首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies have shown that the opiate system is crucially involved in emotionally guided behavior. In the present study, we focussed on the medio-rostral neostriatum/hyperstriatum ventrale (MNH) of the chick forebrain. This avian prefrontal cortex analogue is critically involved in auditory filial imprinting, a well-characterized juvenile emotional learning event. The high density of mu-opiate receptors expressed in the MNH led to the hypothesis that mu-opiate receptor-mediated processes may modulate the glutamatergic, dopaminergic, and/or serotonergic neurotransmission within the MNH and thereby have a critical impact on filial imprinting. Using microdialysis and pharmaco-behavioral approaches in young chicks, we demonstrated that: the systemic application of the mu-opiate receptor antagonist naloxone (5, 50 mg/kg) significantly increased extracellular levels of 5-HIAA and HVA; the systemic application of the specific mu-opiate receptor agonist DAGO (5 mg/kg) increased the levels of HVA and taurine, an effect that was antagonized by simultaneously applied naloxone (5 mg/kg); the local application of DAGO (1 mM) had no effects on 5-HIAA, HVA, glutamate, and taurine, however, the effects of systemically injected naloxone (5 mg/kg) were abolished by simultaneously applied DAGO (1 mM); the systemic application of naloxone (5 mg/kg) increased distress behavior (measured as the duration of distress vocalization during separation from the peer group). These results are in line with our hypothesis that the mu-opiate receptor-mediated modulation of serotonergic and dopaminergic neurotransmission alters the emotional and motivational status of the animal and thereby may play a modulatory role during filial imprinting in the newborn animal.  相似文献   

2.
Numerous studies have shown that the opiate system is crucially involved in emotionally guided behavior. In the present study, we focussed on the medio‐rostral neostriatum/hyperstriatum ventrale (MNH) of the chick forebrain. This avian prefrontal cortex analogue is critically involved in auditory filial imprinting, a well‐characterized juvenile emotional learning event. The high density of μ‐opiate receptors expressed in the MNH led to the hypothesis that μ‐opiate receptor‐mediated processes may modulate the glutamatergic, dopaminergic, and/or serotonergic neurotransmission within the MNH and thereby have a critical impact on filial imprinting. Using microdialysis and pharmaco‐behavioral approaches in young chicks, we demonstrated that: the systemic application of the μ‐opiate receptor antagonist naloxone (5, 50 mg/kg) significantly increased extracellular levels of 5‐HIAA and HVA; the systemic application of the specific μ‐opiate receptor agonist DAGO (5 mg/kg) increased the levels of HVA and taurine, an effect that was antagonized by simultaneously applied naloxone (5 mg/kg); the local application of DAGO (1 mM) had no effects on 5‐HIAA, HVA, glutamate, and taurine, however, the effects of systemically injected naloxone (5 mg/kg) were abolished by simultaneously applied DAGO (1 mM); the systemic application of naloxone (5 mg/kg) increased distress behavior (measured as the duration of distress vocalization during separation from the peer group). These results are in line with our hypothesis that the μ‐opiate receptor‐mediated modulation of serotonergic and dopaminergic neurotransmission alters the emotional and motivational status of the animal and thereby may play a modulatory role during filial imprinting in the newborn animal. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

3.
The associative avian forebrain region medio-rostral neostriatum/hyperstriatum ventrale (MNH) is involved in auditory filial imprinting and may be considered the avian analogue of the mammalian prefrontal cortex. In search of the neurochemical and physiological mechanisms which play a role in this learning process, we introduced microdialysis and a combined microdialysis/electrophysiological approach in domestic chicks a few days old. With this technique, we were able to follow changes of the extracellular levels of glutamate, taurine, 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of serotonin, and homovanillic acid (HVA), a metabolite of dopamine, and neuronal activity simultaneously in freely moving animals. We obtained first evidence of a modulatory interaction between glutamatergic and monoaminergic neurotransmission mediated by N-methyl-D-aspartate (NMDA) receptors. During local intracerebral infusion of 300 microM NMDA via reverse microdialysis, an increase of taurine and a decrease of 5-HIAA and HVA were detected, accompanied by enhanced extracellular spike rates. Glutamate was increased only during consecutive infusion of increasing NMDA concentrations, when higher (1 mM) NMDA concentrations were infused. The effects of NMDA were antagonized by D, L-2-amino-5-phosphonovaleric acid (1 mM). Infusion of high potassium induced similar changes in taurine, 5-HIAA, and HVA, as found during infusion of NMDA, but decreased extracellular spike rates, which indicates that different cellular mechanisms may underlie the observed neurochemical changes. Neither urethane anesthesia nor different delays between probe implantation and experiment influenced the neurochemical and electrophysiological results; however, changes of taurine were observed only in chronically implanted, awake animals. In summary, microdialysis in combination with electrophysiology provides a powerful tool to detect changes of neuronal activity and transmitter release in the avian brain, with which the role of transmitter interactions can be followed during and after different learning events.  相似文献   

4.
The associative avian forebrain region medio‐rostral neostriatum/hyperstriatum ventrale (MNH) is involved in auditory filial imprinting and may be considered the avian analogue of the mammalian prefrontal cortex. In search of the neurochemical and physiological mechanisms which play a role in this learning process, we introduced microdialysis and a combined microdialysis/electrophysiological approach in domestic chicks a few days old. With this technique, we were able to follow changes of the extracellular levels of glutamate, taurine, 5‐hydroxyindoleacetic acid (5‐HIAA), a metabolite of serotonin, and homovanillic acid (HVA), a metabolite of dopamine, and neuronal activity simultaneously in freely moving animals. We obtained first evidence of a modulatory interaction between glutamatergic and monoaminergic neurotransmission mediated by N‐methyl‐D ‐aspartate (NMDA) receptors. During local intracerebral infusion of 300 μM NMDA via reverse microdialysis, an increase of taurine and a decrease of 5‐HIAA and HVA were detected, accompanied by enhanced extracellular spike rates. Glutamate was increased only during consecutive infusion of increasing NMDA concentrations, when higher (1 mM) NMDA concentrations were infused. The effects of NMDA were antagonized by D , L ‐2‐amino‐5‐phosphonovaleric acid (1 mM). Infusion of high potassium induced similar changes in taurine, 5‐HIAA, and HVA, as found during infusion of NMDA, but decreased extracellular spike rates, which indicates that different cellular mechanisms may underlie the observed neurochemical changes. Neither urethane anesthesia nor different delays between probe implantation and experiment influenced the neurochemical and electrophysiological results; however, changes of taurine were observed only in chronically implanted, awake animals. In summary, microdialysis in combination with electrophysiology provides a powerful tool to detect changes of neuronal activity and transmitter release in the avian brain, with which the role of transmitter interactions can be followed during and after different learning events. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 116–135, 1999  相似文献   

5.
Abstract: Imprinting in chicks is a form of juvenile learning that has been used to study the basic cellular mechanisms of learning and memory. The forebrain area mediorostral neostriatum/hyperstriatum ventrale (MNH) is a center for acoustic imprinting. Electrophysiological and pharmacological behavioral studies in the MNH have demonstrated that the glutamatergic system and the associated receptors are critically involved in auditory filial imprinting. Accordingly, we investigated the hypothesis that stimulus-evoked glutamate release may be altered after this learning process. Using an in vivo microdialysis technique, we observed a significantly higher increase of extracellular glutamate level in tone-imprinted chicks during exposure to the previously imprinted tone than in socially imprinted control chicks. In a further series of experiments, where we exposed animals from both experimental groups to handling distress, glutamate levels in MNH showed only a slight increase, whereas we observed a pronounced increase of extracellular glutamate in the lobus parolfactorius (LPO), the avian analogue of the basal ganglia. No difference of distress-evoked glutamate release was found in MNH and LPO between tone-imprinted and socially imprinted chicks. The tone-evoked enhanced glutamate response in tone-imprinted chicks suggests that during auditory imprinting glutamatergic synapses develop the potential to increase transmitter release in response to the imprinting stimulus.  相似文献   

6.
We studied the effects of a diet chronically deficient in alpha-linolenic acid, the precursor of long-chain n-3 polyunsaturated fatty acids, on dopaminergic neurotransmission in the shell region of the nucleus accumbens of rats. In vivo microdialysis experiments showed increased basal levels of dopamine and decreased basal levels of metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in awake rats from the deficient group compared to controls. The release of dopamine under KCl stimulation was similar in both dietary groups. By contrast, the release of dopamine from the vesicular storage pool under tyramine stimulation was 90% lower in the deficient than in the control rats. Autoradiographic studies in the same cerebral region revealed a 60% reduction in the vesicular monoamine transporter sites in the deficient group. Dopamine D(2) receptors were 35% increased in these rats compared to controls, whereas no change occurred for D(1) receptors and membrane dopamine transporters. These results demonstrated that chronic n-3 polyunsaturated fatty acid deficiency modifies several factors of dopaminergic neurotransmission in the nucleus accumbens. These findings are in agreement with the changes in dopaminergic neurotransmission already observed in the frontal cortex, and with the behavioral disturbances described in these deficient rats.  相似文献   

7.
Abstract: Auditory cortex has been shown to be a site of widespread neuronal learning processes even in the context of simple auditory conditioning behavior. In view of their presumed role in determining behavioral and motivational relevance of incoming information we investigated whether the dopaminergic and serotonergic systems are involved in auditory cortex learning. Using a chronic brain microdialysis technique over 4 days, samples from auditory cortex were obtained before, during, and after daily footshock avoidance training simultaneously from trained gerbils and passive control animals or pseudotrained animals. Because of detection limits of dopamine and serotonin in auditory cortex, the response profiles of extracellular homovanillic acid as the metabolite of the dopaminergic system and of 5-hydroxyindoleacetic acid as the metabolite of the serotonergic system were determined from consecutive dialysis samples each day. The response of the dopaminergic system appeared to reflect the initial formation of the behaviorally relevant association exclusively during the first training day, whereas the serotonergic response appeared to correlate with the stress level of animals.  相似文献   

8.
To determine whether 1-tyrosine administration can enhance dopamine synthesis in humans as it does in rats, we measured levels of tyrosine and the major dopamine metabolite, homovanillic acid, in lumbar spinal fluids of 23 patients with Parkinson's disease before and during ingestion of 100 mg/kg/day of tyrosine. Nine patients took 100 mg/kg/day of probenecid in six divided doses for 24 hours prior to each spinal tap; 14 patients did not receive probenecid. L-tyrosine administration significantly increased CSF tyrosine levels in both groups of patients (p less than .01) and significantly increased homovanillic acid levels in the group of patients pretreated with probenecid (p less than .02). These data indicate that l-tyrosine administration can increase dopamine turnover in patients with disorders in which physicians wish to enhance dopaminergic neurotransmission.  相似文献   

9.
There is increasing evidence that growth hormone (GH) has important behavioral effects in fish, but the underlying mechanisms are not well understood. To investigate if peripherally administered GH influences the monoaminergic activity of the brain, and how this is correlated to behavior, juvenile rainbow trout were implanted intraperitoneally with ovine GH. Fish were either kept isolated or in groups of five. The physical activity and food intake of the isolated fish were observed after 1 and 7 days, when brains were also sampled. The content of serotonin, dopamine, and noradrenaline and their metabolites in hypothalamus, telencephalon, optic tectum, and brain stem was then analyzed. For fish kept isolated for 7 days following implant, GH increased swimming activity and the levels of the dopamine metabolite 3, 4-hydroxy-phenylacetic acid (DOPAC) were higher in all brain parts examined. In the optic tectum, the levels of the dopamine metabolite homovanillic acid (HVA) were lowered by the GH treatment. One-day GH implant did not affect behavior or monoamine levels of isolated fish. In the fish kept in groups, a 7-day GH implant increased the hypothalamic levels of DOPAC, but not in the other brain parts examined, which may indicate an effect on the brain dopaminergic system from social interactions. It can be concluded that peripherally administered GH may function as a neuromodulator, affecting the dopaminergic activity of the rainbow trout brain, and this is associated with increased swimming activity.  相似文献   

10.
1. Monoamines (which all demand oxygen for their synthesis) and monoamine metabolites were quantified in 6 brain regions of the extremely anoxia tolerant crucian carp (Carassius carassius L.).2. The norepinephrine levels were generally twice as high as the dopamine levels. No epinephrine was found.3. The major dopamine metabolite seemed to be homovanillic acid. No 3,4-dihydroxyphenylacetic acid was found.4. Serotonin occurred at about the same levels as dopamine. The levels of the main serotonin metabolite, 5-hydroxyindole-3-acetic acid, were about 10% of that of serotonin.5. All three monoamines had a similar distribution, with the highest concentrations in hypothalamus and the lowest in cerebellum and vagal lobes.6. The distribution and levels of monoamines agreed with that of anamniote vertebrates in general, suggesting that the crucian carp has not adapted to anoxia by abandoning or minimizing the use of monoaminergic systems.  相似文献   

11.
The effect of halothane anesthesia on changes in the extracellular concentrations of dopamine (DA) and its metabolites (3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA)) induced by neuroleptics was studied using in vivo microdialysis techniques. Halothane attenuated haloperidol-induced dopamine release and enhanced clozapine-induced dopamine release in the rat striatum.A microdialysis probe was implanted into the right striatum of male SD rats. Rats were given saline or the same volume of 200 microg kg(-1) haloperidol (D(2) receptor antagonist), 10 mg kg(-1) sulpiride (D(2) and D(3) antagonist), or 10 mg kg(-1) clozapine (D(4) and 5-HT(2) antagonist) intraperitoneally with or without 1-h halothane anesthesia (0.5 or 1.5%). Halothane anesthesia did not change the extracellular concentration of DA, but increased the metabolite concentrations in a dose-dependent manner. The increased DA concentration induced by haloperidol was significantly attenuated by halothane anesthesia, whereas the metabolite concentrations were unaffected. Halothane had no effect on the changes in the concentrations of DA or its metabolites induced by sulpiride. The clozapine-induced increases in DA and its metabolites were enhanced by halothane anesthesia.Our results suggest that halothane anesthesia modifies the DA release modulated by antipsychotic drugs in different ways, depending on the effects of dopaminergic or serotonergic pathways.  相似文献   

12.
The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D2 dopamine receptors. N-methyl-d-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D2 dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced dopaminergic side effects characteristic for antipsychotic medication.  相似文献   

13.
Previous work has shown that the potent, selective metabotropic glutamate mGlu2/3 receptor agonist LY379268 acts like the atypical antipsychotic clozapine in behavioral assays. To investigate further the potential antipsychotic actions of this agent, we examined the effects of LY379268 using microdialysis in awake, freely moving rats, on extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindole-3-acetic acid (5-HIAA) in rat medial prefrontal cortex. Systemic LY379268 increased extracellular levels of dopamine, DOPAC, HVA, and 5-HIAA in a dose-dependent, somewhat delayed manner. LY379268 (3 mg/kg s.c. ) increased levels of dopamine, DOPAC, HVA, and 5-HIAA to 168, 170, 169, and 151% of basal, respectively. Clozapine (10 mg/kg) also increased dopamine, DOPAC, and HVA levels, with increases of 255, 262, and 173%, respectively, but was without effect on extracellular 5-HIAA levels by 3 mg/kg LY379268 were reversed by the selective mGlu2/3 receptor antagonist LY341495 (1 mg/kg). Furthermore, LY379268 (3 mg/kg)-evoked increases in DOPAC and HVA were partially blocked and the increase in 5-HIAA was completely blocked by local application of 3 microM tetrodotoxin. Therefore, we have demonstrated that mGlu2/3 receptor agonists activate dopaminergic and serotonergic brain pathways previously associated with the action of atypical antipsychotics such as clozapine and other psychiatric agents.  相似文献   

14.
Growth hormone (GH) has been demonstrated to alter the behavior of juvenile salmonids. However, the mechanisms behind this action are not yet understood. In mammals and birds, peripheral GH treatment has been shown to affect monoaminergic activity in the central nervous system, which may be a mechanism whereby GH alters behavior. To investigate if GH may influence behavior directly at the central nervous system, juvenile rainbow trout were injected with GH into the third ventricle of the brain, whereupon physical activity and food intake were observed during 2 h. Thereafter, brains were sampled and the content of serotonin, dopamine, and noradrenaline and their metabolites were measured in hypothalamus, telencephalon, optic tectum, and brainstem. The GH-treated fish increased their swimming activity relative to sham-injected controls, while appetite remained unchanged, compared with sham-injected controls. Analysis of brain content of monoamines revealed that the GH treatment caused a decrease in the dopamine metabolite homovanillic acid in the hypothalamus, indicating a lowered dopaminergic activity. It is concluded that GH may alter behavior by acting directly on the central nervous system in juvenile rainbow trout. Furthermore, GH seems to alter the dopaminergic activity in the hypothalamus. Whether this is a mechanism whereby GH affects swimming activity remains to be clarified.  相似文献   

15.
Glutamate and aspartate are the primary neurotransmitters of projections from motor and premotor cortices to the striatum. Release of glutamate may be modulated by dopamine receptors located on corticostriatal terminals. The present study used microdialysis to investigate the dopaminergic modulation of in vivo striatal glutamate and aspartate release in the striatum of awake-behaving rats. Local perfusion with a depolarizing concentration of K+ through a dialysis probe into the rat striatum produced a significant increase in the release of glutamate, aspartate, and taurine. The D2 agonist LY171555 blocked the K(+)-induced release of glutamate and aspartate, but not taurine, in a concentration-dependent manner. The D1 agonist SKF 38393 did not alter K(+)-induced release of glutamate and taurine, but did significantly decrease aspartate release. Neither agonist had any effect on basal amino acid release. The D2 antagonist (-)-sulpiride reversed the inhibitory effects of LY 171555 on K(+)-induced glutamate release. These results provide in vivo evidence for a functional interaction between dopamine, the D2 receptor, and striatal glutamate release.  相似文献   

16.
The effects of a prolonged treatment with cyclo (Leu-Gly) and/or haloperidol on biochemical parameters indicative of striatal dopamine target cell supersensitivity have been investigated in the rat. When given acutely, cyclo (Leu-Gly) (2 mg/kg sc) did not affect striatal homovanillic acid, dihydroxyphenylacetic acid and acetylcholine levels both under basal conditions or after acute haloperidol (1 mg/kg ip) treatment. When given concomitantly with haloperidol (infused by means of osmotic minipumps at a rate of 2.5 μg/h sc) for 14 days, cyclo (Leu-Gly) (2 mg/kg sc once daily) failed to prevent the fall of striatal dopamine metabolites observed 2 days following withdrawal and the tolerance to the elevation of dopamine metabolites which occurs in response to challenge with the neuroleptic during withdrawal. Prolonged treatment with cyclo (Leu-Gly) also failed to affect the tolerance to the decrease of striatal acetylcholine levels which occurs under chronic haloperidol treatment. These data suggest that the mechanism whereby cyclo (Leu-Gly) inhibits the development of neuroleptic-induced dopaminergic supersensitivity does not involve an action of the peptide on nigro-striatal dopaminergic and striatal cholinergic neurons and is probably exerted distally to both dopaminergic and cholinergic synapses.  相似文献   

17.
Adolescent smokers report enhanced positive responses to tobacco and fewer negative effects of withdrawal from this drug than adults, and this is believed to propel higher tobacco use during adolescence. Differential dopaminergic responses to nicotine are thought to underlie these age‐related effects, as adolescent rats experience lower withdrawal‐related deficits in nucleus accumbens (NAcc) dopamine versus adults. This study examined whether age differences in NAcc dopamine during withdrawal are mediated by excitatory or inhibitory transmission in the ventral tegmental area (VTA) dopamine cell body region. In vivo microdialysis was used to monitor extracellular levels of glutamate and gamma‐aminobutyric acid (GABA) in the VTA of adolescent and adult rats experiencing nicotine withdrawal. In adults, nicotine withdrawal produced decreases in VTA glutamate levels (44% decrease) and increases in VTA GABA levels (38% increase). In contrast, adolescents did not exhibit changes in either of these measures. Naïve controls of both ages did not display changes in NAcc dopamine, VTA glutamate, or VTA GABA following mecamylamine. These results indicate that adolescents display resistance to withdrawal‐related neurochemical processes that inhibit mesolimbic dopamine function in adults experiencing nicotine withdrawal. Our findings provide a potential mechanism involving VTA amino acid neurotransmission that modulates age differences during withdrawal.  相似文献   

18.
The effects on rat striatal dopamine (DA) metabolism of systemic and local administration of CGP 28014, an inhibitor of catechol-O-methyl-transferase (COMT), were studied by in vivo microdialysis. CGP 28014 (30 mg/kg i.p.) significantly reduced the levels of homovanillic acid (HVA), but did not modify DA and 3,4-dihydroxyphenylacetic acid (DOPAC). The intrastriatal administration (via the microdialysis probe) of 5, 7.5, 10, and 20 mM of CGP 28014 elicited a concentration-dependent, several-fold increase in extracellular DA but did not alter the levels of HVA and DOPAC. Thus, the effects of CGP 28014 observed after i.p. injection (decrease in HVA levels) are different from those measured after intrastriatal administration (increase in DA release). Therefore, the inhibition of COMT is likely to be due to the action of a metabolite of CGP 28014 formed in the periphery and not in the brain.  相似文献   

19.
Adenosine, by acting on adenosine A(1) and A(2A) receptors, exerts opposite modulatory roles on striatal extracellular levels of glutamate and dopamine, with activation of A(1) inhibiting and activation of A(2A) receptors stimulating glutamate and dopamine release. Adenosine-mediated modulation of striatal dopaminergic neurotransmission could be secondary to changes in glutamate neurotransmission, in view of evidence for a preferential colocalization of A(1) and A(2A) receptors in glutamatergic nerve terminals. By using in vivo microdialysis techniques, local perfusion of NMDA (3, 10 microm), the selective A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 3, 10 microm), the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 300, 1000 microm), or the non-selective A(1)-A(2A) receptor antagonist in vitro caffeine (300, 1000 microm) elicited significant increases in extracellular levels of dopamine in the shell of the nucleus accumbens (NAc). Significant glutamate release was also observed with local perfusion of CGS 21680, CPT and caffeine, but not NMDA. Co-perfusion with the competitive NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (APV; 100 microm) counteracted dopamine release induced by NMDA, CGS 21680, CPT and caffeine. Co-perfusion with the selective A(2A) receptor antagonist MSX-3 (1 microm) counteracted dopamine and glutamate release induced by CGS 21680, CPT and caffeine and did not modify dopamine release induced by NMDA. These results indicate that modulation of dopamine release in the shell of the NAc by A(1) and A(2A) receptors is mostly secondary to their opposite modulatory role on glutamatergic neurotransmission and depends on stimulation of NMDA receptors. Furthermore, these results underscore the role of A(1) vs. A(2A) receptor antagonism in the central effects of caffeine.  相似文献   

20.
Abstract: In the present study, extracellular levels of the neuropeptide cholecystokinin (CCK), of the monoamine dopamine and its metabolites 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and of the excitatory amino acids glutamate and aspartate were simultaneously monitored by microdialysis in the neostriatum of halothane-anesthetized rats under basal and K+-depolarizing conditions. Extracellular CCK and dopamine levels, but not glutamate and aspartate levels, were decreased by perfusion with a Ca2+-free medium, under both basal and K+-depolarizing conditions. HPLC revealed that the majority of the CCK-like immunoreactivity in the perfusates coeluted with CCK octapeptide. Striatal extracellular CCK levels were decreased by decortication plus callosotomy, with a parallel decrease in glutamate levels. Striatal extracellular levels of dopamine, DOPAC., and HVA were significantly decreased in animals treated previously with a unilateral 6-hydroxydopamine injection into the medial forebrain bundle. In these animals, however, the effect of decortication plus callosotomy on CCK and glutamate levels was not further augmented. Thus, this study supports the hypothesis of a neuronal origin of extracellular CCK and dopamine monitored with microdialysis in the striatum of the rat, and also supports the idea of a partly contralateral origin of corticostriatal CCK and glutamate inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号