首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
A study on the effects of different color temperatures of fluorescent lamps on skin and rectal temperatures in a moderately cold environment involving (i) changes in skin temperature of 7 male subjects exposed to an ambient temperature ranging from 28 degrees C to 18 degrees C (experiment I) and (ii) changes in skin and rectal temperatures and metabolic heat production of 11 male subjects exposed to ambient temperature of 15 degrees C for 90 min (Experiment II) was conducted. In Experiment I, the reduction of mean skin temperature from the control value was significantly greater under 3000 K than under 5000 K or 7500 K lighting. In Experiment II, the reductions in mean skin temperature and rectal temperature were respectively greater and smaller under 3000 K than those under 5000 K or 7500 K lighting. However, metabolic heat production was not affected by color temperature conditions. The relationships between morphological and physiological parameters revealed that no significant relation of rectal temperature to body surface area per unit body weight was found only under 3000 K. Furthermore, while the mean skin temperature was independent on the mean skinfold thickness under 3000 K, a significant negative correlation between the rectal and mean skin temperatures was observed. Therefore, body heat loss might be suppressed effectively by increasing the vasoconstrictor tone under a color temperature of 3000 K, and the body shell was dependent only on morphological factors under 5000 K and 7500 K lighting.  相似文献   

2.
Measurement of summit metabolism (the maximum rate of heat production) in lambs aged 1 or 4h revealed considerable between animal variation. Summit metabolism per unit body weight decreased as body weight increased whereas summit metabolism per unit body surface area was independent of body weight. Severe pre-partum hypoxia was apparently associated with a low summit metabolism at 1 or 4h of age which made such lambs very susceptible to hypothermia. This deficiency in heat production capacity did not appear to be a permanent featuresince most lambs so affected recovered full thermoregulatory ability by 12h of age. Feeding of colostrum conferred an immediate 18% increase in summit metabolism. The significance of these findings to the prevention of hypothermia in the newborn lamb is discussed.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

3.
In a laboratory heat-physical model of the rabbit reflecting basic heat-physical parameters of animal body (weight, heat absorption and heat production, size of a relative surface, capacity heat-production etc.), the changes of radial distribution of temperature and size of a cross superficial temperature gradient of the body were investigated with various parities (ratio) of environmental temperature and size of capacity heat production imitated by an electrical heater. Superficial layer of the body dependent from capacity heat production and environmental temperature can serve for definition of general heat content changes in the body for maintaining its thermal balance within the environment.  相似文献   

4.
(1)Surface temperatures of the ostrich (Struthio camelus), emu (Dromaius novaehollandiae) and double-wattled cassowary (Casuarius casuarius) were meas ured using infrared thermography at ambient temperatures ranging from 0 to 27°C. (2) The pattern of surface temperature regulation for thermoregulatory purposes was similar in all species examined. Beak, lower leg and neck surface temperatures are regulated in all species to alter heat exchange with the environment. The feet and toes are also used by the ostrich and emu to regulate heat exchange. The cassowary does not use the feet and toes to the same extent but used the casque in a similar manner. (3) Standard metabolic rates were estimated using a geometric model of a bird and instantaneous heat loss calculated for specific body parts. (4) Up to 40% of metabolic heat production can be dissipated across these structures which comprise 12% and 17.5% of total body surface area. (5) The ostrich was able to regulate surface temperature more precisely than the other species, probably due to a larger body size. The large wings of the ostrich are useful for thermoregulation by increasing convective heat loss.  相似文献   

5.
On created in laboratory heat-physical model of a rabbit body reflecting basic heat-physical parameters of the body such as: weight, size of a relative surface, heat absorption and heat conduction, heat capacity etc., a change of radial distribution of temperature and size was found across a superficial layer of evaporation of water from its surface, that simulates sweating, with various ratio of environmental temperature and capacity of electrical heater simulating heat production in animal. The experiments have shown that with evaporation of moisture from a surface of model in all investigated cases, there is an increase of superficial layer of body of a temperature gradient and simultaneous decrease of temperature of a model inside and on the surface. It seems that, with evaporation of a moisture from a surface of a body, the size of a temperature gradient in a thin superficial layer dependent in our experiments on capacity for heat production and environmental temperature, is increased and can be used in a live organism for definition of change in general heat content of the body with the purpose of maintenance of its thermal balance with environment.  相似文献   

6.
Adipose tissue levels and human obesity are known to be associated with increased heat production. At the same time, subcutaneous adipose tissue provides an insulating layer that impedes heat loss. The energy implications of obesity and body thermoregulatory mechanisms remain relatively poorly understood. This study attempted to examine the potential relationship between body composition (subcutaneous and visceral fat) determined by bioimpedance as well as BMI (body mass index), and skin surface temperature distribution recorded at rest.One specific aim of this study was to draw a thermal map of body areas in obese women and compare this with women of normal body mass, and thus to identify body regions within which heat transfer is particularly impeded. As high fat content is a good insulator, it could reduce the body‘s ability to respond effectively to changes in environmental temperature, which would be problematic for thermal homeostasis. Our results showed that core temperature did not differ between obese and normal body mass participants, while skin temperature of most body surfaces was lower in obese subjects.The results of regression analysis showed that the mean body surface temperature (Tmean) decreased with increasing percentage of body fat (PBF) of the abdominal area. The opposite relationship was observed for the front area of the hand (simultaneous increase in Tmean and PBF). We also found a negative correlation between BMI and Tmean of the thigh areas, both the front and the back. From this it could be concluded that the mean body surface temperature is dependent on body fat.  相似文献   

7.
When heated radiantly, head-body temperature gradients developed in both live and dead Tiliqua scincoides. The gradients were consistently larger in live than in dead individuals, indicating they were enhanced by a physiological component superimposed on the more basic physical components. Large gradients in the initial phases of heating represented a lag effect, the head core beginning to receive heat before the body core because it is closer to the heated surface. Once this lag effect subsided, the body heated more rapidly than the head because it presented a greater incident surface area per unit mass than did the head. Living lizards appeared to maintain head-body temperature differences until the maximum voluntary temperature was approached.  相似文献   

8.
Estivating reed frogs of the superspecies Hyperolius viridiflavus are extraordinarily resistant to the highly adverse climatic conditions prevailing in their African savanna habitats during dry season (air temperature up to 45°C, solar radiation load up to 1000 W·m-2, no water replenishment possible for up to 3 months). They are able to withstand such climatic stress at their exposed estivation sites on dry plants without evaporative cooling. We developed a heat budget model to understand the mechanisms of how an anuran can achieve this unique tolerance, and which allows us to predict the anuran's core and surface temperature for a given set of environmental parameters, to within 4% of the measured values. The model makes it possible to quantify some of the adaptive mechanisms for survival in semiarid habitats by comparing H. viridiflavus with anurans (H. tuberilinguis and Rana pipiens) of less stressful habitats. To minimize heat gain and maximize heat loss from the frog, the following points were important with regard to avoiding lethal heat stress during estivation: 1) solar heat load is reduced by an extraordinarily high skin reflectivity for solar radiation of up to 0.65 under laboratory and even higher in the field under dry season conditions. 2) The half-cylindrical body shape of H. viridiflavus seems to be optimized for estivation compared to the hemispheroidal shape usually found for anurans in moist habitats. A half-cylinder can be positioned relative to the sun so that large surface areas for conductive and convective heat loss are shielded by a small area exposed to direct solar radiation. 3) Another important contribution of body shape is a high body surface area to body mass ratio, as found in the estivating subadult H. viridiflavus (snout-vent lengths of 14–20 mm and body weights of 350–750 mg) compared to adult frogs (24–30 mm, 1000–2500 mg) which have never been observed to survive a dry season. 4) These mechanisms strongly couple core temperature to air temperature. The time constant of the core temperature is 29±10 s. Since air temperature can be 43–45°C, H. viridiflavus must have a very unusual tolerance to transient core temperatures of 43–45°C. 5) If air temperature rises above this lethal limit, the estivating frog would die despite all its optimizations, but moving from an unsuited to a more favorable site during estivation can be extremely costly in terms of unavoidably high evaporative water loss. Therefore, H. viridiflavus must have developed behavioral strategies for reliably choosing estivation sites with air temperature staying on average within the vital range during the whole dry season.Abbreviations a absorption coefficient - a absorption coefficient of a T OE model - A area - A A light absorbing area - A C theoretical body core area surrounding a constant core temperature - A D dorsal skin area - A E thermal (far infrared radiation) emitting area - A EM A E of a T OE model - A S silhouette area - A SM A S of a T OE model - A T total surface area - A v ventral area - b body breadth just behind the forelimbs - bw body weight - bl body length - C S specific heat capacity - C D conductive energy flow - C v convective energy flow - f (z) silhouette function - h C heat transfer coefficient - h CM heat transfer coefficient of a T OE model  相似文献   

9.
Mammalian hibernation   总被引:6,自引:0,他引:6  
In mammalian hibernation, the body temperature approaches that of the surroundings, allowing large savings in energy costs of basal metabolism and eliminating the need for heat production to compensate for heat loss. During entry into hibernation, heat production ceases while the body temperature set-point gradually decreases during slow-wave sleep. In the hibernating phase, the animal copes with problems concerning the maintenance of ion gradients, possible membrane phase transitions and the risk of ventricular fibrillation. In the arousal phase, the main part of the heat and practically all the necessary substrate comes from brown adipose tissue. The hibernation season is preceded by a preparatory phase. It may be concluded that hibernation is a practical, and perhaps even enviable, solution to a mammalian problem.  相似文献   

10.
Cumming DH  Cumming GS 《Oecologia》2003,134(4):560-568
A wide range of bioenergetic, production, life history and ecological traits scale with body size in vertebrates. However, the consequences of differences in community body-size structure for ecological processes have not been explored. We studied the scaling relationships between body mass, shoulder height, hoof area, stride length and daily ranging distance in African ungulates ranging in size from the 5 kg dik-dik to the 5,000 kg African elephant, and the implications of these relationships on the area trampled by single and multispecies herbivore communities of differing structure. Hoof area, shoulder height and stride length were strongly correlated with body mass (Pearson's r >0.98, 0.95 and 0.90, respectively). Hoof area scaled linearly to body mass with a slope of unity, implying that the pressures exerted on the ground per unit area by a small antelope and an elephant are identical. Shoulder height and stride length scaled to body mass with similar slopes of 0.32 and 0.26, respectively; larger herbivores have relatively shorter legs and take relatively shorter steps than small herbivores, and so trample a greater area of ground per unit distance travelled. We compared several real and hypothetical single- and multi-species ungulate communities using exponents of between 0.1 and 0.5 for the body mass to daily ranging distance relationship and found that the estimated area trampled was greater in communities dominated by larger animals. The impacts of large herbivores are not limited to trampling. Questions about the ecological implications of community body-size structure for such variables as foraging and food intake, dung quality and deposition rates, methane production, and daily travelling distances remain clear research priorities.  相似文献   

11.
Little information is available on seasonal changes in thermal physiology and energy expenditure in marsupials. To provide new information on the subject, we quantified how body mass, body composition, metabolic rate, maximum heat production, body temperature and thermal conductance change with season in sugar gliders (Petaurus breviceps) held in outdoor aviaries. Sugar gliders increased body mass in autumn to a peak in May/June, which was caused to a large extent by an increase in body fat content. Body mass then declined to minimum values in August/September. Resting metabolic rate both below and above the thermoneutral zone (TNZ) was higher in summer than in winter and the lower critical temperature of the TNZ occurred at a higher ambient temperature (Ta) in summer. The basal metabolic rate was as much as 45% below that predicted from allometric equations for placental mammals and was about 15% lower in winter than in summer. In contrast, maximum heat production was raised significantly by about 20% in winter. This, together with an approximately 20% decrease in thermal conductance, resulted in a 13 degrees C reduction of the minimum effective Ta gliders were able to withstand. Our study provides the first evidence that, despite the apparent lack of functional brown adipose tissue, sugar gliders are able to significantly increase heat production in winter. Moreover, the lower thermoregulatory heat production at most TaS in winter, when food in the wild is scarce, should allow them to reduce energy expenditure.  相似文献   

12.
The preoptic anterior hypothalamus (POAH) thermoregulatory controller can be characterized by two types of control, an adjustable setpoint temperature and changing POAH thermal sensitivity. Setpoint temperatures for shivering (Tshiver) and panting (Tpant) both increased with decreasing ambient temperature (Ta), and decreased with increasing Ta. The POAH controller is twice as sensitive to heating as to cooling. Metabolic rate (MR) increased during both heating and cooling of the POAH. Resting temperature of the POAH was lower than internal body temperature (Tb) at all temperatures. This indicates the presence of some form of brain cooling mechanism. Decreased Tb during POAH heating was a result of increased heat dissipation, while higher Tb during POAH cooling was a result of increased heat production and reduced heat dissipation. The surface temperature responses indicated that foxes can actively control heat flow from body surface. Such control can be achieved by increased peripheral blood flow and vasodilation during POAH heating, and reduced peripheral blood flow and vasoconstriction during POAH cooling. The observed surface temperature changes indicated that the thermoregulatory vasomotor responses can occur within l min following POAH heating or cooling. Such a degree of regulation can be achieved only by central neural control. Only surface regions covered with relatively short fur are used for heat dissipation. These thermoregulatory effective surface areas account for approximately 33% of the total body surface area, and include the area of the face, dorsal head, nose, pinna, lower legs, and paws.  相似文献   

13.
Summary In the extreme desert environment the potential energy load is high, consequently high temperatures might be a limiting factor for plant survival. Field measurements of plant temperatures in a Sonoran Desert ecosystem were made using fine thermocouples. Temperatures of six desert species were measured: Opuntia engelmannii, Opuntia bigelovii, Opuntia acanthocarpa, Echinocereus engelmannii, Larrea tridentata and Franseria deltoidea. Daily temperature profiles were used to compare the different responses of cacti and shrubs to the desert heat load and also to compare spring and summer responses. Leaf temperature of shrubs was at or near air temperature during both the mild, spring season and the hotter dry season. The cacti, on the other hand, absorbed and stored heat, thus temperatures were often above air temperature. The energy absorbed is determined largely by plant orientation and surface area exposed to the sun. Actual energy absorbed by the plants was estimated from energy diagrams.The flat stem pads of Opuntia engelmannii plants are oriented to receive maximum sunlight without long periods of continuous heating. Opuntia bigelovii spines reflect and absorb much of the environmental energy load, thereby protecting the thick, succulent stems from overheating. The smaller stems of Opuntia acanthocarpa dissipate heat more effectively by their large surface area exposed to convective air currents. Leaves on desert shrubs remain nearer to air temperature than do succulent stems of cacti, because their very large surface to volume ratio allows them to dissipate much heat by convection.  相似文献   

14.
中国东北城乡植被物候时空变化及其对地表温度的响应   总被引:1,自引:0,他引:1  
胡召玲  戴慧  侯飞  李二珠 《生态学报》2020,40(12):4137-4145
以中国东北地区的沈阳、长春、哈尔滨3个大城市及其周边的乡村为研究单元,在像元尺度上采用小波变换法对长时间序列中分辨率成像光谱仪(Moderate-resolution Imaging Spectroradiometer, MODIS)增强植被指数(Enhanced Vegetation Index, EVI)数据滤除噪声数据后重建平滑的EVI曲线,基于EVI曲线,采用动态阈值法提取出研究区2009—2016年植被关键物候期参数指标,即植被生长季开始时间(Start of Growing Season, SOS)和结束时间(End of Growing Season, EOS),分析各研究单元植被物候时空变化特征及其对地表温度的响应特征。结果表明:各研究单元SOS和EOS值的空间分布图存在明显的城乡差异。每一个像元所属的实际位置距离城区中心越近,其SOS值越小,EOS值越大,表明植被生长季开始日期早结束日期晚,整个植被生长期时间变长。各研究单元植被物候参数指标的年际变化趋势具有一定的相似性,即SOS随时间均呈现出提前趋势,且城区和乡村的SOS年际变化趋势保持一致,变化速率各不相同。研究区2012年的SOS值是研究时段内的最大值,从植被物候期反映来看,该年是一个最冷年,这与当年受寒潮影响,出现暴雪,低温等极端天气的气候现象相吻合。各研究单元年均地表温度(Land Surface Temperature,LST)与对应的植被关键物候期参数均有显著的相关性,SOS与LST呈显著负相关,EOS与LST呈高度正相关。即植被物候同期的平均温度越高,植被生长季的起始时间越早,结束时间越晚。  相似文献   

15.
Cross A  Collard M  Nelson A 《PloS one》2008,3(6):e2464
The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.  相似文献   

16.
黄土高原半干旱草地地表能量通量及闭合率   总被引:6,自引:0,他引:6  
利用兰州大学半干旱气候与环境观测站(简称SACOL站)2008年的湍流、辐射、土壤温度和通量梯度观测资料,分析了地表能量通量的日变化、季节变化及能量分配特征,讨论了典型黄土高原沟壑区土壤热量储存对地表能量闭合率的影响.结果表明:黄土高原半干旱草地全年获得的净辐射约为2.269×103 MJ/m2,感热、潜热和土壤热通量年总量分别为1.210×103 MJ/m2、1.117×103 MJ/m2和0.069×103 MJ/m2;能量平衡各分量季节变化明显,日变化呈单峰型.从各能量分量占净辐射的比例来看,黄土高原半干旱草地净辐射主要以感热形式加热大气.草原生长期的能量闭合率为86.8%,非生长期的能量闭合率为76.5%.与未考虑0-5cm深度的土壤热量储存相比,草原生长期能量闭合率提高了11.3%,非生长期能量闭合率提高了12.0%.  相似文献   

17.
1. During nectar and pollen foraging in a temperate climate, honeybees are exposed to a broad range of ambient temperatures, challenging their thermoregulatory ability. The body temperature that the bees exhibit results from endothermic heat production, exogenous heat gain from solar radiation, and heat loss. In addition to profitability of foraging, season was suggested to have a considerable influence on thermoregulation. To assess the relative importance of these factors, the thermoregulatory behaviour of foragers on 33 flowering plants in dependence on season and environmental factors was investigated.2. The bees (Apis mellifera carnica Pollman) were always endothermic. On average, the thorax surface temperature (T(th)) was regulated at a high and rather constant level over a broad range of ambient temperatures (T(th) = 33.7-35.7°C, T(a) = 10-27°C). However, at a certain T(a), T(th) showed a strong variation, depending on the plants from which the bees were foraging. At warmer conditions (T(a) = 27-32°C) the T(th) increased nearly linearly with T(a) to a maximal average level of 42.6 °C. The thorax temperature excess decreased strongly with increasing T(a) (T(th)-T(a) = 21.6 - 3.6°C).3. The bees used the heat gain from solar radiation to elevate the temperature excess of thorax, head, and abdomen. Seasonal dependance was reflected in a 2.7 °C higher mean T(th) in the spring than in the summer. An anova revealed that season had the greatest effect on T(th), followed by T(a) and radiation.4. It was presumed the foragers' motivational status to be the main factor responsible for the variation of T(th) between seasons and different plants.  相似文献   

18.
城市水体对热岛的缓冲性能沿河岸距离的变化规律   总被引:1,自引:0,他引:1  
城市水体包括城区内的自然水体和人工水体两大类。作为城市生态系统的重要组成部分,水体在缓解城市热岛效应(Urban Heat Island, UHI)上具有重要作用。研究城市热岛效应的现状,探讨水体对城市热岛的缓冲效应,为改善城市热岛效应和生态环境,并对城市进行合理的改造和规划提供理论依据。以长沙市中心城区为研究区域,以南北向贯穿长沙市的湘江河道作为主要研究对象,基于长沙市2016年7月Landsat 8 TIRS遥感影像采用大气校正法反演地表温度(Land Surface Temperature, LST),利用监督分类法获取其同步的城市化进程和土地利用类型,分析市区内地表温度及热岛效应的空间分布特征。同时,通过在湘江两侧建立多个尺度的缓冲区,并将其与地表温度分布及土地利用类型叠置,分析湘江为主的水体对长沙市热环境及各缓冲区的缓冲效应,结果表明:(1)长沙市城市建设格局与热岛效应空间分布基本相似,建筑用地热岛效应更高,极端地表温度达到53.8℃;水体、绿地和裸地的热岛效应相对较低,最低地表温度为16.0℃;(2)湘江对长沙市热岛效应具有缓冲作用,对长沙市热岛效应的平均缓冲距离为400 m;(3)湘江对热岛效应的缓冲能力与水体周边土地利用类型有关,对河东区的缓冲作用小于河西区,对沿江休闲区的缓冲效应大于沿江住宅区。综上所述,长沙市热岛效应强度与用地类型相关,建筑用地热岛效应严重;水体对热岛的缓冲效应显著,但不同缓冲区内缓冲距离存在差异,因此对城市生态格局进行小规模改造可增强水体缓冲作用,缓解城市热岛效应。  相似文献   

19.
The general importance of the mean surface curvature for heat conduction problems is explained and a special symmetry with constant mean curvature on the isothermal surfaces is defined. The applicability for the body shapes of homeothermic organisms is demonstrated and the partial differential equation of heat conduction for this case is derived. The definition: heat release = real heat production + convective pseudoproduction eliminates the term of convective heat transfer through the blood stream and allows the reduction to a mere heat conduction problem. Formulas for the heat loss to the environment and for steady state temperature profiles are given. In case of sudden change of heat loss the partial differential equation is solved and a formula is derived, using dimensionless coordinates of time and distance. The mean surface curvature has strongest influence to the interior temperature field. The solution shows clearly the importance of thermal inertia of the homeothermic organism, for the external temperature wave penetrates into the body with a long phase displacement in time.  相似文献   

20.
During the dynamic phase of external cooling of euthermic golden hamsters in the initial period of metabolic response, peripheral body temperature is the decisive control variable determining the level of metabolic heat production. Under these conditions the rate as well as the magnitude of the peripheral body temperature change constitute the effectual input to the controller of body temperature. The apparent sensitivity with which the regulator drives the metabolic response to unit change of the peripheral temperature is in an inverse relation to the rate of peripheral temperature change. This parameter, despite its limited significance can serve as a working index characterising the thermoregulatory system in different groups of experimental animals of the same species providing that the actual conditions of the experiment are comporting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号