首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Summary A high frequency shoot regeneration (80%) was developed from callus of leaf discs and stem internodes of Moricandia arvensis. Leaf discs were shown to be a preferable starting material for transformation experiments. Agrobacterium tumefaciens strain GV3101/pMP90 used in this study contained a binary vector with genes for kanamycin resistance, hygromycin resistance and -glucuronidase (GUS). Maximum transformation efficiency (10.3%) was achieved by using kanamycin at the rate of 200 mg/l as a selection agent. Presence of tobacco suspension culture during co-cultivation and a pre-selection period of seven days after co-cultivation was essential for successful transformation. Transgenic plants grew to maturity and exhibited flowering in a glasshouse. GUS activity was evident in all parts of leaf and the presence of GUS gene in plant gemone was confirmed by PCR analysis.Abbreviations GUS -glucuronidase  相似文献   

2.
As a first step in the development of a successful Agrobacterium tumefaciens mediated transformation method for kenaf, factors influencing the successful T-DNA integration and expression (as measured by the GUS expression) were investigated. Transformation was carried out using two kenaf cultivars and Agrobacterium strain EHA 105 carrying different vectors, plasmid pIG 121-Hm or pEC:gus. Pre-culturing the explants for 2days in benzyl adenine containing medium, and wounding the explant before inoculation were found to enhance the transient GUS expression. Increasing the duration of pre-culture and co-culture period enhanced the transient GUS expression up to a threshold level. Increased transient GUS expression did not correlate with an increase in stable expression. Gene integration was confirmed by PCR analysis.  相似文献   

3.
Transgenic plant production mediated by Agrobacterium in Indica rice   总被引:3,自引:0,他引:3  
Summary A reproducible system has been developed for the production of transgenic plants in indica rice using Agrobacterium-mediated gene transfer. Three-week-old scutella calli served as an excellent starting material. These were infected with an Agrobacterium tumefaciens strain EHA101 carrying a plasmid pIG121Hm containing genes for -glucuronidase (GUS) and hygromycin resistnace (HygR). Hygromycin (50 mg/l) was used as a selectable agent. Inclusion of acetosyringone (50M) in the Agrobacterium suspension and co-culture media proved to be indispensable for successful transformation. Transformation efficiency of Basmati 370 was 22% which was as high as reported in japonica rice and dicots. A large number of morphologically normal, fertile transgenic plants were obtained. Integration of foreign genes into the genome of transgenic plants was confirmed by Southern blot analysis. GUS and HygR genes were inherited and expressed in R1 progeny. Mendelian segregation was observed in some R1 progeny.Abbreviations GUS ß-glucuronidase - HygR hygromycin-resistance - AS acetosyringone  相似文献   

4.
Regeneration of pepino (Solanum muricatum Ait.) shoots was achieved both by organogenesis and by embryogenesis. Shoots derived via organogenesis were easily rooted and most regenerated plants appeared phenotypically normal. Transgenic plants were obtained using the binary vector pKIWI110 in the avirulent Agrobacterium tumefaciens strain LBA4404. Optimization of transformation protocols was rapidly achieved by monitoring early expression of the GUS (-D-glucuronidase) reporter gene carried on pKIWI110. Transgenic plants expressed GUS and selectable marker genes for kanamycin resistance and chlorsulfuron resistance. PCR (polymerase chain reaction) and Southern analysis provided molecular evidence for transformation.  相似文献   

5.
Leaf pieces of in vitro-cultured plantlets of the wild potato species Solanum brevidens Phil. were cocultivated with Agrobacterium tumefaciens that contained nptII and uidA genes on the disarmed plasmid pBI121. Independent transgenic shoots were regenerated from solidified and liquid medium that contained 50 mg l–1 kanamycin. Two Agrobacterium strains were investigated for transformation efficiency. GV2260, which contained p35SGUSINT, resulted in a 11% transformation frequency, compared with 1% using LBA4404. Transformation rates were 7% in liquid culture and 3% on solidified medium. All kanamycinresistant, putatively transformed plantlets were confirmed positive by histochemical GUS assays. GUS activity in 22 independently transformed plants was quantified by fluorometric assay. Southern analysis of randomly selected transgenic plants showed that each transgenic plant contained at least one copy of the uidA gene.Abbreviations GUS ß-glucuronidase - MS Murashige-Skoog medium - BA 6-benzylaminopurine - 2ip 6-(, -dimethylallylamino)purine - IAA indole-3-acetic acid - GA3 gibberellic acid - npt II neomycin phosphotransferase II - NOS nopaline synthase - MUG 4-methyl umbelliferyl glucuronide - MU 7-hydroxy-4-methylcoumarin - X-gluc 5-bromo-4-chloro-3-indolyl ß-D-glucuronic acid  相似文献   

6.
7.
Directed excision of a transgene from the plant genome   总被引:40,自引:0,他引:40  
Summary The effectiveness of loxP-Cre directed excision of a transgene was examined using phenotypic and molecular analyses. Two methods of combining the elements of this system, re-transformation and cross pollination, were found to produce different degrees of excision in the resulting plants. Two linked traits, -glucuronidase (GUS) and a gene encoding sulfonylurea-resistant acetolactate synthase (ALSr), were integrated into the genome of tobacco and Arabidopsis. The ALSr gene, bounded by loxP sites, was used as the selectable marker for transformation. The directed loss of the ALST gene through Cre-mediated excision was demonstrated by the loss of resistance to sulfonylurea herbicides and by Southern blot analysis. The -glucuronidase gene remained active. The excision efficiency varied in F1 progeny of different lox and Cre parents and was correlated with the Cre parent. Many of the lox × Cre F1 progeny were chimeric and some F2 progeny retained resistance to sulfonylureas. Re-transformation of lox/ALS/lox/GUS tobacco plants with cre led to much higher efficiency of excision. Lines of tobacco transformants carrying the GUS gene but producing only sulfonylurea-sensitive progeny were obtained using both approaches for introducing cre. Similarly, Arabidopsis lines with GUS activity but no sulfonylurea resistance were generated using cross pollinations.  相似文献   

8.
An innovative and efficient genetic transformation protocol for European chestnut is described in which embryogenic cultures are used as the target material. When somatic embryos at the globular or early-torpedo stages were cocultured for 4 days with Agrobacterium tumefaciens strain EHA105 harbouring the pUbiGUSINT plasmid containing marker genes, a transformation efficiency of 25% was recorded. Murashige and Skoog culture medium containing 150 mg/l of kanamycin was used as the selection medium. The addition of acetosyringone was detrimental to the transformation efficiency. Transformation was confirmed by a histochemical -glucuronidase (GUS ) assay, PCR and Southern blot analyses for the uidA (GUS) and nptII (neomycin phosphotransferase II) genes. At present, 93 GUS-positive chestnut embryogenic lines are being maintained in culture. Low germination rates (6.3%) were recorded for the transformed somatic embryos. The presence of the transferred genes in leaves and shoots derived from the germinated embryos was also verified by the GUS assay and PCR analysis.  相似文献   

9.
To develop a system forAgrobacterium-mediated transformation of maize (Zea mays L.), we have investigated histochemically the transient expression of -glucuronidase (GUS) activity in maize seedling tissue segments using binary vectors that allow minimal (pKIWI105 and pCNL1) or undetectable (p35S-GUS-INT and pCNL56) levels of GUS activity inA. tumefaciens. Tissue segments from three- to five-day-old sterile seedlings of maize genotype A188 were inoculated withA. tumefaciens. Four days after inoculation, transient expression of GUS activity was found in mesocotyl segments originating from the intercalary meristem region. This GUS activity was specific to the vascular cylinder and was not found in the internal cortical or epidermal layers, nor was it found in mature mesocotyl tissue (segments 5 mm below the coleoptilar node). Transient GUS activity was also detected in leaf and coleoptile tissues of shoot segments, but not in the shoot apexper se or in leaves younger than the first leaf. Maize tissues inoculated withA. tumefaciens strains that harbourgusA-containing binary vectors but no Ti-plasmid did not show GUS activity, supporting evidence from previous work thatvir gene activity was essential for the observed GUS activity.A. tumefaciens strains containing different types of Ti-plasmids were also tested. A strain harbouring an agropine-type Ti-plasmid was the most effective for expressing GUS activity in mesocotyl segments, whereas a strain harboring a nopaline-type Ti-plasmid was most effective for expression of GUS activity in the apical meristem-containing segment. These results indicate that different interactions occurred between the differentA. tumefaciens strains and the susceptible plant tissues. Maize genotype specificity for GUS activity in mesocotyl tissues was observed; variations in the cocultivation medium had a profound effect on the frequency of expression of GUS activity.  相似文献   

10.
A 647-bp 5-flanking fragment obtained from genomic clone Sta 44G(2) belonging to a family of polygalacturonase genes expressed inBrassica napus pollen was fused to the-glucuronidase (GUS) marker gene. This fusion construct was introduced intoB. napus plants viaAgrobacterium tumefaciens transformation. Analysis of the transgenicB. napus plants revealed that this promoter fragment is sufficient to direct GUS expression specifically in the anther and that GUS activity increases in pollen during maturation.Abbreviation GUS -Glucuronidase  相似文献   

11.
The efficiency of Vigna mungo L. Hepper transformation was significantly increased from an average of 1% to 6.5% by using shoot apices excised from embryonic axes precultured on 10 M benzyl-6-aminopurine (BAP) for 3 days and wounded prior to inoculation in Agrobacterium tumefaciens strain EHA105 carrying the binary vector pCAMBIA2301, which contains a neomycin phosphotransferase gene (nptII) and a -glucuronidase (GUS) gene (gusA) interrupted by an intron. The transformed green shoots that were selected and rooted on medium containing kanamycin, and which tested positive for nptII gene by polymerase chain reaction, were established in soil to collect seeds. GUS activity was detected in whole T0 shoots and T1 seedlings. All T0 plants were morphologically normal, fertile and the majority of them transmitted transgenes in a 3:1 ratio to their progenies. Southern analysis of T1 plants showed integration of nptII into the plant genome.  相似文献   

12.
One of the important factors responsible for recalcitrance of maize tissue towards Agrobacterium-mediated transformation is the presence of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), an inhibitory metabolite found in maize cells. DIMBOA-resistant strains of Agrobacterium tumefaciens were used to transfer genes coding for GUS (-glucuronidase) and NPTII (neomycine phosphotransferase II) in maize shoot apical meristems derived from 20 day-old seedlings and immature embryos. GUS expression was higher (21–34%) in the apical meristem and was dependent on the type of infecting strain and explant-age. The PCR analysis of selected tissues confirmed the presence of GUS gene in the transformed cells.  相似文献   

13.
Genetic transformation system of Dendrobium Sonia 17 was optimized using green fluorescent protein (GFP) and -glucuronidase (GUS) gene as the reporter systems. The 35S-sgfp-TYG-nos (p35S) and pSMDFR, carrying sgfp and gusA gene, respectively, were co-bombarded into the calluses. Parameters optimized were acceleration pressure, target distance, gold particle size, pre-bombardment cultured time, plasmid DNA precipitation, total plasmid DNA and the ratio of the plasmids co-bombarded. Both reporter systems responded similarly to the bombardment parameters investigated. Based on the GUS/GFP spot counts, the GFP expression rate was higher than that for GUS under the control of the same promoter, CaMV 35S. GFP could be used as the reporter system for the co-bombardment as it was rapid and non-destructive system to monitor the transformed tissues. A combination of GFP and antibiotic resistance gene was used to select stable putative transformants.  相似文献   

14.
Chimeric -glucuronidase (GUS) gene expression in an efficientAgrobacterium-mediated transformation system utilising mesophyll cells ofPetunia hybrida synchronized with cell cycle phase-specific inhibitors (mimosine and colchicine) was used to show the absolute requirement of S-phase for transfer and/or integration of the transferred DNA (T-DNA). Flow-cytometric analysis of nuclear DNA content and immunohistological detection of bromodeoxyuridine (BrdUrd) incorporation showed that, prior to phytohormone treatment, most (98%) mesophyll cells were at GO-Gl-phase (quiescent phase) and no cell division was occurring. After 48 h and 72 h of phytohormone treatment, there was a rapid increase in S-G2-M-phase populations (> 75%) and a concomitant decrease (down to 24%) in G0–-G1-phase cells. Assays of GUS showed that maximum transformation (> 95% of explants) also occurred after this period. Our data showed that mimosine and colchicine blocked the mesophyll cells at late Gl-phase and M-phase, respectively. No transformation (= GUS expression) was observed in phytohormone-treated cells inhibited in late G1 by mimosine. However, after removal of mimosine, 82% of the explants were transformed, indicating the non-toxic and reversible effect of the inhibitor. On the other hand, a relatively high transformation frequency (65% of explants) was observed after blocking the cell cycle at M-phase with colchicine. However, only transient, but no stable, gene expression (= kanamycin-resistant callus formation) was observed in colchicine-treated M-phase-arrested cells. Similarly, endoreduplication of nuclear DNA, which occurred during the 48 h of phytohormone treatment in some mesophyll cells and cells located along the minor veins in the leaf explants, resulted in transient GUS expression only. These observations indicate a direct correlation between endoreduplication and transient GUS gene expression. Obviously, for stable GUS gene expression, cell division and proliferation are required, indicating that both DNA duplication (S-phase) and cell division (M-phase) are strongly related to stable transformation. We propose that the present system should facilitate further dissection of the process of T-DNA integration in the host genome and therefore should aid in developing new strategies for transformation of recalcitrant plants.Abbreviations BAP 6-benzylaminopurine - BM basal medium - BrdUrd bromodeoxyuridine - GUS -glucuronidase - KmR kanamycin resistant - T-DNA transferred DNA  相似文献   

15.
Experiments were conducted to produce transgenic barley plants following infection of immature embryos with Agrobacterium tumefaciens. Transformed callus was obtained using hygromycin resistance as a selectable marker and either green fluorescent protein (GFP) or -glucuronidase (GUS) as a reporter. Significantly reduced plant transformation frequencies were obtained with the GFP gene compared to GUS. However, GFP proved to be an excellent reporter of early transformation events and was used to compare four barley cultivars for efficiency in two phases of transformation: the generation of stably transformed barley callus and the regeneration of plantlets from transformed callus. Transformed callus was generated at a high frequency (47–76%) in all four cultivars. Regeneration of transformed plantlets was also achieved for all four cultivars although the frequency was much higher for Golden Promise than for the other three genotypes, reiterating that genotype is an important determinant in the regenerative ability of barley. This study has demonstrated for the first time that Agrobacterium-mediated transformation can be used to transform the Australian cultivars Sloop and Chebec.Communicated by W. Harwood  相似文献   

16.
We have developed anAgrobacterium-mediated transformation system, using tobacco cell suspensions, that permits evaluation of factors affecting transformation within seven days of co-cultivation. Tobacco cell transformation was determined by monitoring -glucuronidase (GUS) activity detected in plant cell extracts. The use of a chimeric gene construct, 35S-GUS/INT, containing a portable intron in theuidA reading frame, assured only plant-specific GUS expression. During the co-cultivation period, induction of the bacterialvir-region was monitored using a heterologous gene construct composed of avirB promoter fragment from pTiC58 fused to the chloramphenicol acetyltranferase (CAT) gene ofTn9. Tobacco cell transformants were confirmed by antibiotic selection of transformed plant cells and by X-Gluc staining. Maximum transformation was obtained when plant suspension cultures were growing rapidly which also was coincidental with elevated levels of bacterialvir-region expression. One week after co-cultivation, the transformed cultures exhibited a stable pattern of GUS activity which remained constant without antibiotic selection. The system was used to compare the virulence of a number ofAgrobacterium strains. GUS activity of plant cells co-cultivated with a strain containing a cointegrate plasmid was 3-fold higher than that of one with a binary configuration of the T-DNA. When the co-cultivatingAgrobacterium strain also carried the plasmid used to monitorvir induction, the frequency of transformation was reduced by as much, as 97%.  相似文献   

17.
The attempts of this investigation were to develop a system for plant regeneration from explants of adult plants and its use for genetic transformation of important commercial Pelargonium zonale hybrid and P. peltatum hybrid cultivars. To this aim, leaf blade and petiole explants of eight cultivars were cultured on modified MS (Murashige and Skoog, 1962) medium with two concentrations of TDZ, BA, and zeatin (5 and 20 M). Petiole explants showed a higher regeneration response than leaf blade explants and TDZ was the most effective cytokinin. Petioles of 16 cultivars were incubated on medium containing 5, 10, 15, and 20 M TDZ, respectively, in order to identify the most effective TDZ concentration. For the majority of genotypes 10 M TDZ resulted in the best regeneration response. Cefotaxim at 500 mg l –1 had no effect on shoot regeneration and did not show interaction with glufosinate. For selection of transgenic cells, a concentration of 2.5 M glufosinate was shown to be appropriate. LBA4404 and EHA101 Agrobacterium strains carrying pIBGUS vector with pat gene as selectable marker gene and GUS gene as reporter gene were compared in transformation studies. With regard to GUS expression in petiole explants 16 days after coculture, better results were obtained with EHA 101 than with LBA 4404.  相似文献   

18.
Transgenic plants of the aromatic shrub Lavandula latifolia (Lamiaceae) were produced using Agrobacterium tumefaciens-mediated gene transfer. Leaf and hypocotyl explants from 35–40-day old lavender seedlings were inoculated with the EHA105 strain carrying the nptII gene, as selectable marker, and the reporter gusA gene with an intron. Some of the factors influencing T-DNA transfer to L. latifolia explants were assessed. Optimal transformation rates (6.0 ± 1.6% in three different experiments) were obtained when leaf explants precultured for 1 day on regeneration medium were subcultured on selection medium after a 24 h co-cultivation with Agrobacterium. Evidence for stable integration was obtained by GUS assay, PCR and Southern hybridisation. More than 250 transgenic plants were obtained from 37 independent transformation events. Twenty-four transgenic plants from 7 of those events were successfully established in soil. -glucuronidase activity and kanamycin resistance assays in greenhouse-grown plants from two independent transgenic lines confirmed the stable expression of both gusA and nptII genes two years after the initial transformation. Evidence from PCR data, GUS assays and regeneration in the presence of kanamycin demonstrated a 1:15 Mendelian segregation of both transgenes among seedlings of the T1 progeny of two plants from one transgenic L. latifolia line.  相似文献   

19.
A transformation procedure for phalaenopsis orchid established by using immature protocorms for Agrobacterium infection was aimed at the introduction of target genes into individuals with divergent genetic backgrounds. Protocorms obtained after 21 days of culture on liquid New Dogashima medium were inoculated with Agrobacterium strain EHA101(pIG121Hm) harboring both -glucuronidase (GUS) and hygromycin resistance genes. Subculture of the protocorms on acetosyringone-containing medium 2 days before Agrobacterium inoculation gave the highest transformation efficiencies (1.3–1.9%) based on the frequency of hygromycin-resistant plants produced. Surviving protocorms obtained 2 months after Agrobacterium infection on selection medium containing 20 mg l–1 hygromycin were cut transversely into two pieces before transferring to recovery medium without hygromycin. Protocorm-like bodies (PLBs) proliferated from pieces of protocorms during a 1-month culture on recovery medium followed by transfer to selection medium. Hygromycin-resistant phalaenopsis plants that regenerated after the re-selection culture of PLBs showed histochemical blue staining due to GUS. Transgene integration of the hygromycin-resistant plants was confirmed by Southern blot analysis. A total of 88 transgenic plants, each derived from an independent protocorm, was obtained from ca. 12,500 mature seeds 6 months after infection with Agrobacterium. Due to the convenient protocol for Agrobacterium infection and rapid production of transgenic plants, the present procedure could be utilized to assess expression of transgenes under different genetic backgrounds, and for the molecular breeding of phalaenopsis.  相似文献   

20.
Gold particles coated with -glucuronidase (GUS) mRNA with a 5 cap structure that had been synthesized in vitro were introduced, by use of a pneumatic particle gun, into pollen grains of lily (Lilium longiflorum), freesia (Freesia refracta) and tulip (Tulipa gesneriana). A fluorometric assay for the GUS activity indicated that in vitro synthesized GUS mRNA introduced into these pollen cells by particle bombardment was successfully expressed. GUS activity in extracts of the bombarded lily pollen became detectable fluorometrically within 30 min after bombardment, peaked at 6 h, then gradually decreased. This activity changed as a function of the developmental stage of the pollen cell of lily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号