 7 weeks)-induced diabetes mellitus (type I). Telmisartan therapy did not modify blood glucose and body weight. Aortas from diabetic animals had vascular dysfunction as revealed by isometric tension studies (acetylcholine and nitroglycerin potency). Vascular and cardiac ROS produced by NADPH oxidase, mitochondria, eNOS, and xanthine oxidase were increased in the diabetic group as was the expression of NADPH oxidase subunits at the protein level. The expression of GCH-I and the phosphorylation of eNOS at Ser1177 was decreased by STZ treatment. Therapy with telmisartan normalized these parameters. The present study demonstrates for the first time that AT(1)-receptor blockade by telmisartan prevents downregulation of the BH(4) synthase GCH-I and thereby eNOS uncoupling in experimental diabetes. In addition, telmisartan inhibits activation of superoxide sources like NADPH oxidase, mitochondria, and xanthine oxidase. These effects may explain the beneficial effects of telmisartan on endothelial dysfunction in diabetes.  相似文献   

3.
In diabetic states, endothelial dysfunction is related to vascular complications. We hypothesized that insulin-induced relaxation and the associated proline-rich tyrosine kinase 2 (Pyk2)/Src/Akt pathway would be abnormal in aortas from the Goto-Kakizaki (GK) type 2 diabetic rat, which exhibits hyperglycemia/insulin resistance, and that losartan treatment of such rats (25 mg·kg(-1)·day(-1) for 2 wk) would correct these abnormalities. Endothelium-dependent relaxation was by measuring isometric force in helical strips of aortas from four groups, each of 30 rats: normal Wistar (control), GK (diabetic), losartan-treated normal, and losartan-treated GK. Pyk2, Src, and Akt/endothelial nitric oxide synthase (eNOS) signaling-pathway protein levels and activities were assayed mainly by Western blotting and partly by immunohistochemistry. In GK (vs. age-matched control) aortas, various insulin-stimulated levels [nitric oxide production and the phosphorylations of eNOS at Ser(1177), of Akt at Thr(308), of phosphoinositide-dependent kinase-1 (PDK1) at Ser(241), of Src at Tyr(416), and of Pyk2 at Tyr(579)] were all significantly decreased and unaffected by either Src inhibitor (PP2) or Pyk2 inhibitor (AG17), while the insulin-stimulated levels of insulin receptor substrate (IRS)-1 phosphorylation at Ser(307), total-eNOS, and total-Akt were significantly increased. Losartan treatment normalized these altered levels. The insulin-stimulated phosphorylation levels of Src/PDK1/Akt/eNOS, but not of Pyk2, were decreased by PP2 in control and losartan-treated GK, but not in GK, aortas. These results suggest that in the GK diabetic aorta increased phospho-IRS-1 (at Ser(307)) and decreased Pyk2/Src activity inhibit insulin-induced stimulation of the PDK/Akt/eNOS pathway. The observed increase in phospho-IRS-1 (at Ser(307)) may result from increased angiotensin II activity.  相似文献   

4.
This study has been designed to investigate the role of phosphatidyl-inositol 3-kinase-γ (PI3Kγ) in deoxycorticosterone acetate salt (DOCA) hypertension induced vascular endothelium dysfunction. Wistar rats were uninephrectomised and DOCA (40 mg·(kg body mass)(-1), subcutaneous injection) was administered twice weekly for 6 weeks to produce hypertension. Rats with mean arterial blood pressure ≥ 140 mm Hg (1 mm Hg = 133.322 Pa) were selected as hypertensive. Vascular endothelium dysfunction was assessed in terms of attenuation of acetylcholine-induced endothelium-dependent relaxation (isolated aortic ring preparation), decrease in serum nitrate and (or) nitrite level, as well as reduced level of glutathione and disruption of integrity of vascular endothelium (histopathology). Five weeks of DOCA administration were followed by 7 days of daily administration of PI3Kγ inhibitor (5-[[5-(4-fluorophenyl)-2-furanyl]methylene]-2,4-thiazolidinedione (CAY10505), 0.6 mg·kg(-1), per os (p.o.)), atorvastatin (30 mg·kg(-1), p.o.), and losartan (25 mg·kg(-1), p.o.) (positive control of hypertension), which significantly improved acetylcholine-induced endothelium dependent relaxation, serum nitrate and (or) nitrite level, glutathione level, and the vascular endothelial lining in hypertensive rats.Therefore, it may be concluded that CAY10505, a specific inhibitor of PI3Kγ, improves hypertension-associated vascular endothelial dysfunction. Thus, inhibition of PI3Kγ might be a useful approach in the therapeutics of vascular endothelium dysfunction.  相似文献   

5.
Estrogen deficiency was produced in female Sprague-Dawley rats by surgical removal of both the ovaries and these animals were used 4 weeks later. Endothelium-dependent and endothelium-independent relaxations due to acetylcholine and sodium nitroprusside were observed respectively, in isolated rat thoracic aortic ring preparation. Extent of lipid peroxidation was measured by estimating serum TBARS. Integrity of vascular endothelium was assessed using hematoxylin and eosin staining. Generation of nitric oxide was measured indirectly, by estimating serum and urinary nitrite/nitrate concentration. Ovariectomy produced significant vascular endothelial dysfunction, measured in terms of reduced acetylcholine-induced endothelium-dependent vasorelaxation, serum and urinary nitrite/nitrate concentration and impairment of integrity of vascular endothelium. Administration of daidzein (0.2 mgkg(-1)day(-1), sc 0.4 mgkg(-1)day(-1), sc and 0.8 mgkg(-1)day(-1), sc) and Atorvastatin (30 mgkg(-1)day(-1), po Positive Control) for one week markedly improved vascular endothelial dysfunction due to increase in nitric oxide bioavailability perhaps by inhibiting caveolin-1 and activation of PI3K-AKT pathway.  相似文献   

6.
The study has been designed to investigate the effect of benfotiamine and fenofibrate in diabetes-induced experimental vascular endothelial dysfunction (VED) and nephropathy. The single administration of streptozotocin (STZ) (50 mg/kg, i.p.) produced diabetes, which was noted to develop VED and nephropathy in 8 weeks. The diabetes produced VED by attenuating acetylcholine-induced endothelium dependent relaxation, impairing the integrity of vascular endothelium, decreasing serum nitrite/nitrate concentration and increasing serum TBARS and aortic superoxide anion generation. Further, diabetes altered the lipid profile by increasing the serum cholesterol, triglycerides and decreasing the high density lipoprotein. The nephropathy was noted to be developed in the diabetic rat that was assessed in terms of increase in serum creatinine, blood urea, proteinuria, and glomerular damage. The benfotiamine (70 mg/kg, p.o.) and fenofibrate (32 mg/kg, p.o.) or lisinopril (1 mg/kg, p.o., a standard agent) treatments were started in diabetic rats after 1 week of STZ administration and continued for 7 weeks. The treatment with benfotiamine and fenofibrate either alone or in combination attenuated diabetes-induced VED and nephropathy. In addition, the combination of benfotiamine and fenofibrate was noted to be more effective in attenuating the diabetes-induced VED and nephropathy when compared to treatment with either drug alone or lisinopril. Treatment with fenofibrate normalizes the altered lipid profile in diabetic rats, whereas benfotiamine treatment has no effect on lipid alteration in diabetic rats. It may be concluded that diabetes-induced oxidative stress, lipids alteration, and consequent development of VED may be responsible for the induction of nephropathy in diabetic rats. Concurrent administration of benfotiamine and fenofibrate may provide synergistic benefits in preventing the development of diabetes-induced nephropathy by reducing the oxidative stress and lipid alteration, preventing the VED and subsequently improving the renal function.  相似文献   

7.
Nicotine exposure via cigarette smoking and tobacco chewing is associated with vascular complications. The present study investigated the effect of rosuvastatin in nicotine (2 mg/kg/day, i.p., 4 weeks)-induced vascular endothelial dysfunction (VED) in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating aortic and serum nitrite/nitrate concentration. Further, scanning electron microscopy and hematoxylin-eosin staining of thoracic aorta were performed to assess the vascular endothelial integrity. Moreover, oxidative stress was assessed by estimating aortic superoxide anion generation and serum thiobarbituric acid-reactive substances. The nicotine administration produced VED by markedly reducing acetylcholine-induced endothelium-dependent relaxation, impairing the integrity of vascular endothelium, decreasing aortic and serum nitrite/nitrate concentration, increasing oxidative stress, and inducing lipid alteration. However, treatment with rosuvastatin (10 mg/kg/day, i.p., 4 weeks) markedly attenuated nicotine-induced vascular endothelial abnormalities, oxidative stress, and lipid alteration. Interestingly, the co-administration of peroxisome proliferator-activated receptor γ (PPARγ) antagonist, GW9662 (1 mg/kg/day, i.p., 2 weeks) submaximally, significantly prevented rosuvastatin-induced improvement in vascular endothelial integrity, endothelium-dependent relaxation, and nitrite/nitrate concentration in rats administered nicotine. However, GW9662 co-administration did not affect rosuvastatin-associated vascular anti-oxidant and lipid-lowering effects. The incubation of aortic ring, isolated from rosuvastatin-treated nicotine-administered rats, with L-NAME (100 μM), an inhibitor of nitric oxide synthase (NOS), significantly attenuated rosuvastatin-induced improvement in acetylcholine-induced endothelium-dependent relaxation. Rosuvastatin prevents nicotine-induced vascular endothelial abnormalities by activating PPARγ and endothelial NOS signaling pathways. Moreover, the PPARγ-independent anti-oxidant and lipid-lowering effects of rosuvastatin might additionally play a role in the improvement of vascular endothelial function.  相似文献   

8.
Endothelial nitric-oxide synthase (eNOS) acts as a common pathogenic pathway in diabetic nephropathy (DN). However, its functional consequences are still not fully understood. Caveolin, a membrane protein, inhibits the eNOS by making caveolin-eNOS complex, and its expression is upregulated during diabetes mellitus (DM). This study was designed to determine the role of caveolin in eNOS-mediated NO synthesis and release in DN. DM in rat was induced by feeding of high-fat diet (HFD) for 2 weeks, followed by single dose of streptozotocin (STZ) (35 mg/kg, ip) further followed by HFD for further 8 weeks. Serum nitrite/nitrate ratio was measured to determine the plasma level of NO. Diabetic rat, after 6 weeks of STZ, developed elevated level of BUN, protein in urine, urinary output, serum creatinine, serum cholesterol, kidney weight, kidney weight/body weight, and renal cortical collagen content, while serum nitrite/nitrate concentration was significantly decreased as compared to normal control group. Treatment with sodium nitrite (NO donor), L: -arginine (NO precursor), daidzein (caveolin inhibitor), and combination of L: -arginine and daidzein for 2 weeks markedly attenuated these changes and increased serum nitrite/nitrate ratio. However, treatment with L-NAME, a eNOS inhibitor, significantly attenuated the L: -arginine-, daidzein-, or combination of L: -arginine and daidzein-induced ameliorative effects in DN. The finding of this study suggests that caveolin plays a vital role in the eNOS-mediated decrease in renal level of NO, which may be responsible for the development of DN in rats.  相似文献   

9.
10.
The present study has been designed to investigate the effect of fasudil (Rho-kinase inhibitor) in hypercholesterolemia- and hypertension-induced endothelial dysfunction. High fat diet (8 weeks) and desoxycortisone acetate (DOCA) (40 mg.kg-1) were administered (s.c.) to rats to produce hypercholesterolemia and hypertension (mean arterial blood pressure > 120 mmHg), respectively. Endothelial dysfunction was assessed using isolated aortic ring, electron microscopy of thoracic aorta, and serum concentration of nitrite/nitrate. The expression of mRNA for p22phox and eNOS was assessed by using RT-PCR. Serum thiobarbituric acid reactive substances concentration and aortic superoxide anion concentration were estimated to assess oxidative stress. Fasudil (30 mg.kg-1, p.o.) and atorvastatin (30 mg.kg-1, p.o.) treatments markedly prevented hypercholesterolemia- and hypertension-evoked attenuation of acetylcholine-induced endothelium-dependent relaxation, impairment of vascular endothelial lining, decrease in expression of mRNA for eNOS and serum nitrite/nitrate concentration, and an increase in expression of mRNA for p22phox, superoxide anion, and serum thiobarbituric acid reactive substances. The ameliorative effect of fasudil was prevented by L-NAME. In conclusion, fasudil-induced inhibition of Rho-kinase may improve hypercholesterolemia- and hypertension-induced endothelial dysfunction.  相似文献   

11.
Ghrelin is an orexigenic peptide hormone secreted by the stomach. In patients with metabolic syndrome and low ghrelin levels, intra-arterial ghrelin administration acutely improves their endothelial dysfunction. Therefore, we hypothesized that ghrelin activates endothelial nitric oxide synthase (eNOS) in vascular endothelium, resulting in increased production of nitric oxide (NO) using signaling pathways shared in common with the insulin receptor. Similar to insulin, ghrelin acutely stimulated increased production of NO in bovine aortic endothelial cells (BAEC) in primary culture (assessed using NO-specific fluorescent dye 4,5-diaminofluorescein) in a time- and dose-dependent manner. Production of NO in response to ghrelin (100 nM, 10 min) in human aortic endothelial cells was blocked by pretreatment of cells with NG-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), wortmannin [phosphatidylinositol (PI) 3-kinase inhibitor], or (D-Lys3)-GHRP-6 (selective antagonist of ghrelin receptor GHSR-1a), as well as by knockdown of GHSR-1a using small-interfering (si) RNA (but not by mitogen/extracellular signal-regulated kinase inhibitor PD-98059). Moreover, ghrelin stimulated increased phosphorylation of Akt (Ser473) and eNOS (Akt phosphorylation site Ser1179) that was inhibitable by knockdown of GHSR-1a using siRNA or by pretreatment of cells with wortmannin but not with PD-98059. Ghrelin also stimulated phosphorylation of mitogen-activated protein (MAP) kinase in BAEC. However, unlike insulin, ghrelin did not stimulate MAP kinase-dependent secretion of the vasoconstrictor endothelin-1 from BAEC. We conclude that ghrelin has novel vascular actions to acutely stimulate production of NO in endothelium using a signaling pathway that involves GHSR-1a, PI 3-kinase, Akt, and eNOS. Our findings may be relevant to developing novel therapeutic strategies to treat diabetes and related diseases characterized by reciprocal relationships between endothelial dysfunction and insulin resistance.  相似文献   

12.
Genistein is an isoflavone phytoestrogen with biological activities in management of metabolic disorders. This study aims to evaluate the regulation of insulin action by genistein in the endothelium. Genistein inhibited insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and attenuated downstream Akt and endothelial nitric oxide synthase (eNOS) phosphorylation, leading to a decreased nitric oxide (NO) production in endothelial cells. These results demonstrated its negative regulation of insulin action in the endothelium. Palmitate (PA) stimulation evoked inflammation and induced insulin resistance in endothelial cells. Genistein inhibited IKKβ and nuclear factor-кB (NF-кB) activation with down-regulation of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production and expression. Genistein inhibited inflammation-stimulated IRS-1 serine phosphorylation and restored insulin-mediated tyrosine phosphorylation. Genistein restored insulin-mediated Akt and eNOS phosphorylation, and then led to an increased NO production from endothelial cells, well demonstrating its positive regulation of insulin action under insulin-resistant conditions. Meanwhile, genistein effectively inhibited inflammation-enhanced mitogenic actions of insulin by down-regulation of endothelin-1 and vascular cell adhesion protein-1 overexpression. PA stimulation impaired insulin-mediated vessel dilation in rat aorta, while genistein effectively restored the lost vasodilation in a concentration-dependent manner (0.1, 1 and 10 μM). These results suggested that genistein inhibited inflammation and ameliorated endothelial dysfunction implicated in insulin resistance. Better understanding of genistein action in regulation of insulin sensitivity in the endothelium could be beneficial for its possible applications in controlling endothelial dysfunction associated with diabetes and insulin resistance.  相似文献   

13.
We investigated the relationship between the changes in vascular responsiveness and growth factor mRNA expressions induced by 1-wk treatment with high-dose insulin in control and established streptozotocin (STZ)-induced diabetes. Aortas from diabetic rats, but not those from insulin-treated diabetic rats, showed impaired endothelium-dependent relaxation in response to ACh (vs. untreated controls). The ACh-induced nitrite plus nitrate (NOx) level showed no significant difference between controls and diabetics. Insulin treatment increased NOx only in diabetics. In diabetics, insulin treatment significantly increased the aortic expressions of endothelial nitric oxide synthase (eNOS) mRNA and VEGF mRNA. The expression of IGF-1 mRNA was unaffected by diabetes or by insulin treatment. In contrast, the mRNA for the aortic IGF-1 receptor was increased in diabetics and further increased in insulin-treated diabetics. In aortic strips from age-matched control rats, IGF-1 caused a concentration-dependent relaxation. This relaxation was significantly stronger in strips from STZ-induced diabetic rats. These results suggest that in STZ-diabetic rats, short-term insulin treatment can ameliorate endothelial dysfunction by inducing overexpression of eNOS and/or VEGF mRNAs possibly via IGF-1 receptors. These receptors were increased in diabetes, perhaps as result of insulin deficiency.  相似文献   

14.
The 90-kDa heat shock protein (Hsp90) plays an important role in endothelial nitric-oxide synthase (eNOS) regulation. Besides acting as an allosteric enhancer, Hsp90 was shown to serve as a module recruiting Akt to phosphorylate the serine 1179/1177 (bovine/human) residue of eNOS. Akt is activated by the phosphorylation of 3-phosphoinositide-dependent kinase 1 (PDK1). Whether PDK1 is involved in the actions of Hsp90 on eNOS phosphorylation and function remains unknown. To address this issue, we treated bovine eNOS stably transfected human embryonic kidney 293 cells with Hsp90 inhibitors and determined the alterations of phospho-eNOS, Akt, and PDK1. Both geldanamycin and radicicol, two structurally different Hsp90 inhibitors, selectively reduced serine 1179-phosphorylated eNOS, leading to decreased enzyme activity. In Hsp90-inhibited cells, eNOS-associated phospho-Akt was decreased, but the total amount of Akt associated with eNOS remained the same. Further studies showed that Hsp90 inhibition dramatically depleted intracellular PDK1. Proteasome but not caspase blockade prevented the loss of PDK1 caused by Hsp90 inhibition. Silencing the PDK1 gene by small interfering RNA was sufficient to induce reduction of phospho-Akt and consequent loss of serine 1179-phosphorylated eNOS. Moreover, overexpression of PDK1, but not Akt, reversed Hsp90 inhibition-induced loss of eNOS serine 1179 phosphorylation and salvaged enzymatic activity. Thus, in addition to functioning as a module to recruit Akt to eNOS, Hsp90 also critically stabilized PDK1 by preventing it from proteasomal degradation. Inhibition of Hsp90 function resulted in PDK1 depletion and thus triggered a cascade of Akt deactivation, loss of eNOS serine 1179 phosphorylation, and decrease of enzyme function.  相似文献   

15.
The effect of calcium channel blockers (CCBs) on type 2 diabetes is still unclear. The present study was undertaken to examine the efficacy of nifedipine, a dihydropyridine CCB, on obesity, glucose intolerance and vascular endothelial dysfunction in db/db mice (a mouse model of obesity and type 2 diabetes). db/db mice, fed high-fat diet (HFD) were treated with vehicle, nifedipine (10 mg kg(-1) day(-1)) or hydralazine (5 mg kg(-1) day(-1)) for 4 weeks, and the protective effects were compared. Although nifedipine and hydralazine exerted similar blood pressure lowering in db/db mice, neither affected body weight, fat weight, and glucose intolerance of db/db mice. However, nifedipine, but not hydralazine, significantly improved vascular endothelial function in db/db mice, being accompanied by more attenuation of vascular superoxide by nifedipine than hydralazine. These protective effects of nifedipine were attributed to the attenuation of eNOS uncoupling as shown by the prevention of vascular endothelial nitric oxide synthase (eNOS) dimer disruption, and the prevention of dihydrofolate reductase (DHFR) downregulation, the key enzyme responsible for eNOS uncoupling. Moreover, nifedipine, but not hydralazine, significantly prevented the decreases in phosphorylation of vascular akt and eNOS in db/db mice. Our work provided the first evidence that nifedipine prevents vascular endothelial dysfunction, through the inhibition of eNOS uncoupling and the enhancement of eNOS phosphorylation, independently of blood pressure-lowering effect. We propose that nifedipine may be a promising therapeutic agent for cardiovascular complications in type 2 diabetes.  相似文献   

16.
eNOS activation resulting in mitochondrial biogenesis is believed to play a central role in life span extension promoted by calorie restriction (CR). We investigated the mechanism of this activation by treating vascular cells with serum from CR rats and found increased Akt and eNOS phosphorylation, in addition to enhanced nitrite release. Inhibiting Akt phosphorylation or immunoprecipitating adiponectin (found in high quantities in CR serum) completely prevented the increment in nitrite release and eNOS activation. Overall, we demonstrate that adiponectin in the serum from CR animals increases NO signaling by activating the insulin pathway. These results suggest this hormone may be a determinant regulator of the beneficial effects of CR.  相似文献   

17.
Altered insulin signaling in retinal tissue in diabetic states   总被引:3,自引:0,他引:3  
Both type 1 and type 2 diabetes can lead to altered retinal microvascular function and diabetic retinopathy. Insulin signaling may also play a role in this process, and mice lacking insulin receptors in endothelial cells are protected from retinal neovascularization. To define the role of diabetes in retinal function, we compared insulin signaling in the retinal vasculature of mouse models of type 1 (streptozotocin) and type 2 diabetes (ob/ob). In streptozotocin mice, in both retina and liver, insulin receptor (IR) and insulin receptor substrate (IRS)-2 protein and tyrosine phosphorylation were increased by insulin, while IRS-1 protein and its phosphorylation were maintained. By contrast, in ob/ob mice, there was marked down-regulation of IR, IRS-1, and IRS-2 protein and phosphorylation in liver; these were maintained or increased in retina. In both mice, Phosphatidylinositol 3,4,5-trisphosphate generation by acute insulin stimulation was enhanced in retinal endothelial cells. On the other hand, protein levels and phosphorylation of PDK1 and Akt were decreased in retina of both mice. Interestingly, phosphorylation of p38 mitogen-activated protein kinase and ERK1 were responsive to insulin in retina of both mice but were unresponsive in liver. HIF-1alpha and vascular endothelial growth factor were increased and endothelial nitric-oxide synthase was decreased in retina. These observations indicate that, in both insulin-resistant and insulin-deficient diabetic states, there are alterations in insulin signaling, such as impaired PDK/Akt responses and enhanced mitogen-activated protein kinases responses that could contribute to the retinopathy. Furthermore, insulin signaling in retinal endothelial cells is differentially altered in diabetes and is also differentially regulated from insulin signaling in classical target tissues such as liver.  相似文献   

18.
We attempted to clarify the effects of cyclohexenonic long-chain fatty alcohol (N-hexacosanol) on nitric oxide synthase (NOS) in streptozotocin-induced diabetic nephropathy. After induction of experimental diabetes with streptozotocin, rats were maintained for 8 weeks with or without treatment by N-hexacosanol (8 mg/kg i.p. every day). Urinary albumin excretion, blood chemistry, immunoblot analysis, and real-time polymerase chain reactions (real-time PCR) of endothelial nitric oxide synthase (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS) were investigated. Although N-hexacosanol had no effects on serum glucose or insulin level, it normalized serum creatinine and urinary albumin excretion. N-hexacosanol was found to improve the diabetes-induced alterations in the eNOS, iNOS, and nNOS protein and their mRNA levels. Histologically, N-hexacosanol inhibited the progression to glomerular sclerosis. Our data suggest that N-hexacosanol improves diabetes-induced NOS alterations in the kidney, resulting in the amelioration of diabetic nephropathy.  相似文献   

19.
Endothelial dysfunction develops as a result of oxidative stress and is responsible for diabetic vascular complications. We investigated the effects of selenium on endothelial dysfunction and oxidative stress in type 2 diabetic rats. Male Wistar rats were divided into five groups: controls, untreated diabetics, and diabetics treated with 180, 300, 500 mcg/kg selenium each day. Diabetes was induced by a single intraperitoneal injection of low dose streptozotocin to rats fed a high fat diet. Endothelium-dependent and -independent relaxations were measured in the thoracic aorta. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and endothelial nitric oxide synthase (eNOS) mRNA expressions were analyzed using real-time polymerase chain reaction (RT-PCR). Fasting blood glucose, lipid profile, lipid oxidation, insulin and nitric oxide were measured in blood samples. Malondialdehyde, superoxide dismutase, catalase and glutathione peroxidase levels were measured in liver samples. RT-PCR showed that selenium reversed increased NADPH oxidase expression and decreased eNOS expression to control levels. Selenium also improved the impairment of endothelium-dependent vasorelaxation in the diabetic aorta. Selenium treatment significantly decreased blood glucose, cholesterol and triglyceride levels, and enhanced the antioxidant status in diabetic rats. Our findings suggest that selenium restores a normal metabolic profile and ameliorates vascular responses and endothelial dysfunction in diabetes by regulating antioxidant enzyme and nitric oxide release.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号