首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The postnatal development of skeletal muscle is accompanied by an increased capacity for glycogenolysis and anaerobic glycolysis. In the present study, regulatory features of cAMP synthesis were examined in neonatal and adult rabbit sarcolemmal membranes. Adult sarcolemma exhibited a 3-, 6-, and 10-fold greater adenylate cyclase activity than neonate for basal, NaF, and isoproterenol plus GTP, respectively. The Km for activation by isoproterenol was 1.4 X 10(-8) M and 6 X 10(-8) M for GTP. The number of beta-receptors was similar (0.9-1.2 pmol/mg). 10 microM GTP shifted isoproterenol EC50 from 1 X 10(-8) M to 1 X 10(-7) M in adult; neonatal agonist affinity was unaffected by GTP. Cholera toxin stimulated adenylate cyclase activity 2-fold and catalyzed 32P ribosylation of a Mr = 42,000 peptide in adult sarcolemma; both activities were low or absent in neonate. Isoproterenol-stimulated GTPase activity was elevated 4-fold in adult compared to neonatal sarcolemma. Mn2+ ion-stimulated basal activity, an indicator of catalytic function of adenylate cyclase, was also elevated in adult. Together, these findings suggest that the development of catecholamine-sensitive cAMP synthesis in muscle is governed by the coordinate expression of the regulatory and catalytic proteins of adenylate cyclase, but not the beta-receptor.  相似文献   

2.
The PAS-positive-calcium-sensitive (Ca-s) cells of the pars intermedia (PI) were studied in goldfish kept in fresh water (FW), deionized water (DW), 1/3 sea water (SW) and 1/3 Ca-free SW. Ultrastructural studies show that Ca-s cells of control goldfish kept in FW have a low activity with elongated or deeply indented nuclei. This activity is slightly reduced after 19 days in 1/3 SW. A considerable stimulation of most Ca-s cells is noted in goldfish kept in DW for 20 or 40 days. The stimulation is similar in 1/3 Ca-free SW, but it affects sometimes a smaller percentage of cells and may be less marked in peripheral areas of the PI. Exocytotic figures are more numerous in Ca-s cells of goldfish in 1/3 Ca-free SW than in DW. A basal lamina is rarely present and direct contacts between PI cells and nervous tissue are frequent, although a single synaptic contact with a type B fiber was observed. MSH cells are not affected in goldfish kept in DW. They are stimulated in 1/3 Ca-free SW: the physiological significance of this response remains unclear. Few agranular (Agr) cells are scattered in the PI. Evident changes are not observed in the different environments. The present ultrastructural data support the hypothesis that the Ca-s cells of the PI secrete a factor involved in calcium regulation in some teleosts.  相似文献   

3.
The effects of various spin-labeled stearates on duck erythrocyte adenylate cyclase were investigated. Only 2-(3-carboxypropyl)-4,4-dimethyl-2-tridecyl-3-oxazolidinyloxyl caused an increase in adenylate cyclase activity. It increased the basal rate by about 50%, and the activities stimulated by isoproterenol and isoproterenol plus guanosine 5'-[beta,gamma-imido]triphosphate by 35%. Upon analysis of the width parameter delta1 in the electron spin resonance spectra for both the basal enzyme activity and the stimulation obtained with effectors such as guanosine 5'-[beta,gamma-imido]triphosphate, isoproterenol, isoproterenol plus guanosine 5'-[beta,gamma-imido]triphosphate and NaF, a correlation of the changes of modification in adenylate cyclase activities was found. These findings suggest that the molecular environment of the enzyme has been modified.  相似文献   

4.
Desensitization of catecholamine stimulated adenylate cyclase (AC) activity is demonstrated in membranes derived from turkey erythrocytes pre-treated with isoproterenol. Membranes from desensitized cells had a loss in maximal catecholamine stimulated adenylate cyclase activity of 104 +/- 13 (pmols/mg protein/10', p less than .001) compared with controls. When adenylate cyclase was maximally stimulated with NaF or Gpp(NH)p, the decrements were 84 +/- 19 (p less than .005) and 92 +/- 32 (p less than .05) pmol/mg protein/10' respectively. There was no change in beta-adrenergic receptor number in membranes derived from treated cells. While the molecular mechanism accounting for the desensitization is uncertain, the data is consistent with the hypothesis that there is a lesion distal to the beta-adrenergic receptor, possibly involving the nucleotide site or the catalytic subunit of adenylate cyclase, causing the desensitization in the isoproterenol treated cells.  相似文献   

5.
Adenylate Cyclase Activity in the Superior Cervical Ganglion of the Rat   总被引:2,自引:2,他引:0  
Abstract: Adenylate cyclase activity in cell-free homogenates of the rat superior cervical ganglion (SCG) was assayed under a variety of experimental conditions. Adenylate cyclase activity was decreased by approximately one-half when 1 m M EGTA was included in the homogenization buffer and assay mixture, indicating the presence of a Ca2+-sensitive adenylate cyclase in the ganglion. In the presence of EGTA, basal adenylate cyclase activity in homogenates of the SCG was 12.9 ± 0.6 pmol cyclic AMP/ganglion/10 min. Enzyme activity was stimulated three- to fourfold by 10 m M NaF or 10 m M MnCl2, Both GTP and its nonhydrolyzable analog guanylylimidodiphosphate (GppNHp) stimulated adenylate cyclase in a concentration-dependent manner over the range of 0.1–10.0 μ M . Stimulation by GppNHp was five to six times greater than that produced by GTP at all concentrations tested. Decentralization of the ganglion had no effect on basal or stimulated adenylate cyclase activity. Receptor-linked stimulation of adenylate cyclase was not obtained with any of the following: isoproterenol, epi-nephrine, histamine, dopamine, prostaglandin E2, or va-soactive intestinal peptide. Thus the receptor-linked regulation of adenylate cyclase activity appears to be lost in homogenates of the ganglion.  相似文献   

6.
Prolactin (PRL) cell activity was investigated in eels kept in fresh water (FW), deionized water (DW) supplemented or not with Ca (2 mM), in Ca-enriched FW (10 mM), in normal (Ca 3.4 mM) or Ca-free 1/3 sea water (SW), and in SW (Ca 10.2 mM) or Ca-free SW (Ca 0.15 mM). Light-microscopic studies, including measurement of the nuclear area and cell height, showed that PRL cell activity, reduced in DW, is not affected by Ca supplementation. Activity is reduced in Ca-enriched FW, in 1/3 SW and in SW, conditions inducing an increase in the plasma sodium level. The lack of calcium in saline environments partly suppresses the nuclear atrophy occurring in SW. There is no significant correlation between external or total plasma calcium concentration and PRL cell activity. In artificial Ca-free SW, eels show a rapid increase in plasma osmolarity and sodium levels; there is a significant negative correlation between these two plasma values and the nuclear area or cell height of PRL cells. As in some other teleosts, plasma osmolarity and plasma sodium seem to play a more important role than external or internal calcium in controlling PRL secretion. This correlation is not apparent in eels kept in SW, having unstimulated PRL cells but active calcium-sensitive (Ca-s) cells in the pars intermedia.  相似文献   

7.
Summary To clarify the role of growth hormone (GH) in salmonids during seawater (SW) adaptation, we examined GH kinetics in chronically cannulated rainbow trout, weighing about 1 kg. When trout were transferred from fresh water (FW) to 75% SW, plasma chloride concentration was normalized within 1 week. Plasma GH concentration increased significantly 2 days after transfer and decreased to the initial level thereafter. Metabolic clearance rate (MCR) and secretion rate (SR) of GH were calculated from the plasma levels of GH measured by radioimmunoassay after intra-arterial injection of recombinant chum salmon GH. 4 days after transfer to 75% SW, both MCR and SR increased to levels five times higher than those in FW, and returned to the FW levels after 3–4 weeks. In rainbow trout GH seems to be involved in the development of hypoosmoregulatory mechanisms, especially during the early phase of adaptation.  相似文献   

8.
The effects of the mixed agonist epinephrine and the beta agonist isoproterenol, each alone and in combination with the alpha adrenergic blocker phentolamine and the beta blocker propranolol on the adenylate cyclase activity of human adipocyte membrane fragments were determined in a calcium free buffer. Neither phentolamine (10 muM) nor propranolol (32 muM) affected basal adenylate cyclase activity. Epinephrine (10 muM) stimulated adenylate cyclase activity and this effect was slightly enhanced by phentolamine. The combination of epinephrine plus propranolol depressed adenylate cyclase below the basal level. Isoproterenol (10 muM) markedly stimulated adenylate cyclase; the addition of phentolamine caused an equivocal further increase while the addition of propranolol depressed adenylate cyclase activity to, but not below, the basal level. These findings are consistent with the hypothesis that human adipocytes have both alpha and beta adrenergic receptors and that these receptors are associated with the cell membrane adenylate cyclase system.  相似文献   

9.
Adenylate cyclase activity and its hormonal stimulation were measured in endometrial tissue, and sex steroid levels were quantified in uterine tissue collected from pregnant and estrous rabbits. The tissues from pregnant animals were separated into implantation (ES) and interimplantation (IES) sites. Adenylate cyclase activity was measured in broken cell preparations by enzymatic conversion of alpha-32P-adenosine triphosphate (ATP) into 32P-cyclic adenosine 3', 5'-monophosphate using Mg2(+)-ATP as a substrate. The activity was measured with no addition (basal) and after stimulation with guanosine triphosphate (GTP), NaF, or increasing doses (1 nM to 100 microM) of isoproterenol (ISO) and prostaglandin E2 (PGE2). The presence of GTP was necessary to observe a stimulation by ISO and PGE2. During pregnancy, adenylate cyclase activity was reduced compared to activity at estrus on Day 6.5 (IES and ES) and on Day 9 (IES); however, it reached its highest level at ES (Day 9). The regulation of isoproterenol response followed a similar pattern. Dose responses to PGE2 were markedly affected by physiological status. The response was higher during pregnancy than at estrus, and response (percent of GTP), as well as sensitivity, was higher in IES than in ES on Day 6.5 and even greater on Day 9. The levels of estradiol (E2) were reduced during pregnancy, but comparable in ES and IES; however, progesterone (P) levels were reduced in ES, and the E2/P ratio was significantly higher (p less than 0.01) in ES (15 +/- 1, 17 +/- 2) than in IES (8 +/- 1, 6 +/- 0.8) on Days 6.5 and 9, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Unidirectional fluxes of Na+ obtained in perfused preparation and mucosal enzyme equipment (alkaline phosphatase, ouabain-sensitive Na+, K+-ATPase) have been determined in the middle and posterior intestine of freshwater (FW) and sea-water (SW) adapted trout. In FW, influxes and outfluxes were higher in the middle than in the posterior intestine, although net fluxes were similar. SW adaptation induced an increase of influxes and net fluxes mainly in the posterior intestine. SW adaptation decreased the alkaline phosphatase activity only in the posterior intestine. Na+,K+-ATPase activity was always higher in the middle than in the posterior intestine in FW and SW and increased in both parts by SW adaptation. Thus, it seems that SW adaptation of rainbow trout modifies Na intestinal absorption principally in its posterior part and in relation with the Na+, K+-ATPase activity.  相似文献   

11.
Trout are of interest in defining the relationship between fluid and salt balance on cardiovascular function because they thrive in freshwater (FW; volume loading, salt depleting), saltwater (SW; volume depleting, salt loading), and FW while fed a high-salt diet (FW-HS; volume and salt loading). The effects of chronic (>2 wk) adaptation to these three protocols on blood volume (51Cr red cell space), extracellular fluid volume (99mTc-diethylene triaminepenta-acetic acid space), arterial (dorsal aortic; P(DA)) and venous (ductus Cuvier; Pven) blood pressure, mean circulatory filling pressure (zero-flow Pven), and vascular capacitance were examined in the present study on unanesthetized rainbow trout. Blood volume, extracellular fluid volume, P(DA), Pven, and mean circulatory filling pressure progressively increased in the order SW < FW < FW-HS. Vascular capacitance in SW fish appeared to be continuous with the capacitance curve of FW fish and reflect a passive volume-dependent unloading of the venous system of FW fish. Vascular capacitance curves for FW-HS fish were displaced upward and parallel to those of FW fish, indicative of an active increase in unstressed blood volume without any change in vascular compliance. These studies are the first in any vertebrate to measure the relationship between fluid compartments and cardiovascular function during independent manipulation of volume and salt balance, and they show that volume, but not salt, balance is the primary determinant of blood pressure in trout. They also present a new paradigm with which to investigate the relative contributions of water and salt balance in cardiovascular homeostasis.  相似文献   

12.
Summary n-Alkanols (from methanol to decanol) have a biphasic effect on rat cardiac adenylate cyclase either basal or stimulated by GTP, GppNHp, NaF or hormones (isoproterenol, glucagon, secretin) in the presence of GTP. At high concentration, all the enzyme activities are inhibited. At low concentration, adenylate cyclase activity is either unchanged or potentiated depending on both the stimulus and the alkanols involved. Potentiation is due to an increase of maximum velocity with no change in the activation constant of the enzyme. Basal activity is unchanged as well as the isoproterenol-and glucagon-stimulated enzyme. The secretin-stimulated enzyme is potentiated. It is the guanyl nucleotide regulatory protein-mediated stimulation of adenylate cyclase which is mainly affected. An attempt was made to relate these effects on adenylate cyclase with physical parameters of the alkanols (partition coefficient). From the data obtained as a function of the alkanol chain-length and of temperature on the adenylate cyclase stimulated by GTP, GppNHp, NaF and permanently activated, it is concluded that the increase in efficacy observed in the presence of alkanol is due to an interaction with the protein moeity particularly with the guanyl nucleotide regulatory protein.  相似文献   

13.
Cardiac adenylate cyclase activity was examined in mice treated chronically with doxorubicin. Mice received a subcutaneous dose of either 2 or 4 mg/kg doxorubicin twice weekly for 5 weeks. Mice were sacrificed five weeks after the last injection. Basal cardiac adenylate cyclase activity was significantly elevated in both the 2 and 4 mg/kg DXR-treated groups over the control level. GTP, isoproterenol (plus GTP), NaF, and forskolin stimulated activities in both the 2 and 4 mg/kg DXR-treated groups were also significantly elevated over control levels.  相似文献   

14.
The effects of magnesium and sodium ions on adenylate cyclase activity in plasma membranes from chicken heart and eggshell gland mucosa were studied. It was found that the increase in magnesium chloride concentration from 5 to 40 mM results in the stimulation (4.1-fold) of the adenylate cyclase activity. The increase in sodium chloride concentration up to 150 mM stimulated the enzyme activity 2-fold. The stimulation of adenylate cyclase by magnesium and sodium ions was less pronounced in the eggshell gland. GTP did not activate adenylate cyclase. The activating effect of magnesium and sodium ions was accompanied by the attenuation of the enzyme sensitivity to NaF, guanylyl imidodiphosphate and isoproterenol. Activation by guanylyl imidodiphosphate was completely abolished in the presence of 40 mM magnesium chloride. It is assumed that high concentrations of the salt promote subunit dissociation of the adenylate cyclase regulatory protein and its interaction with the catalytic subunit in the presence of endogenous nucleotides. The differences in the adenylate cyclase sensitivity to cations in chicken heart and eggshell gland mucosa correlate with the amount of pertussis toxin substrate.  相似文献   

15.
The hormonal sensitivity of adenylate cyclase from a normal rat liver epithelial cell line (K16) and its chemically transformed derivative (W8) were compared. Intact normal rat liver cells had markedly increased cAMP levels after brief exposure to epinephrine, isoproterenol, norepinephrine or prostaglandin E1. In contrast, the cAMP levels of chemically transformed cells were relatively unaffected by these same compounds even after prolonged incubation. A comparison of broken cell adenylate cyclase activities revealed a decreased basal activity in the chemically transformed cells; the response to NaF was similar in the two cell lines, while the response to catecholamines and prostaglandins paralleled the intact cell studies. These data suggest that one reason for loss of adenylate cyclase hormonal responsiveness in chemically transformed rat liver epithelial cells may be a dysfunction or loss of hormone binding sites.  相似文献   

16.
Summary The ultrastructure of the calcium-sensitive (Ca-s) (PAS-positive) cells of the pars intermedia was investigated in eels kept in hypo and hyperosmotic environments. Although the cells were moderately active in fresh water (FW), they were highly stimulated in deionized water (DW) and displayed an enlarged Golgi apparatus, a distinct rough endoplasmic reticulum, few secretory granules, some microtubules and an extended area of contact with the basal lamina that separates nervous and glandular tissues. Some mitosing cells were seen. A similar picture was observed in eels kept in sea water (SW) for 45 days, returned to FW and subsequently to DW for 21 days. In SW (30 and 33), and particularly in concentrated SW (50, 60 and 63), the Ca-s cells were inactive. Their granules were significantly smaller than in eels kept in FW, and the area of contact with the basal lamina was greatly reduced. However, signs of granule-release were seen in eels adapted to 50 and 60 SW. Nerve fibers rarely contacted the Ca-s cells and did not synapse with them. The ultrastructural data support the hypothesis that the Ca-s cells of Anguilla, like those of Carassius, are involved in ionic regulation. MSH cells were not greatly affected by the present experiments.  相似文献   

17.
Changes in the properties of adenylate cyclase from the lungs of tuberculotic guinea pigs were revealed. The number of beta-adrenergic receptors in the lungs was found to be reduced by 30% at the second and by 70% at the third stage of the disease. The degree and the value of Ka for adenylate cyclase activation by isoproterenol remained thereby unchanged. The basal activity of adenylate cyclase was increased by 20% against the control level at the second stage and decreased by 20% at the third stage of the disease. At these periods, the stimulating effects of guanylyl imidodiphosphate, NaF and forskolin on lung adenylate cyclase were diminished. The experimental results point to the significant role of the enzymes of cAMP metabolism and reflect the course of the tuberculosis process in experimental animals.  相似文献   

18.
Adenylate cyclase (EC 4.6.1.1) activity in mouse liver plasma membranes is increased fivefold when animals are pretreated with cholera toxin. The increase in activity is detectable within 20 min of an intravenous injection of the toxin. The response of the control and cholera-toxin-activated adenylate cyclase to hormones, GTP, and NaF is complex. GTP causes the same fold stimulation of control and toxin-activated cyclase, but glucagon and NaF remain the most potent activators of liver adenylate cyclase irrespective of whether the enzyme is activated by cholera toxin. Determination of kinetic parameters of adenylate cyclase indicates that cholera toxin, hormones, and NaF do not change the affinity of the enzyme for ATP-Mg nor do they alter the Ka for free Mg2+. High concentrations of Mg2+ inhibit adenylate cyclase that is stimulated by either cholera toxin, glucagon, or NaF. These same Mg2+ concentrations have no effect on the basal activity of the enzyme or its activity in the presence of GTP.  相似文献   

19.
Glucorticoids and adrenergic stimulation are both thought to control the development of beta-adrenergic receptors/responses. In the current study, rats were exposed to dexamethasone or terbutaline during late gestation and the development of beta-receptor binding capabilities and adenylate cyclase activity evaluated in membrane preparations from kidney and lung. Prenatal dexamethasone exposure produced postnatal adrenergic hyperreactivity of kidney adenylate cyclase; the effect resulted from increases in the enzyme itself, as both basal adenylate cyclase and forskolin-stimulation of the enzyme were also increased by dexamethasone. Similarly, prenatal terbutaline exposure evoked increases in basal, isoproterenol-stimulated and forskolin-stimulated adenylate cyclase in the kidney. In the lung, dexamethasone produced an initial postnatal deficit in basal adenylate cyclase and deficient responsiveness to isoproterenol, but the deficit resolved shortly after birth. Terbutaline selectively promoted the ability of isoproterenol to stimulate lung adenylate cyclase in the first few days after birth, without alterations in basal adenylate cyclase; this was followed by a period of prolonged subsensitivity of both basal and isoproterenol-stimulated activity. Although dexamethasone and terbutaline also caused significant changes in development of beta-receptor binding capabilities, in neither tissue could these effects account for the direction or magnitude of the changes in adenylate cyclase reactivity. Thus, glucocorticoids and beta-agonists can participate in the programming of development of postsynaptic reactivity by exerting actions upon post-receptor coupling mechanisms.  相似文献   

20.
The beta-adrenergic receptor-coupled adenylate cyclase system has been investigated in normal and Werner's syndrome fibroblasts. The basal levels of cAMP in Werner and normal control cells were similar, whereas the isoproterenol-induced increase in cAMP levels was far less for Werner cells than for control cells. In the broken cell preparations isoproterenol stimulated the adenylate cyclase of only control cells, not of Werner cells, although NaF or prostaglandin E1 stimulated the enzyme of both cells to the same extent. The beta-adrenergic receptor concentrations analyzed with hydrophilic radioligand were nearly equal in Werner and in control cells. A reduction of functional activity of the beta-adrenergic receptor in Werner cells is thus suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号