首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aland Island eye disease (AIED) is an X-chromosomal disorder characterized by reduced visual acuity, progressive axial myopia, regular astigmatism, latent nystagmus, foveal hypoplasia, defective dark adaptation, and fundus hypopigmentation. The syndrome was originally reported in 1964 in a family on the Aland Islands. To determine the localization of the AIED gene, linkage studies were performed in this family. total of 37 polymorphisms, covering loci on the entire X chromosome, were used. By two-point analysis the strongest evidence for linkage was obtained between AIED and DXS255 (maximum lod score [Zmax] 4.92 at maximum recombination fraction [theta max] .00). Marker loci DXS106, DXS159, and DXS1 also showed no recombination with AIED. Other positive lod scores at theta max .00 were obtained with markers localized in the XY homologous region in Xq13-q21, but the numbers of informative meioses were small. Multilocus linkage analysis indicated that the most probable location of AIED is in the pericentromeric region between DXS7 and DXS72. These results rule out localizations of AIED more distal on Xp that have been proposed by others. Our data do not exclude the possibility that AIED and incomplete congenital stationary night blindness are caused by mutations in the same gene. This question should be resolved by careful clinical comparison of the disorders and ultimately by the molecular dissection of the genes themselves.  相似文献   

2.
A recombinant chromosome in a male affected with X-linked congenital stationary night blindness (CSNB1) provides new information on the location of the CSNB1 locus. A four-generation family with five males affected with X-linked CSNB was analyzed with five polymorphic markers for four X-chromosome loci spanning the region OTC (Xp21.1) to DXS255 (Xp11.22). Four of the males inherited the same X chromosome; one male inherited a chromosome that from OTC to DXS7, inclusive, was derived from the normal X chromosome of his unaffected grandfather and that from a location between DXS7 and DXS426 proximally was derived from the chromosome carrying the CSNB1 locus. This recombinant maps the CSNB1 locus in this family to a region on the short arm of the X chromosome proximal to the DXS7 locus.  相似文献   

3.
The Coffin-Lowry syndrome (CLS) is an X-linked inherited disease of unknown pathogenesis characterized by severe mental retardation, typical facial and digital anomalies, and progressive skeletal deformations. Our previous linkage analysis, based on four pedigrees with the disease, suggested a localization for the CLS locus in Xp22.1-p22.2, with the most likely position between the marker loci DXS41 and DXS43. We have now extended the study to 16 families by using seven RFLP marker loci spanning the Xp22.1-p22.2 region. Linkage has been established with five markers from this part of the X chromosome: DXS274 (lod score [Z] (theta) = 3.53 at theta = .08), DXS43 (Z(theta) = 3.16 at theta = .08), DXS197 (Z(theta) = 3.03 at theta = .05), DXS41 (Z(theta) = 2.89 at theta = .08), and DXS207 (Z(theta) = 2.73 at theta = .13). A multipoint linkage analysis further placed, with a maximum multipoint Z of 7.30, the mutation-causing CLS within a 7-cM interval defined by the cluster of tightly linked markers (DXS207-DXS43-DXS197) on the distal side and by DXS274 on the proximal side. Thus, these further linkage data confirm and refine the map location for the gene responsible for CLS in Xp22.1-p22.2. As no linkage heterogeneity was detected, this validates the use of the Xp22.1-p22.2 markers for carrier detection and prenatal diagnosis in CLS families.  相似文献   

4.
注意缺损多动障碍的X染色体基因组扫描分析   总被引:2,自引:0,他引:2  
摘 要:注意缺损多动障碍(ADHD)是儿童期多见行为障碍。男孩发病多于女孩。家系、双生儿和寄养子研究显示该障碍发生具有遗传基础。但是病因尚不清楚。分子遗传学和药理学研究表明ADHD涉及到多巴胺和去甲肾上腺素等神经递质系统,一系列报告发现ADHD与多巴胺D4受体(DRD4)、多巴胺转运体(DAT1)和儿茶酚-O-甲基转移酶(COMT)等基因相关联。我们以往研究表明ADHD与X染色体上DXS7位点和MAOA基因相关联,而DXS7是紧密连锁于MAO基因。依此假设,我们应用基因组扫描技术探讨ADHD在X染色体上易感位点。采用TDT方法分析X染色体上48个DNA标志的多态性与中国人群中84个ADHD核心家系间的连锁关系,ADHD诊断依据DSM-III-R标准。TDT分析结果观察到如下位点与ADHD相连锁,DXS1214(TDT:χ2=18.1,df=7, P<0.01), DXS8102(TDT: χ2=7.9, df=3, P<0.05),DXS1068(TDT: χ2=21.9, df=9, P<0.01), DXS8015(TDT:χ2=14.6, df=7, P<0.05),DXS1059(TDT: χ2=27.8, df=10, P<0.01) 和DXS8088(TDT:χ2=20.4, df=3, P<0.01).研究资料提示X染色体上Xp11.4-Xp21和Xq23区域可能存在ADHD的易感基因。  相似文献   

5.
X-linked Amelogenesis imperfecta (AI) is a genetic disorder affecting the formation of enamel. In the present study two families, one with X-linked dominant and one with X-linked recessive AI, were studied by linkage analysis. Eleven cloned RFLP markers of known regional location were used. Evidence was obtained for linkage between the AI locus and the marker p782, defining the locus DXS85 at Xp22, by using two-point analysis. No recombination was scored between these two loci in 15 informative meioses, and a peak lod score (Zmax) of 4.45 was calculated at zero recombination fraction. Recombination was observed between the more distal locus DXS89 and AI, giving a peak lod score of 3.41 at a recombination fraction of .09. Recombination was also observed between the AI locus and the more proximal loci DXS43 and DXS41 (Zmax = 0.09 at theta max = 0.31 and Zmax = 0.61 at theta max = 0.28, respectively). Absence of linkage was observed between the AI locus and seven other loci, located proximal to DXS41 or on the long arm of the X chromosome. On the basis of two-point linkage analysis and analysis of crossover events, we propose the following order of loci at Xp22: DXS89-(AI, DXS85)-DXS43-DXS41-Xcen.  相似文献   

6.
A Hispanic girl with Lowe oculocerebrorenal syndrome (OCRL), an X-linked recessive condition characterized by cataracts, glaucoma, mental retardation, and proteinuria, is reported. A balanced X;20 chromosomal translocation with the X chromosome breakpoint at q26.1 was found with high-resolution trypsin-Giemsa banding. Somatic cell hybridization was used to separate the X chromosome derivative and the chromosome 20 derivative in order to position, with respect to the translocation breakpoint, several DNA loci that are linked to the Lowe syndrome locus (Xq24-q26). DXS10 and DXS53 were found to be distal to the breakpoint, whereas DXS37 and DXS42 were located proximal to it. These studies suggest that the OCRL locus lies in the region between these probes. The translocation chromosome originated from an unaffected male without a visible translocation, indicating that the most likely cause of OCRL in this patient is the de novo translocation that disrupted the OCRL locus.  相似文献   

7.
We have tested linkage between the locus for the fragile-X [fra(X)] syndrome at Xq27.3 and five polymorphic restriction sites identified by four DNA probes mapping distal to Xq26.1. A maximum distance of approximately 15 centimorgans (cM) between Xq27.3 and the marker loci mapping to this region was predicted based on the physical chromosome length. Close linkage between the disease and marker loci was excluded for probes DXS19 and DXS37 (theta = .05, Z = -2.94 and Z = -4.17, respectively). These marker loci were estimated to be less than five cM apart but approximately 40 cM proximal to the fragile site, indicating that there is a significantly greater frequency of recombination in this region of the X chromosome than expected from the physical length. Linkage results for the other marker loci and the fra(X) syndrome were inconclusive. However, the pX45d probe locus appears very closely linked to the factor IX locus (Z = 1.94 at theta = 0) and is approximately 20 cM proximal to Xq27.3. A relative map of the polymorphic restriction sites, fra(X) syndrome locus, and factor IX locus was constructed by maximizing lod scores over the Xq26.1----q27.3 region.  相似文献   

8.
Leber hereditary optic neuroretinopathy (LHON) is a maternally inherited disease, probably transmitted by mutations in mtDNA. The variation in the clinical expression of the disease among family members has remained unexplained, but pedigree data suggest an involvement of an X-chromosomal factor. We have studied genetic linkage of the liability to develop optic atrophy to 15 polymorphic markers on the X chromosome in six pedigrees with LHON. The results show evidence of linkage to the locus DXS7 on the proximal Xp. Tight linkage to the other marker loci was excluded. Multipoint linkage analysis placed the liability locus at DXS7 with a maximum lod score (Zmax) of 2.48 at a recombination fraction (theta) of .0 and with a Zmax - 1 support interval theta = .09 distal to theta = .07 proximal of DXS7. No evidence of heterogeneity was found among different types of families, with or without a known mtDNA mutation associated with LHON.  相似文献   

9.
A woman with an abnormal karyotype, (46,X,der(X) (pter----q27::q27----q21), was analyzed using DNA probes in the region Xq27----qter. The results indicate that she is trisomic for the Factor IX locus, disomic for the locus DXS105 (cX55.7) and monosomic for the loci DXS98 (4D8), DXS52 (St14) and Factor VIII. This confirms the absence of the region Xq28 in the abnormal chromosome. Furthermore, the presence of only one copy of 4D8 and two copies of cX55.7 places the DXS98 locus distal to Factor IX and closer to the fragile X locus than DXS105.  相似文献   

10.
X-linked albinism-deafness syndrome (ADFN) was described in one Israeli Jewish family and is characterized by congenital nerve deafness and piebaldness. The ADFN mutation probably affects the migration of neural crest-derived precursors of the melanocytes. As a first step toward identifying the ADFN gene, a linkage study was performed to localize the disease locus on the X chromosome. The family was found to be informative for 11 of 107 RFLPs along the X, and two-point analysis showed four of them--factor 9 (F9), DXS91, DXS37, and DNF1--to have definite or suggestive linkage with ADFN. Multipoint linkage analysis indicated two possible orders within this cluster of loci, neither of which was preferable. In both orders F9 was the most distal, and the best estimate for the location of ADFN was between F9 and the next proximal marker (8.6 cM from F9 [Z = 8.1] or 8.3 cM from F9 [Z = 7.9]). These results suggest that the ADFN is at Xq26.3-q27.1. Disagreement between our data and previous localization of DXS91 at Xq11-q13 was resolved by hybridization of the probe pXG-17, which detects the DXS91 locus, to a panel of somatic cell hybrids containing different portions of the X chromosome. This experiment showed that this locus is definitely at Xq24-q26. Together with the linkage data, our results place DXS91 at Xq26 and underscore the importance of using more than one mapping method for the localization of molecular probes.  相似文献   

11.
Summary We have isolated II-10, a new X-chromosomal probe that identifies a highly informative two-allele TaqI restriction fragment length polymorphism at locus DXS466. Using somatic cell hybrids containing distinct portions of the long arm of the X chromosome, we could localize DXS466 between DXS296 and DXS304, both of which are closely linked distal markers for fragile X. This regional localization was supported by the analysis, in fragile X families, of recombination events between these three loci, the fragile X locus and locus DXS52, the latter being located at a more distal position. DXS466 is closely linked to the fragile X locus with a peak lod score of 7.79 at a recombination fraction of 0.02. Heterozygosity of DXS466 is approximately 50%. Its close proximity and relatively high informativity make DXS466 a valuable new diagnostic DNA marker for fragile X.  相似文献   

12.
A linkage study of Emery-Dreifuss muscular dystrophy   总被引:5,自引:0,他引:5  
Summary We have searched for linkage between polymorphic loci defined by DNA markers on the X chromosome and X-linked Emery-Dreifuss muscular dystrophy (EDMD). There are high recombination rates between EDMD and the Xp loci known to be linked to Becker and Duchenne muscular dystrophy. There is a suggestion of linkage between EDMD and the loci DXS52 and DXS15, defined by probes St 14 and DX13 respectively, located at Xq28. for DXS15=1.14 at =0.15. This is in agreement with the previously reported linkage between a disorder strongly resembling EDMD and colour-blindness (Thomas et al. 1972), suggesting that there is a second locus on the X chromosome concerned with muscle integrity.  相似文献   

13.
Two males with a 46,Y,der(X),t(X;Y)(p22.3;q11) complement were referred independently for evaluation of sterility with azoospermia. Both patients exhibited minimal symptomatology, characterized only by psychological disturbances. Study of X-chromosome breakpoints with pseudoautosomal probes 68B (DXYZ2 elements), 113D (locus DXYS15), and 19B (locus MIC2) indicated in both patients that at least 97% of the X pseudoautosomal sequences are lost. Hybridization with Xp22.3-specific probes DXS283, DXS284, and DXS31 shows that these loci are retained on the rearranged chromosome. Thus, the X-chromosome breakpoints are located close to the proximal boundary of the pseudoautosomal region, between MIC2 and DXS284.  相似文献   

14.
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive genetic disease in which the molecular defect is unknown. In 15 families with WAS, seven restriction fragment length polymorphic loci from the X chromosome were used to map the disease locus. Of the eight intervals studied, the likelihood of the WAS gene lying between DXS7 (Xp11.3) and DXS14 (Xp11) was at least 128 times higher than that for any other interval. The most likely gene order is DXS84-OTC-DXS7-WAS-DXS14-DXS1-PGK-DXYS1. Close genetic linkage to DXS7 and DXS14 permits accurate prenatal diagnosis and carrier detection with greater than 98% confidence in fully informative WAS families.  相似文献   

15.
Summary Two sisters with premature menopause and a small deletion of the long arm of one of their X chromosomes [del (X)(pterq26.3:)] were investigated with polymorphic DNA probes near the breakpoint. The deleted chromosome retained the factor IX (F9) locus and the loci DXS51 (52A) and DXS100 (pX45h), which are proximal to F9. However, the factor VIII (F8) locus was not present, nor were two loci tightly linked to this locus, DXS52 (St14) and DXS15 (DX13) This deletion refines the location of the F9 locus to Xq26 or to the interface Xq26/Xq27, thus placing it more proximally than has been previously reported. The DNA obtained from these patients should be valuable in the mapping of future probes derived from this region of the X chromosome.  相似文献   

16.
A young girl with a clinically moderate form of myotubular myopathy was found to carry a cytogenetically detectable deletion in Xq27-q28. The deletion had occurred de novo on the paternal X chromosome. It encompasses the fragile X (FRAXA) and Hunter syndrome (IDS) loci, and the DXS304 and DXS455 markers, in Xq27.3 and proximal Xq28. Other loci from the proximal half of Xq28 (DXS49, DXS256, DXS258, DXS305, and DXS497) were found intact. As the X-linked myotubular myopathy locus (MTM1) was previously mapped to Xq28 by linkage analysis, the present observation suggested that MTM1 is included in the deletion. However, a significant clinical phenotype is unexpected in a female MTM1 carrier. Analysis of inactive X-specific methylation at the androgen receptor gene showed that the deleted X chromosome was active in ~80% of leukocytes. Such unbalanced inactivation may account for the moderate MTM1 phenotype and for the mental retardation that later developed in the patient. This observation is discussed in relation to the hypothesis that a locus modulating X inactivation may lie in the region. Comparison of this deletion with that carried by a male patient with a severe Hunter syndrome phenotype but no myotubular myopathy, in light of recent linkage data on recombinant MTM1 families, led to a considerable refinement of the position of the MTM1 locus, to a region of ~600 kb, between DXS304 and DXS497.  相似文献   

17.
Linkage studies in X-linked Alport's syndrome   总被引:1,自引:0,他引:1  
Summary Four kindreds segregating for Alport's syndrome (ASLN) compatible with a X-linked inheritance were studied for linkage with polymorphic markers of the human X chromosome. No recombinant was observed between the ASLN locus and the DXS101 and DXS94 loci, the maximum lod scores were z=3.93 and 3.50 respectively. Linkage data between the ASLN locus and the other genetic markers used in the present study are in keeping with the assignment of the mutation to the proximal Xq arm.  相似文献   

18.
Summary A study of linkage between Becker muscular dystrophy and four X chromosome-specific DNA polymorphisms in 17 kindreds has indicated that this gene is located in Xp, as already anticipated by single pedigree analysis. In particular the DXS43 and DXS9 loci, identified by probes D2 and RC8, respectively, are closely linked to each other and are both located at approximately 15 cM from the Becker locus. These linkage data, together with the previously established linkage between Becker and the DXS7 locus identified by probe L 1.28, indicate that the Becker gene is located in the same region where Duchenne has been mapped and also yield information about relative genetic distances among different DNA polymorphisms of the X chromosome.  相似文献   

19.
Twelve families with Wiskott-Aldrich syndrome (WAS) were studied by linkage analysis using 10 polymorphic marker loci from the X-chromosome pericentromeric region. The results confirm close linkage of WAS to the DXS14, DXS7, TIMP, and DXZ1 loci and are consistent with previous data suggesting that WAS maps to the proximal Xp and is flanked by the DXS14 and DXS7 loci. The strongest linkage (Z = 10.19 at theta = 0.00) was found to be between WAS and the hypervariable DXS255 locus, a marker locus already mapped between DXS7 and DXS14 and which was informative for all meioses included in this analysis. Linkage of the WAS to two pericentromeric Xq loci, DXS1 and PGK1, was also established. On the basis of these results, accurate predictive testing should now be feasible in the majority of WAS families.  相似文献   

20.
We here report linkage studies in a family suffering from a recently described hereditary muscle disease named X-linked myopathy with excessive autophagy (XMEA). Significant lod scores excluding linkage to the Duchenne-Becker muscular dystrophy locus were found. Several other loci on the short and long arms of the X chromosome produced negative lod scores, whereas probe DX13-7 defining locus DXS15 showed no recombinants and a lod score of z = 0.903 at theta = .0. Further studies should be done to determine whether the gene for XMEA is (1) located at Xq and (2) caused by a mutation of the Emery-Dreifuss muscular dystrophy gene, which has been assigned to the same region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号