首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acid-sensing ion channels (ASICs) are trimeric cation channels that undergo activation and desensitization in response to extracellular acidification. The underlying mechanism coupling proton binding in the extracellular region to pore gating is unknown. Here we probed the reactivity toward methanethiosulfonate (MTS) reagents of channels with cysteine-substituted residues in the outer vestibule of the pore of ASIC1a. We found that positively-charged MTS reagents trigger pore opening of G428C. Scanning mutagenesis of residues in the region preceding the second transmembrane spanning domain indicated that the MTSET-modified side chain of Cys at position 428 interacts with Tyr-424. This interaction was confirmed by double-mutant cycle analysis. Strikingly, Y424C-G428C monomers were associated by intersubunit disulfide bonds and were insensitive to MTSET. Despite the spatial constraints introduced by these intersubunit disulfide bonds in the outer vestibule of the pore, Y424C-G428C transitions between the resting, open, and desensitized states in response to extracellular acidification. This finding suggests that the opening of the ion conductive pathway involves coordinated rotation of the second transmembrane-spanning domains.  相似文献   

2.
The recent publication of the apo-, closed-state 3D crystal structure of zebrafish (zf) P2X4.1 has not only revolutionized the P2X research field, but also highlighted the need for further crystal structures, of receptors in different activation states, so that we can gain a complete molecular understanding of ion channel function. zfP2X4.1 was selected as a 3D-crystallization candidate because of its ability to form stable trimers in detergent solution, and purified from over-expression in baculovirus-infected Spodoptera frugiperda (Sf9) insect cells. In this work, we have used a similar approach to express both human P2X4 (hP2X4) and Dictyostelium discoideum P2XA (DdP2XA) in Sf9 cells. Although hP2X4 did not form stable trimers in detergent solution, both receptors bound to ATP-coupled resins, indicating that their extracellular domains were folded correctly. DdP2XA formed strong trimers in detergent solution, and we were able to selectively purify trimers using preparative electrophoresis, and build a 21?-resolution 3D structure using transmission electron microscopy and single particle analysis. Although the structure of DdP2XA possessed similar dimensions to those of the previously determined low-resolution hP2X4 structure and the zfP2X4.1 crystal structure, N-glycosylation mutagenesis and molecular modeling indicated differences between N-glycan usage and predicted accessibility in models of DdP2XA based on the zfP2X4.1 crystal structure. Our data demonstrate that DdP2XA expressed in insect cells retains ATP-binding capacity after detergent solubilization, is an ideal candidate for structural study, and possesses a significantly different 3D structure to that of both hP2X4 and zfP2X4.1.  相似文献   

3.
Different transmembrane (TM) α helices are known to line the pore of the cystic fibrosis TM conductance regulator (CFTR) Cl(-) channel. However, the relative alignment of these TMs in the three-dimensional structure of the pore is not known. We have used patch-clamp recording to investigate the accessibility of cytoplasmically applied cysteine-reactive reagents to cysteines introduced along the length of the pore-lining first TM (TM1) of a cysteine-less variant of CFTR. We find that methanethiosulfonate (MTS) reagents irreversibly modify cysteines substituted for TM1 residues K95, Q98, P99, and L102 when applied to the cytoplasmic side of open channels. Residues closer to the intracellular end of TM1 (Y84-T94) were not apparently modified by MTS reagents, suggesting that this part of TM1 does not line the pore. None of the internal MTS reagent-reactive cysteines was modified by extracellular [2-(trimethylammonium)ethyl] MTS. Only K95C, closest to the putative intracellular end of TM1, was apparently modified by intracellular [2-sulfonatoethyl] MTS before channel activation. Comparison of these results with recent work on CFTR-TM6 suggests a relative alignment of these two important TMs along the axis of the pore. This alignment was tested experimentally by formation of disulfide bridges between pairs of cysteines introduced into these two TMs. Currents carried by the double mutants K95C/I344C and Q98C/I344C, but not by the corresponding single-site mutants, were inhibited by the oxidizing agent copper(II)-o-phenanthroline. This inhibition was irreversible on washing but could be reversed by the reducing agent dithiothreitol, suggesting disulfide bond formation between the introduced cysteine side chains. These results allow us to develop a model of the relative positions, functional contributions, and alignment of two important TMs lining the CFTR pore. Such functional information is necessary to understand and interpret the three-dimensional structure of the pore.  相似文献   

4.
P2X receptors are ATP-gated cation channels. The x-ray structure of a P2X4 receptor provided a major advance in understanding the molecular basis of receptor properties. However, how agonists are coordinated, the extent of the binding site, and the contribution of the vestibules in the extracellular domain to ionic permeation have not been addressed. We have used cysteine-scanning mutagenesis to determine the contribution of residues Glu(52)-Gly(96) to human P2X1 receptor properties. ATP potency was reduced for the mutants K68C, K70C, and F92C. The efficacy of the partial agonist BzATP was also reduced for several mutants forming the back of the proposed agonist binding site. Molecular docking in silico of both ATP and BzATP provided models of the agonist binding site consistent with these data. Individual cysteine mutants had no effect or slightly increased antagonism by suramin or pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate. Mutants at the entrance to and lining the upper vestibule were unaffected by cysteine-reactive methanethiosulfonate (MTS) reagents, suggesting that it does not contribute to ionic permeation. Mutants that were sensitive to modification by MTS reagents were predominantly found either around the proposed ATP binding pocket or on the strands connecting the binding pocket to the transmembrane region and lining the central vestibule. In particular, ATP sensitivity and currents were increased by a positively charged MTS reagent at the G60C mutant at the interface between the central and extracellular vestibule. This suggests that dilation of the base of the central vestibule contributes to gating of the receptor.  相似文献   

5.
Audia JP  Roberts RA  Winkler HH 《Biochemistry》2006,45(8):2648-2656
We have determined the accessibility of the Rickettsia prowazekii ATP/ADP translocase transmembrane domains (TMs) IV-VII and IX-XII to the putative, water-filled ATP translocation pathway. A library of 177 independent mutants, each with a single cysteine substitution, was expressed in Escherichia coli, and those with substantial ATP transport activity were assayed for inhibition by thiol-reactive, methanethiosulfonate (MTS) reagents. The MTS reagents used were MTSES (negatively charged), MTSET (positively charged), and MTSEA (amphipathic). Inhibition of ATP transport by a charged MTS reagent indicates the exposure of a TM to the water-filled ATP translocation pathway. The eight TMs characterized in this study had 32 mutants with no assayable transport activity, indicating that cysteine substitution at these positions is not tolerated. ATP transport proficient mutants in TMs IV, V, VII, X, and XI were inhibited by charged MTS reagents, indicating that these TMs are exposed to the aqueous ATP translocation pathway, which is a pattern similar to those of TMs I, II (Alexeyev, M. F. (2004) Biochemistry 43, 6995-7002), and VIII (Winkler, H. H. (2003) Biochemistry 42, 12562-12569). Conversely, ATP-transport-proficient mutants in TMs VI, IX, and XII were not inhibited by charged MTS reagents, indicating that these TMs are sequestered from the aqueous environment, which is a pattern similar to that of TM III (Alexeyev, M. F. (2004) Biochemistry 43, 6995-7002). Preexposure of several MTS-sensitive mutants in TMs V, VII, X, and XI to ATP concentrations 10 times the K(m) resulted in protection from MTS-mediated inhibition; thus, confirming exposure of these TMs to the aqueous ATP translocation pathway, a pattern of protection similar to that observed for TMs I, II, and VIII.  相似文献   

6.
The cystic fibrosis transmembrane conductance regulator (CFTR) forms a chloride channel that is regulated by phosphorylation and ATP binding. Work by others suggested that some residues in the sixth transmembrane segment (M6) might be exposed in the channel and play a role in ion conduction and selectivity. To identify the residues in M6 that are exposed in the channel and the secondary structure of M6, we used the substituted cysteine accessibility method. We mutated to cysteine, one at a time, 24 consecutive residues in and flanking the M6 segment and expressed these mutants in Xenopus oocytes. We determined the accessibility of the engineered cysteines to charged, lipophobic, sulfhydryl-specific methanethiosulfonate (MTS) reagents applied extracellularly. The cysteines substituted for Ile331, Leu333, Arg334, Lys335, Phe337, Ser341, Ile344, Arg347, Thr351, Arg352, and Gln353 reacted with the MTS reagents, and we infer that they are exposed on the water-accessible surface of the protein. From the pattern of the exposed residues we infer that the secondary structure of the M6 segment includes both alpha-helical and extended regions. The diameter of the channel from the extracellular end to the level of Gln353 must be at least 6 A to allow the MTS reagents to reach these residues.  相似文献   

7.
Gap junction (GJ) channels provide an important pathway for direct intercellular transmission of signaling molecules. Previously we showed that fixed negative charges in the first extracellular loop domain (E1) strongly influence charge selectivity, conductance, and rectification of channels and hemichannels formed of Cx46. Here, using excised patches containing Cx46 hemichannels, we applied the substituted cysteine accessibility method (SCAM) at the single channel level to residues in E1 to determine if they are pore-lining. We demonstrate residues D51, G46, and E43 at the amino end of E1 are accessible to modification in open hemichannels to positively and negatively charged methanethiosulfonate (MTS) reagents added to cytoplasmic or extracellular sides. Positional effects of modification along the length of the pore and opposing effects of oppositely charged modifying reagents on hemichannel conductance and rectification are consistent with placement in the channel pore and indicate a dominant electrostatic influence of the side chains of accessible residues on ion fluxes. Hemichannels modified by MTS-EA+, MTS-ET+, or MTS-ES- were refractory to further modification and effects of substitutions with positively charged residues that electrostatically mimicked those caused by modification with the positively charged MTS reagents were similar, indicating all six subunits were likely modified. The large reductions in conductance caused by MTS-ET+ were visible as stepwise reductions in single-channel current, indicative of reactions occurring at individual subunits. Extension of single-channel SCAM using MTS-ET+ into the first transmembrane domain, TM1, revealed continued accessibility at the extracellular end at A39 and L35. The topologically complementary region in TM3 showed no evidence of reactivity. Structural models show GJ channels in the extracellular gap to have continuous inner and outer walls of protein. If representative of open channels and hemichannels, these data indicate E1 as constituting a significant portion of this inner, pore-forming wall, and TM1 contributing as pore-lining in the extracellular portion of transmembrane span.  相似文献   

8.
The ectodomain of the P2X receptor is formed mainly from two- or three-stranded β-sheets provided symmetrically by each of the three subunits. These enclose a central cavity that is closed off furthest from the plasma membrane (the turret) and that joins with the transmembrane helices to form the ion permeation pathway. Comparison of closed and open crystal structures indicates that ATP binds in a pocket positioned between strands provided by different subunits and that this flexes the β-sheets of the lower body and enlarges the central cavity: this pulls apart the outer ends of the transmembrane helices and thereby opens an aperture, or gate, where they intersect within the membrane bilayer. In the present work, we examined this opening model by introducing pairs of cysteines into the rat P2X2 receptor that might form disulfide bonds within or between subunits. Receptors were expressed in human embryonic kidney cells, and disulfide formation was assessed by observing the effect of dithiothreitol on currents evoked by ATP. Substitutions in the turret (P90C, P89C/S97C), body wall (S65C/S190C, S65C/D315C) and the transmembrane domains (V48C/I328C, V51C/I328C, S54C/I328C) strongly inhibited ATP-evoked currents prior to reduction with dithiothreitol. Western blotting showed that these channels also formed predominately as dimers and/or trimers rather than monomers. The results strongly support the channel opening mechanism proposed on the basis of available crystal structures.  相似文献   

9.
As in most other seven-transmembrane receptors, the central disulfide bridge from the extracellular end of TM-III to the middle of the second extracellular loop was essential for ligand binding in the NK1 receptor. However, introduction of "extra", single Cys residues in the second extracellular loop, at positions where disease-associated Cys substitutions impair receptor function in the vasopressin V2 receptor and in rhodopsin, did not cause mispairing with the Cys residues involved in this central disulfide bridge. Cys residues were introduced in the N-terminal extension and in the third extracellular loop, respectively, in such a way that disulfide bridge formation could be monitored by loss of substance P binding and breakage of the bridge could be monitored by gain of ligand binding. This disulfide bridge formed spontaneously in the whole population of receptors and could be titrated with low concentrations of reducing agent, dithiothreitol. Another putative disulfide bridge "switch" was constructed at the extracellular ends of TM-V and -VI, i.e., at positions where a high-affinity zinc site previously had been constructed with His substitutions. Disulfide bridge formation at this position, monitored by loss of binding of the nonpeptide antagonist [3H]LY303.870, occurred spontaneously only in a small fraction of the receptors. It is concluded that disulfide bridges form readily between Cys residues introduced appropriately in the N-terminal extension and the third extracellular loop, whereas they form with more difficulty between Cys residues placed at the extracellular ends of the transmembrane segments even at positions where high-affinity metal ion sites can be constructed with His residues.  相似文献   

10.
Substituted cysteine accessibility mutagenesis (SCAM) has been used widely to identify pore-lining amino acid side chains in ion channel proteins. However, functional effects on permeation and gating can be difficult to separate, leading to uncertainty concerning the location of reactive cysteine side chains. We have combined SCAM with investigation of the charge-dependent effects of methanethiosulfonate (MTS) reagents on the functional permeation properties of cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels. We find that cysteines substituted for seven out of 21 continuous amino acids in the eleventh and twelfth transmembrane (TM) regions can be modified by external application of positively charged [2-(trimethylammonium)ethyl] MTS bromide (MTSET) and negatively charged sodium [2-sulfonatoethyl] MTS (MTSES). Modification of these cysteines leads to changes in the open channel current–voltage relationship at both the macroscopic and single-channel current levels that reflect specific, charge-dependent effects on the rate of Cl permeation through the channel from the external solution. This approach therefore identifies amino acid side chains that lie within the permeation pathway. Cysteine mutagenesis of pore-lining residues also affects intrapore anion binding and anion selectivity, giving more information regarding the roles of these residues. Our results demonstrate a straightforward method of screening for pore-lining amino acids in ion channels. We suggest that TM11 contributes to the CFTR pore and that the extracellular loop between TMs 11 and 12 lies close to the outer mouth of the pore.  相似文献   

11.
The agonist binding site of ATP-gated P2X receptors is distinct from other ATP-binding proteins. Mutagenesis on P2X(1) receptors of conserved residues in mammalian P2X receptors has established the paradigm that three lysine residues, as well as FT and NFR motifs, play an important role in mediating ATP action. In this study we have determined whether cysteine substitution mutations of equivalent residues in P2X(2) and P2X(4) receptors have similar effects and if these mutant receptors can be regulated by charged methanethiosulfonate (MTS) compounds. All the mutants (except the P2X(2) K69C and K71C that were expressed, but non-functional) showed a significant decrease in ATP potency, with >300-fold decreases for mutants of the conserved asparagine, arginine, and lysine residues close to the end of the extracellular loop. MTS reagents had no effect at the phenylalanine of the FT motif, in contrast, cysteine mutation of the threonine was sensitive to MTS reagents and suggested a role of this residue in ATP action. The lysine-substituted receptors were sensitive to the charge of the MTS reagent consistent with the importance of positive charge at this position for coordination of the negatively charged phosphate of ATP. At the NFR motif the asparagine and arginine residues were sensitive to MTS reagents, whereas the phenylalanine was either unaffected or showed only a small decrease. These results support a common site of ATP action at P2X receptors and suggest that non-conserved residues also play a regulatory role in agonist action.  相似文献   

12.
Mutations at critical residue positions in transmembrane span 7 (TM7) of the serotonin transporter affect the Na(+) dependence of transport. It was possible that these residues, which form a stripe along one side of the predicted alpha-helix, formed part of a water-filled pore for Na(+). We tested whether cysteine substitutions in TM7 were accessible to hydrophilic, membrane-impermeant methanethiosulfonate (MTS) reagents. Although all five cysteine-containing mutants tested were sensitive to these reagents, noncysteine control mutants at the same positions were in most cases equally sensitive. In all cases, MTS sensitivity could be traced to changes in accessibility of a native cysteine residue in extracellular loop 1, Cys-109. Moreover, none of the TM7 cysteines reacted with the biotinylating reagent MTSEA-biotin when tested in the C109A background. It is thus unlikely that the critical stripe forms part of a water-filled pore. Instead, studies of the ion dependence of the reaction between Cys-109 and MTS reagents lead to the conclusion that TM7 is involved in propagating conformational changes caused by ion binding, perhaps as part of the translocation mechanism. The critical stripe residues on TM7 probably represent a close contact region between TM7 and one or more other TMs in the transporter's three-dimensional structure.  相似文献   

13.
Wild MR  Pos KM  Dimroth P 《Biochemistry》2003,42(40):11615-11624
Helix VIII of the beta-subunit of the oxaloacetate decarboxylase of Klebsiella pneumoniae contains the functionally important residues betaN373, betaG377, betaS382, and betaR389. Using a functional oxaloacetate decarboxylase mutant devoid of Cys residues in the beta-subunit, each amino acid residue in helix VIII was replaced individually with Cys. Structural and dynamic features of this region were studied by using site-directed sulfhydryl modification of 20 single-Cys replacement mutants with methanethiosulfonate (MTS) reagents in the absence or presence of Na(+) ions. The pattern of accessibility of the MTS reagents from the periplasmic side of helix VIII shows a periodicity which suggests that this region is alpha-helical. In particular, a water-accessible face comprising betaN373, betaG377, betaS382, betaM386, and betaV390 may be part of a Na(+) channel. Cys residues introduced in the cytoplasmically oriented part of helix VIII were accessible to three different water-soluble MTS compounds and therefore believed to be exposed to water on this side of the membrane. Most residues located in the upper part of helix VIII (residues betaN373-betaV381C) were protected by Na(+) ions for inactivation by the MTS reagents. The distinct results on accessibility toward the different MTS reagents obtained in the presence or absence of Na(+) ions may suggest a conformational change upon binding of Na(+) in this region. The betaR389C mutant had a reduced activity and a pH optimum at pH 9, which could be restored to a wild-type pH optimum of 6.5 and to a 400% gain in activity upon chemical modification with 2-aminoethyl methanethiosulfonate.  相似文献   

14.
To explore aqueous accessibility and functional contributions of transmembrane domain (TM) 1 in human serotonin transporter (hSERT) proteins, we utilized the largely methanethiosulfonate (MTS) insensitive hSERT C109A mutant and mutated individual residues of hSERT TM1 to Cys followed by tests of MTS inactivation of 5-hydroxytryptamine (5-HT) transport. Residues in TM1 cytoplasmic to Gly-94 were largely unaffected by Cys substitution, whereas the mutation of residues extracellular to Ile-93 variably diminished transport activity. TM1 Cys substitutions displayed differential sensitivity to MTS reagents, with residues more cytoplasmic to Asp-98 being largely insensitive to MTS inactivation. Aminoethylmethanethiosulfonate (MTSEA), [2-(trimethylammonium) ethyl]methanethiosulfonate bromide (MTSET), and sodium (2-sulfonatoethyl)-methanethiosulfonate (MTSES) similarly and profoundly inactivated 5-HT transport by SERT mutants D98C, G100C, W103C, and Y107C. MTSEA uniquely inactivated transport activity of S91C, G94C, Y95C but increased activity at I108C. MTSEA and MTSET, but not MTSES, inactivated transport function at N101C. Notably, 5-HT provided partial to complete protection from MTSET inactivation for D98C, G100C, N101C, and Y107C. Equivalent blockade of MTSET inactivation at N101C was observed with 5-HT at both room temperature and at 4 degrees C, inconsistent with major conformational changes leading to protection. Notably, cocaine also protected MTSET inactivation of G100C and N101C, although MTS incubations with N101C that eliminate 5-HT transport do not preclude cocaine analog binding nor its inhibition by 5-HT. 5-HT modestly enhanced the inactivation by MTSET at I93C and Y95C, whereas cocaine significantly enhanced MTSET sensitivity at Y107C and I108C. In summary, our studies reveal physical differences in TM1 accessibility to externally applied MTS reagents and reveal sites supporting substrate and antagonist modulation of MTS inactivation. Moreover, we identify a limit to accessibility for membrane-impermeant MTS reagents that may reflect aspects of an occluded permeation pathway.  相似文献   

15.
Shuck K  Lamb RA  Pinto LH 《Journal of virology》2000,74(17):7755-7761
The M(2) ion channel of influenza A virus is a small integral membrane protein whose active form is a homotetramer with each polypeptide chain containing 96-amino-acid residues. To identify residues of the transmembrane (TM) domain that line the presumed central ion-conducting pore, a set of mutants was generated in which each residue of the TM domain (residues 25 to 44) was replaced by cysteine. The accessibility of the cysteine mutants to modification by the sulfhydryl-specific reagents methane thiosulfonate ethylammonium (MTSEA) and MTS tetraethylammonium (MTSET) was tested. Extracellular application of MTSEA evoked decreases in the conductances measured from two mutants, M(2)-A30C and M(2)-G34C. The changes observed were not reversible on washout, indicative of a covalent modification. Inhibition by MTSEA, or by the larger reagent MTSET, was not detected for residues closer to the extracellular end of the channel than Ala-30, indicating the pore may be wider near the extracellular opening. To investigate the accessibility of the cysteine mutants to reagents applied intracellularly, oocytes were microinjected directly with reagents during recordings. The conductance of the M(2)-W41C mutant was decreased by intracellular injection of a concentrated MTSET solution. However, intracellular application of MTSET caused no change in the conductance of the M(2)-G34C mutant, a result in contrast to that obtained when the reagent was applied extracellularly. These data suggest that a constriction in the pore exists between residues 34 and 41 which prevents passage of the MTS reagent. These findings are consistent with the proposed role for His-37 as the selectivity filter. Taken together, these data confirm our earlier model that Ala-30, Gly-34, His-37, and Trp-41 line the channel pore (L. H. Pinto, G. R. Dieckmann, C. S. Gandhi, C. G. Papworth, J. Braman, M. A. Shaughnessy, J. D. Lear, R. A. Lamb, and W. F. DeGrado, Proc. Natl. Acad. Sci. USA 94:11301-11306, 1997).  相似文献   

16.
P2X(7) receptors are important in mediating the physiological functions of extracellular ATP, and altered receptor expression and function have a causative role in the disease pathogenesis. Here, we investigated the mechanisms determining the P2X(7) receptor function by following two human single-nucleotide polymorphism (SNP) mutations that replace His-155 and Ala-348 in the human (h) P2X(7) receptor with the corresponding residues, Tyr-155 and Thr-348, in the rat (r) P2X(7) receptor. H155Y and A348T mutations in the hP2X(7) receptor increased ATP-induced currents, whereas the reciprocal mutations, Y155H and T348A, in the rP2X(7) receptor caused the opposite effects. Such a functional switch is a compelling indication that these residues are critical for P2X(7) receptor function. Additional mutations of His-155 and Ala-348 in the hP2X(7) receptor to residues with diverse side chains revealed a different dependence on the side chain properties, supporting the specificity of these two residues. Substitutions of the residues surrounding His-155 and Ala-348 in the hP2X(7) receptor with the equivalent ones in the rP2X(7) receptor also affected ATP-induced currents but were not fully reminiscent of the H155Y and A348T effects. Immunofluorescence imaging and biotin labeling assays showed that H155Y in the hP2X(7) receptor increased and Y155H in the rP2X(7) receptor decreased cell-surface expression. Such contrasting effects were not obvious with the reciprocal mutations of residue 348. Taken together, our results suggest that residues at positions 155 and 348 contribute to P2X(7) receptor function via determining the surface expression and the single-channel function, respectively. Such interpretations are consistent with the locations of the residues in the structural model of the hP2X(7) receptor.  相似文献   

17.
The transition from the closed to open state greatly alters the intra- and inter-subunit interactions of the P2X receptor (P2XR). The interactions that occur in the transmembrane domain of the P2X2R remain unclear. We used substituted cysteine mutagenesis disulfide mapping to identify pairs of residues that are in close proximity within the transmembrane domain of rP2X2R and compared our results to the predicted positions of these amino acids obtained from a rat P2X2R homology model of the available open and closed zebrafish P2X4R structures. Alternations in channel function were measured as a change in the ATP-gated current before and after exposure to dithiothreitol. Thirty-six pairs of double mutants of rP2X2R expressed in HEK293 cells produced normal functioning channels. Thirty-five pairs of these mutants did not exhibit a functionally detectable disulfide bond. The double mutant H33C/S345C formed redox-dependent cross-links in the absence of ATP. Dithiothreitol ruptured the disulfide bond of H33C/S345C and induced a 2 to 3-fold increase in current. The EC50 for H33C/S345C before dithiothreitol treatment was ∼2-fold higher than that after dithiothreitol treatment. Dithiothreitol reduced the EC50 to wild-type levels. Furthermore, expression of trimeric concatamer receptors with Cys mutations at some but not all six positions showed that the more disulfide bond formation sites within the concatamer, the greater current potentiation after dithiothreitol incubation. Immunoblot analysis of H33C/S345C revealed one monomer band under nonreducing conditions strongly suggesting that disulfide bonds are formed within single subunits (intra-subunit) and not between two subunits (inter-subunit). Taken together, these data indicate that His33 and Ser345 are proximal to each other across an intra-subunit interface. The relative movement between the first transmembrane and the second transmembrane in the intra-subunit is likely important for transmitting the action of ATP binding to the opening of the channel.  相似文献   

18.
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that contribute to fundamental physiological processes such as learning and memory and, when dysfunctional, to pathophysiological conditions such as neurodegenerative diseases, stroke, and mental illness. NMDARs are obligate heteromultimers typically composed of NR1 and NR2 subunits with the different subunits underlying the functional versatility of NMDARs. To study the contribution of the different subunits to NMDAR channel structure and gating, we compared the effects of cysteine-reactive agents on cysteines substituted in and around the M1, M3, and M4 segments of the NR1 and NR2C subunits. Based on the voltage dependence of cysteine modification, we find that, both in NR1 and NR2C, M3 appears to be the only transmembrane segment that contributes to the deep (or voltage dependent) portion of the ion channel pore. This contribution, however, is subunit specific with more positions in NR1 than in NR2C facing the central pore. Complimentarily, NR2C makes a greater contribution than NR1 to the shallow (or voltage independent) portion of the pore with more NR2C positions in pre-M1 and M3-S2 linker lining the ion-conducting pathway. Substituted cysteines in the M3 segments in NR1 and NR2C showed strong, albeit different, state-dependent reactivity, suggesting that they play central but structurally distinct roles in gating. A weaker state dependence was observed for the pre-M1 regions in both subunits. Compared to M1 and M3, the M4 segments in both NR1 and NR2C subunits had limited accessibility and the weakest state dependence, suggesting that they are peripheral to the central pore. Finally, we propose that Lurcher mutation-like effects, which were identified in and around all three transmembrane segments, occur for positions located at dynamic protein-protein or protein-lipid interfaces that have state-dependent accessibility to methanethiosulfonate (MTS) reagents and therefore can affect the equilibrium between open and closed states following reactions with MTS reagents.  相似文献   

19.
Residues 386-423 of the rat brain serotonin transporter (SERT) are predicted to form a hydrophilic loop connecting transmembrane spans 7 and 8 (extracellular loop 4 or EL4). EL4 has been hypothesized to play a role in conformational changes associated with substrate translocation. To more fully investigate EL4 structure and function, we performed cysteine-scanning mutagenesis and methanethiosulfonate (MTS) accessibility studies on these 38 residues. Four EL4 mutants (M386C, R390C, G402C, and L405C) showed very low transport activities, low cell surface expression, and strong inhibition by MTS reagents, indicating high structural and functional importance. Twelve mutants were sensitive to very low MTS concentrations, indicating positions highly exposed to the aqueous environment. Eleven mutants were MTS-insensitive, indicating positions that were either buried in EL4 structure or functionally unimportant. The patterns of sensitivity to mutation and MTS reagents were used to produce a structural model of EL4. Positions 386-399 and 409-421 are proposed to form alpha-helices, connected by nine consecutive MTS-sensitive positions, within which four positions, 402-405, may form a turn or hinge. The presence of serotonin changed the MTS accessibility of cysteines at nine positions, while cocaine, a non-transportable blocker, did not affect accessibility. Serotonin-induced accessibility changes required both Na(+) and Cl(-), indicating that they were associated with active substrate translocation. With the exception of a single mutant, F407C, neither mutation to cysteine nor treatment with MTS reagents affected SERT affinities for serotonin or the cocaine analog beta-CIT. These studies support the role of EL4 in conformational changes occurring during translocation and show that it does not play a direct role in serotonin binding.  相似文献   

20.
El Hiani Y  Linsdell P 《Biochemistry》2012,51(19):3971-3981
Opening and closing of the cystic fibrosis transmembrane conductance regulator chloride channel are controlled by interactions of ATP with its cytoplasmic nucleotide binding domains (NBDs). The NBDs are connected to the transmembrane pore via four cytoplasmic loops. These loops have been suggested to play roles both in channel gating and in forming a cytoplasmic extension of the channel pore. To investigate the structure and function of one of these cytoplasmic loops, we have used patch clamp recording to investigate the accessibility of cytoplasmically applied cysteine-reactive reagents to cysteines introduced into loop 3. We find that methanethiosulfonate (MTS) reagents modify cysteines introduced at 14 of 16 sites studied in the juxtamembrane region of loop 3, in all cases leading to inhibition of channel function. In most cases, both the functional effects of modification and the rate of modification were similar for negatively and positively charged MTS reagents. Single-channel recordings indicated that, at all sites, inhibition was the result of an MTS reagent-induced decrease in channel open probability; in no case was the Cl(-) conductance of open channels altered by modification. These results indicate that loop 3 is readily accessible to the cytoplasm and support the involvement of this region in the control of channel gating. However, our results do not support the hypothesis that this region is close enough to the Cl(-) permeation pathway to exert any influence on permeating Cl(-) ions. We propose that either the cytoplasmic pore is very wide or cytoplasmic Cl(-) ions use other routes to access the transmembrane pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号