首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A by-product of glucose produced during sterilization (121 degrees C, 15 lb/in2, 15 min) at neutral pH and in the presence of phosphate (i.e., phosphate-buffered saline) was bactericidal to Escherichia coli O157:H7 (ATCC 43895). Other six-carbon (fructose and galactose) and five-carbon (arabinose, ribose, and xylose) reducing sugars also produced a toxic by-product under the same conditions. Fructose and the five-carbon sugars yielded the most bactericidal activity. Glucose concentrations of 1% (wt/vol) resulted in a 99.9% decline in the CFU of stationary-phase cells per milliliter in 2 days at 25 degrees C. An rpoS mutant (pRR10::rpoS) of strain 43895 (FRIK 816-3) was significantly (P < 0.001) more sensitive to the glucose-phosphate by-product than the parent strain, as glucose concentrations from 0.05 to 0.25% resulted in a 2- to 3-log10 reduction in CFU per milliliter in 2 days at 25 degrees C. Likewise, log-phase cells of the wild-type strain, 43895, were significantly more sensitive (P < 0.001) to the glucose-phosphate by-product than were stationary-phase cells, which is consistent with the stability of rpoS and the regulation of rpoS-regulated genes. The bactericidal effect of the glucose-phosphate by-product was reduced when strains ATCC 43895 and FRIK 816-3 were incubated at a low temperature (4 degrees C). Also, growth in glucose-free medium (i.e., nutrient broth) did not alleviate the sensitivity to the glucose-phosphate by-product and excludes the possibility of substrate-accelerated death as the cause of the bactericidal effect observed. The glucose-phosphate by-product was also bactericidal to Salmonella typhimurium, Shigella dysenteriae, and a Klebsiella sp. Attempts to identify the glucose-phosphate by-product were unsuccessful. These studies demonstrate the production of a glucose-phosphate by-product bactericidal to E. coli O157:H7 and the protective effects afforded by rpoS-regulated gene products. Additionally, the detection of sublethally injured bacteria may be compromised by the presence of this by-product in recovery media.  相似文献   

2.
The effects of seven commercially available alkaline cleaners used in the food processing industry, 0.025 M NaOH, and 0.025 M KOH on viability of wild-type (EDL 933) and rpoS-deficient (FRIK 816-3) strains of Escherichia coli O157:H7 in logarithmic and stationary phases of growth were determined. Cells were treated at 4 or 23°C for 2, 10, or 30 min. Cleaners 2, 4, 6, and 7, which contained hypochlorite and <11% NaOH and/or KOH (pH 11.2 to 11.7), killed significantly higher numbers of cells than treatment with cleaner 3, containing sodium metasilicate (pH 11.4) and <10% KOH, and cleaner 5, containing ethylene glycol monobutyl ether (pH 10.4). There were no differences in the sensitivities of logarithmic and stationary-phase cells to the alkaline cleaners. Treatment with KOH or NaOH (pH 12.2) was not as effective as four out of seven commercial cleaners in killing E. coli O157:H7, indicating that chlorine and other cleaner components have bactericidal activity at high pH. Stationary-phase cells of strain EDL 933 that had been exposed to cleaner 7 at 4 or 23°C and strain FRIK 816-3 exposed to cleaner 7 at 23°C had significantly higher D55°C (decimal reduction time, minutes at 55°C) values than control cells or cells exposed to cleaner 5, indicating that exposure to cleaner 7 confers cross-protection to heat. Cells of EDL 933 treated with cleaner 7 at 12°C showed significantly higher D55°C values than cells of FRIK 816-3, indicating that rpoS may play a role in cross-protection. Stationary-phase cells treated with cleaner 5 or cleaner 7 at 4 or 12°C were not cross-protected against subsequent exposure to sanitizers containing quaternary ammonium compounds or sodium hypochlorite, or to cetylpyridinium chloride and benzalkonium chloride.  相似文献   

3.
The influence of heat adaptation (growth at 42 and 45°C) on changes in membrane lipid composition and verotoxin concentration of Escherichia coli O157:H7 (ATCC 43895), an rpoS mutant of ATCC 43895 (FRIK 816-3), a verotoxin mutant E. coli O157:H7 (B6-914), and nonpathogenic E. coli (ATCC 25922) was investigated. D values (57°C) of heat-adapted cells were up to 3.9 min longer than those of control cells for all four strains. Heat adaptation increased the amounts of palmitic acid (16:0) and cis-vaccenic acid (18:1ω7c) in membrane lipids of ATCC 43895 and the rpoS mutant, whereas there was a reduction and no change in the amount of cis-vaccenic acid in nonpathogenic and verotoxin mutant E. coli, respectively. The ratio of palmitic to cis-vaccenic acids decreased in ATCC 43895 and in the rpoS mutant, whereas the ratio increased in nonpathogenic E. coli and was not different in the verotoxin mutant with elevated growth temperature. Total verotoxin concentration decreased due to a reduction in intracellular verotoxin amount in heat-adapted ATCC 43895 and rpoS mutant strains. However, extracellular verotoxin concentration increased in heat-adapted cells. The rpoS gene did not influence membrane lipid composition changes although it did affect heat resistance. Results suggest that increased membrane fluidity may have caused increased verotoxin secretion.  相似文献   

4.
The influence of adaptation to pH (from pH 5.0 to 9.0) on membrane lipid composition, verotoxin concentration, and resistance to acidic conditions in simulated gastric fluid (SGF) (pH 1.5, 37°C) was determined for Escherichia coli O157:H7 (HEC, ATCC 43895), an rpoS-deficient mutant of ATCC 43895 (HEC-RM, FRIK 816-3), and nonpathogenic E. coli (NPEC, ATCC 25922). Regardless of the strain, D values (in SGF) of acid-adapted cells were higher than those of non-acid-adapted cells, with HEC adapted at pH 5.0 having the greatest D value, i.e., 25.6 min. Acid adaptation increased the amounts of palmitic acid (C16:0) and decreased cis-vaccenic acid (C18:1ω7c) in the membrane lipids of all strains. The ratio of cis-vaccenic acid to palmitic acid increased at acidic pH, causing a decrease in membrane fluidity. HEC adapted to pH 8.3 and HEC-RM adapted to pH 7.3 exhibited the greatest verotoxin concentrations (2,470 and 1,460 ng/ml, respectively) at approximately 108 CFU/ml. In addition, the ratio of extracellular to intracellular verotoxin concentration decreased at acidic pH, possibly due to the decrease of membrane fluidity. These results suggest that while the rpoS gene does not influence acid resistance in acid-adapted cells it does confer decreased membrane fluidity, which may increase acid resistance and decrease verotoxin secretion.  相似文献   

5.
When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39°C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50°C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions.  相似文献   

6.
In this study we investigated the long-term survival of and morphological changes in Salmonella strains at low water activity (aw). Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 survived at low aw for long periods, but minimum humectant concentrations of 8% NaCl (aw, 0.95), 96% sucrose (aw, 0.94), and 32% glycerol (aw, 0.92) were bactericidal under most conditions. Salmonella rpoS mutants were usually more sensitive to bactericidal levels of NaCl, sucrose, and glycerol. At a lethal aw, incubation at 37°C resulted in more rapid loss of viability than incubation at 21°C. At aw values of 0.93 to 0.98, strains of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium formed filaments, some of which were at least 200 μm long. Filamentation was independent of rpoS expression. When the preparations were returned to high-aw conditions, the filaments formed septa, and division was complete within approximately 2 to 3 h. The variable survival of Salmonella strains at low aw highlights the importance of strain choice when researchers produce modelling data to simulate worst-case scenarios or conduct risk assessments based on laboratory data. The continued increase in Salmonella biomass at low aw (without a concomitant increase in microbial count) would not have been detected by traditional microbiological enumeration tests if the tests had been performed immediately after low-aw storage. If Salmonella strains form filaments in food products that have low aw values (0.92 to 0.98), there are significant implications for public health and for designing methods for microbiological monitoring.  相似文献   

7.
Acid resistance (AR) is important to survival of Escherichia coli O157:H7 in acidic foods and may play a role during passage through the bovine host. In this study, we examined the role in AR of the rpoS-encoded global stress response regulator ςS and its effect on shedding of E. coli O157:H7 in mice and calves. When assayed for each of the three AR systems identified in E. coli, an rpoS mutant (rpoS::pRR10) of E. coli O157:H7 lacked the glucose-repressed system and possessed reduced levels of both the arginine- and glutamate-dependent AR systems. After administration of the rpoS mutant and the wild-type strain (ATCC 43895) to ICR mice at doses ranging from 101 to 104 CFU, we found the wild-type strain in feces of mice given lower doses (102 versus 103 CFU) and at a greater frequency (80% versus 13%) than the mutant strain. The reduction in passage of the rpoS mutant was due to decreased AR, as administration of the mutant in 0.05 M phosphate buffer facilitated passage and increased the frequency of recovery in feces from 27 to 67% at a dose of 104 CFU. Enumeration of E. coli O157:H7 in feces from calves inoculated with an equal mixture of the wild-type strain and the rpoS mutant demonstrated shedding of the mutant to be 10- to 100-fold lower than wild-type numbers. This difference in shedding between the wild-type strain and the rpoS mutant was statistically significant (P ≤ 0.05). Thus, ςS appears to play a role in E. coli O157:H7 passage in mice and shedding from calves, possibly by inducing expression of the glucose-repressed RpoS-dependent AR determinant and thus increasing resistance to gastrointestinal stress. These findings may provide clues for future efforts aimed at reducing or eliminating this pathogen from cattle herds.  相似文献   

8.
The resistance of Escherichia coli O157:H7 strains ATCC 43895-, 43895-EPS (an exopolysaccharide [EPS]-overproducing mutant), and ATCC 43895+ (a curli-producing mutant) to chlorine, a sanitizer commonly used in the food industry, was studied. Planktonic cells of strains 43895-EPS and/or ATCC 43895+ grown under conditions supporting EPS and curli production, respectively, showed the highest resistance to chlorine, indicating that EPS and curli afford protection. Planktonic cells (ca. 9 log10 CFU/ml) of all strains, however, were killed within 10 min by treatment with 50 μg of chlorine/ml. Significantly lower numbers of strain 43895-EPS, compared to those of strain ATCC 43895-, attached to stainless steel coupons, but the growth rate of strain 43895-EPS on coupons was not significantly different from that of strain ATCC 43895-, indicating that EPS production did not affect cell growth during biofilm formation. Curli production did not affect the initial attachment of cells to coupons but did enhance biofilm production. The resistance of E. coli O157:H7 to chlorine increased significantly as cells formed biofilm on coupons; strain ATCC 43895+ was the most resistant. Population sizes of strains ATCC 43895+ and ATCC 43895- in biofilm formed at 12°C were not significantly different, but cells of strain ATCC 43895+ showed significantly higher resistance than did cells of strain ATCC 43895-. These observations support the hypothesis that the production of EPS and curli increase the resistance of E. coli O157:H7 to chlorine.  相似文献   

9.
Detection of pathogenic Naegleria fowleri in environmental water samples, which is necessary for the prevention of primary amoebic meningoencephalitis, generally requires concentrating the samples. Two concentration techniques, filtration and centrifugation, were used to study the recovery of N. fowleri, in vegetative or cystic form, that had been mixed with the two other thermotolerant Naegleria species, N. lovaniensis and N. australiensis. Counting of amoebae was performed by the most probable number method on 10 water replicates of 100 ml and 10 ml each. With both concentration methods, recovery was better for cysts than for trophozoites (53% ± 21% versus 5% ± 5% by filtration and 57% ± 25% versus 22% ± 5% by centrifugation). The recovery of Naegleria trophozoites by filtration was very low, and centrifugation was significantly better than filtration in recovery of Naegleria trophozoites (22% ± 5% versus 5% ± 5%; P < 0.001). For cysts, however, filtration appeared as efficient as centrifugation, with equivalent values for recovery (53% ± 21% versus 57% ± 25%; P > 0.7). Although the recovery of cysts of N. fowleri obtained by filtration (51% ± 24%) appeared higher than that by centrifugation (36% ± 23%), the difference was not significant (P > 0.1). Both concentration methods have highly variable recovery rates, making accurate quantification of low concentrations (<100/liter) of N. fowleri in the environment difficult.  相似文献   

10.
Impact of rpoS Deletion on Escherichia coli Biofilms   总被引:6,自引:0,他引:6       下载免费PDF全文
Slow growth has been hypothesized to be an essential aspect of bacterial physiology within biofilms. In order to test this hypothesis, we employed two strains of Escherichia coli, ZK126 (ΔlacZ rpoS+) and its isogenic ΔrpoS derivative, ZK1000. These strains were grown at two rates (0.033 and 0.0083 h−1) in a glucose-limited chemostat which was coupled either to a modified Robbins device containing plugs of silicone rubber urinary catheter material or to a glass flow cell. The presence or absence of rpoS did not significantly affect planktonic growth of E. coli. In contrast, biofilm cell density in the rpoS mutant strain (ZK1000), as measured by determining the number of CFU per square centimeter, was reduced by 50% (P < 0.05). Deletion of rpoS caused differences in biofilm cell arrangement, as seen by scanning confocal laser microscopy. In reporter gene experiments, similar levels of rpoS expression were seen in chemostat-grown planktonic and biofilm populations at a growth rate of 0.033 h−1. Overall, these studies suggest that rpoS is important for biofilm physiology.  相似文献   

11.
Cold shock at 0 to 15°C for 1 to 3 h increased the thermal sensitivity of Listeria monocytogenes. In a model broth system, thermal death time at 60°C was reduced by up to 45% after L. monocytogenes Scott A was cold shocked for 3 h. The duration of the cold shock affected thermal tolerance more than did the magnitude of the temperature downshift. The Z values were 8.8°C for controls and 7.7°C for cold-shocked cells. The D values of cold-shocked cells did not return to control levels after incubation for 3 h at 28°C followed by heating at 60°C. Nine L. monocytogenes strains that were cold shocked for 3 h exhibited D60 values that were reduced by 13 to 37%. The D-value reduction was greatest in cold-shocked stationary-phase cells compared to cells from cultures in either the lag or exponential phases of growth. In addition, cold-shocked cells were more likely to be inactivated by a given heat treatment than nonshocked cells, which were more likely to experience sublethal injury. The D values of chloramphenicol-treated control cells and chloramphenicol-treated cold-shocked cells were no different from those of untreated cold-shocked cells, suggesting that cold shock suppresses synthesis of proteins responsible for heat protection. In related experiments, the D values of L. monocytogenes Scott A were decreased 25% on frankfurter skins and 15% in ultra-high temperature milk if the inoculated products were first cold shocked. Induction of increased thermal sensitivity in L. monocytogenes by thermal flux shows potential to become a practical and efficacious preventative control method.  相似文献   

12.
Recent studies have shown that the anaerobic oxidation of ammonium by anammox bacteria plays an important role in catalyzing the loss of nitrogen from marine oxygen minimum zones (OMZ). However, in situ oxygen concentrations of up to 25 μM and ammonium concentrations close to or below the detection limit in the layer of anammox activity are hard to reconcile with the current knowledge of the physiology of anammox bacteria. We therefore investigated samples from the Namibian OMZ by comparative 16S rRNA gene analysis and fluorescence in situ hybridization. Our results showed that “Candidatus Scalindua” spp., the typical marine anammox bacteria, colonized microscopic particles that were likely the remains of either macroscopic marine snow particles or resuspended particles. These particles were slightly but significantly (P < 0.01) enriched in Gammaproteobacteria (11.8% ± 5.0%) compared to the free-water phase (8.1% ± 1.8%). No preference for the attachment to particles could be observed for members of the Alphaproteobacteria and Bacteroidetes, which were abundant (12 to 17%) in both habitats. The alphaproteobacterial SAR11 clade, the Euryarchaeota, and group I Crenarchaeota, were all significantly depleted in particles compared to their presence in the free-water phase (16.5% ± 3.5% versus 2.6% ± 1.7%, 2.7% ± 1.9% versus <1%, and 14.9% ± 4.6% versus 2.2% ± 1.8%, respectively, all P < 0.001). Sequence analysis of the crenarchaeotal 16S rRNA genes showed a 99% sequence identity to the nitrifying “Nitrosopumilus maritimus.” Even though we could not observe conspicuous consortium-like structures of anammox bacteria with particle-enriched bacterioplankton groups, we hypothesize that members of Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes play a critical role in extending the anammox reaction to nutrient-depleted suboxic water layers in the Namibian upwelling system by creating anoxic, nutrient-enriched microniches.  相似文献   

13.
Understanding the factors that influence the distribution and abundance of marine diazotrophs is important in order to assess their role in the oceanic nitrogen cycle. Environmental DNA samples from four cruises to the North Atlantic Ocean, covering a sampling area of 0°N to 42°N and 67°W to 13°W, were analyzed for the presence and amount of seven nifH phylotypes using real-time quantitative PCR and TaqMan probes. The cyanobacterial phylotypes dominated in abundance (94% of all nifH copies detected) and were the most widely distributed. The filamentous cyanobacterial type, which included both Trichodesmium and Katagnymene, was the most abundant (51%), followed by group A, an uncultured unicellular cyanobacterium (33%), and gamma A, an uncultured gammaproteobacterium (6%). Group B, unicellular cyanobacterium Crocosphaera, and group C Cyanothece-like phylotypes were not often detected (6.9% and 2.3%, respectively), but where present, could reach high concentrations. Gamma P, another uncultured gammaproteobacterium, was seldom detected (0.5%). Water temperature appeared to influence the distribution of many nifH phylotypes. Very high (up to 1 × 106 copies liter−1) nifH concentrations of group A were detected in the eastern basin (25 to 17°N, 27 to 30°W), where the temperature ranged from 20 to 23°C. The highest concentrations of filamentous phylotypes were measured between 25 and 30°C. The uncultured cluster III phylotype was uncommon (0.4%) and was associated with mean water temperatures of 18°C. Diazotroph abundance was highest in regions where modeled average dust deposition was between 1 and 2 g/m2/year.  相似文献   

14.
Exposure to low pH and organic acids in the bovine gastrointestinal tract may result in the induced acid resistance of Escherichia coli O157:H7 and other pathogens that may subsequently contaminate beef carcasses. The effect of acid adaptation of E. coli O157:H7 on the ability of acetic acid spray washing to reduce populations of this organism on beef carcass tissue was examined. Stationary-phase acid resistance and the ability to induce acid tolerance were determined for a collection of E. coli O157:H7 strains by testing the survival of acid-adapted and unadapted cells in HCl-acidified tryptic soy broth (pH 2.5). Three E. coli O157:H7 strains that were categorized as acid resistant (ATCC 43895) or acid sensitive (ATCC 43890) or that demonstrated inducible acid tolerance (ATCC 43889) were used in spray wash studies. Prerigor beef carcass surface tissue was inoculated with bovine feces containing either acid-adapted or unadapted E. coli O157:H7. The beef tissue was subjected to spray washing treatments with water or 2% acetic acid or left untreated. For strains ATCC 43895 and 43889, larger populations of acid-adapted cells than of unadapted cells remained on beef tissue following 2% acetic acid treatments and these differences remained throughout 14 days of 4°C storage. For both strains, numbers of acid-adapted cells remaining on tissue following 2% acetic acid treatments were similar to numbers of both acid-adapted and unadapted cells remaining on tissue following water treatments. For strain ATCC 43890, there was no difference between populations of acid-adapted and unadapted cells remaining on beef tissue immediately following 2% acetic acid treatments. These data indicate that adaptation to acidic conditions by E. coli O157:H7 can negatively influence the effectiveness of 2% acetic acid spray washing in reducing the numbers of this organism on carcasses.  相似文献   

15.
The probiotic Lactobacillus rhamnosus GG is able to bind the potent hepatocarcinogen aflatoxin B1 (AFB1) and thus potentially restrict its rapid absorption from the intestine. In this study we investigated the potential of GG to reduce AFB1 availability in vitro in Caco-2 cells adapted to express cytochrome P-450 (CYP) 3A4, such that both transport and toxicity could be assessed. Caco-2 cells were grown as confluent monolayers on transmembrane filters for 21 days prior to all studies. AFB1 levels in culture medium were measured by high-performance liquid chromatography. In CYP 3A4-induced monolayers, AFB1 transport from the apical to the basolateral chamber was reduced from 11.1% ± 1.9% to 6.4% ± 2.5% (P = 0.019) and to 3.3% ± 1.8% (P = 0.002) within the first hour in monolayers coincubated with GG (1 × 1010 and 5 × 1010 CFU/ml, respectively). GG (1 × 1010 and 5 × 1010 CFU/ml) bound 40.1% ± 8.3% and 61.0% ± 6.0% of added AFB1 after 1 h, respectively. AFB1 caused significant reductions of 30.1% (P = 0.01), 49.4% (P = 0.004), and 64.4% (P < 0.001) in transepithelial resistance after 24, 48, and 72 h, respectively. Coincubation with 1 × 1010 CFU/ml GG after 24 h protected against AFB1-induced reductions in transepithelial resistance at both 24 h (P = 0.002) and 48 h (P = 0.04). DNA fragmentation was apparent in cells treated only with AFB1 cells but not in cells coincubated with either 1 × 1010 or 5 × 1010 CFU/ml GG. GG reduced AFB1 uptake and protected against both membrane and DNA damage in the Caco-2 model. These data are suggestive of a beneficial role of GG against dietary exposure to aflatoxin.  相似文献   

16.

Background

Diarrhea is a leading cause of childhood morbidity and mortality in sub-Saharan Africa. Data on risk factors for mortality are limited. We conducted hospital-based surveillance to characterize the etiology of diarrhea and identify risk factors for death among children hospitalized with diarrhea in rural western Kenya.

Methods and Findings

We enrolled all children <5 years old, hospitalized with diarrhea (≥3 loose stools in 24 hours) at two district hospitals in Nyanza Province, western Kenya. Clinical and demographic information was collected. Stool specimens were tested for bacterial and viral pathogens. Bivariate and multivariable logistic regression analyses were carried out to identify risk factors for death. From May 23, 2005 to May 22, 2007, 1,146 children <5 years old were enrolled; 107 (9%) children died during hospitalization. Nontyphoidal Salmonella were identified in 10% (118), Campylobacter in 5% (57), and Shigella in 4% (42) of 1,137 stool samples; rotavirus was detected in 19% (196) of 1,021 stool samples. Among stools from children who died, nontyphoidal Salmonella were detected in 22%, Shigella in 11%, rotavirus in 9%, Campylobacter in 5%, and S. Typhi in <1%. In multivariable analysis, infants who died were more likely to have nontyphoidal Salmonella (adjusted odds ratio [aOR] = 6·8; 95% CI 3·1–14·9), and children <5 years to have Shigella (aOR = 5·5; 95% CI 2·2–14·0) identified than children who survived. Children who died were less likely to be infected with rotavirus (OR = 0·4; 95% CI 0·2–0·8). Further risk factors for death included being malnourished (aOR = 4·2; 95% CI 2·1–8·7); having oral thrush on physical exam (aOR = 2·3; 95% CI 1·4–3·8); having previously sought care at a hospital for the illness (aOR = 2·2; 95% CI 1·2–3·8); and being dehydrated as diagnosed at discharge/death (aOR = 2·5; 95% CI 1·5–4·1). A clinical diagnosis of malaria, and malaria parasites seen on blood smear, were not associated with increased risk of death. This study only captured in-hospital childhood deaths, and likely missed a substantial number of additional deaths that occurred at home.

Conclusion

Nontyphoidal Salmonella and Shigella are associated with mortality among rural Kenyan children with diarrhea who access a hospital. Improved prevention and treatment of diarrheal disease is necessary. Enhanced surveillance and simplified laboratory diagnostics in Africa may assist clinicians in appropriately treating potentially fatal diarrheal illness. Please see later in the article for the Editors'' Summary  相似文献   

17.
The U.S. Food and Drug Administration (FDA) recently mandated a warning statement on packaged fruit juices not treated to reduce target pathogen populations by 5 log10 units. This study describes combinations of intervention treatments that reduced concentrations of mixtures of Escherichia coli O157:H7 (strains ATCC 43895, C7927, and USDA-FSIS-380-94) or Salmonella typhimurium DT104 (DT104b, U302, and DT104) by 5 log10 units in apple cider with a pH of 3.3, 3.7, and 4.1. Treatments used were short-term storage at 4, 25, or 35°C and/or freeze-thawing (48 h at −20°C; 4 h at 4°C) of cider with or without added organic acids (0.1% lactic acid, sorbic acid [SA], or propionic acid). Treatments more severe than those for S. typhimurium DT104 were always required to destroy E. coli O157:H7. In pH 3.3 apple cider, a 5-log10-unit reduction in E. coli O157:H7 cell numbers was achieved by freeze-thawing or 6-h 35°C treatments. In pH 3.7 cider the 5-log10-unit reduction followed freeze-thawing combined with either 6 h at 4°C, 2 h at 25°C, or 1 h at 35°C or 6 h at 35°C alone. A 5-log10-unit reduction occurred in pH 4.1 cider after the following treatments: 6 h at 35°C plus freeze-thawing, SA plus 12 h at 25°C plus freeze-thawing, SA plus 6 h at 35°C, and SA plus 4 h at 35°C plus freeze-thawing. Yeast and mold counts did not increase significantly (P < 0.05) during the 6-h storage at 35°C. Cider with no added organic acids treated with either 6 h at 35°C, freeze-thawing or their combination was always preferred by consumers over pasteurized cider (P < 0.05). The simple, inexpensive intervention treatments described in the present work could produce safe apple cider without pasteurization and would not require the FDA-mandated warning statement.  相似文献   

18.
We analyzed the composition of aggregate (lake snow)-associated bacterial communities in Lake Constance from 1994 until 1996 between a depth of 25 m and the sediment surface at 110 m by fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes of various specificity. In addition, we experimentally examined the turnover of dissolved amino acids and carbohydrates together with the microbial colonization of aggregates formed in rolling tanks in the lab. Generally, between 40 and more than 80% of the microbes enumerated by DAPI staining (4′,6′-diamidino-2-phenylindole) were detected as Bacteria by the probe EUB338. At a depth of 25 m, 10.5% ± 7.9% and 14.2% ± 10.2% of the DAPI cell counts were detected by probes specific for α- and β-Proteobacteria. These proportions increased to 12.0% ± 3.3% and 54.0% ± 5.9% at a depth of 50 m but decreased again at the sediment surface at 110 m to 2.7% ± 1.4% and 41.1% ± 8.4%, indicating a clear dominance of β-Proteobacteria at depths of 50 and 110 m, where aggregates have an age of 3 to 5 and 8 to 11 days, respectively. From 50 m to the sediment surface, cells detected by a Cytophaga/Flavobacteria-specific probe (CF319a) comprised increasing proportions up to 18% of the DAPI cell counts. γ-Proteobacteria always comprised minor proportions of the aggregate-associated bacterial community. Using only two probes highly specific for clusters of bacteria closely related to Sphingomonas species and Brevundimonas diminuta, we identified between 16 and 60% of the α-Proteobacteria. In addition, with three probes highly specific for close relatives of the β-Proteobacteria Duganella zoogloeoides (formerly Zoogloea ramigera), Acidovorax facilis, and Hydrogenophaga palleroni, bacteria common in activated sludge, 42 to 70% of the β-Proteobacteria were identified. In the early phase (<20 h) of 11 of the 15 experimental incubations of aggregates, dissolved amino acids were consumed by the aggregate-associated bacteria from the surrounding water. This stage was followed by a period of 1 to 3 days during which dissolved amino acids were released into the surrounding water, paralleled by an increasing dominance of β-Proteobacteria. Hence, our results show that lake snow aggregates are inhabited by a community dominated by a limited number of α- and β-Proteobacteria, which undergo a distinct succession. They successively decompose the amino acids bound in the aggregates and release substantial amounts into the surrounding water during aging and sinking.  相似文献   

19.
Soil temperatures in Italian rice fields typically range between about 15 and 30°C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30°C to 15°C typically resulted in a decrease in the CH4 production rate, a decrease in the steady-state H2 partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85–102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15°C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Großkopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983–4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30°C to 15°C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), “novel Euryarchaeota” (23%), and Methanosarcinacaeae (7%). Further incubation at 30°C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15°C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15°C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.  相似文献   

20.

Background

Metabolic and behavioral adaptations to caloric restriction (CR) in free-living conditions have not yet been objectively measured.

Methodology and Principal Findings

Forty-eight (36.8±1.0 y), overweight (BMI 27.8±0.7 kg/m2) participants were randomized to four groups for 6-months; Control: energy intake at 100% of energy requirements; CR: 25% calorie restriction; CR+EX: 12.5% CR plus 12.5% increase in energy expenditure by structured exercise; LCD: low calorie diet (890 kcal/d) until 15% weight reduction followed by weight maintenance. Body composition (DXA) and total daily energy expenditure (TDEE) over 14-days by doubly labeled water (DLW) and activity related energy activity (AREE) were measured after 3 (M3) and 6 (M6) months of intervention. Weight changes at M6 were −1.0±1.1% (Control), −10.4±0.9% (CR), −10.0±0.8% (CR+EX) and −13.9±0.8% (LCD). At M3, absolute TDEE was significantly reduced in CR (−454±76 kcal/d) and LCD (−633±66 kcal/d) but not in CR+EX or controls. At M6 the reduction in TDEE remained lower than baseline in CR (−316±118 kcal/d) and LCD (−389±124 kcal/d) but reached significance only when CR and LCD were combined (−351±83 kcal/d). In response to caloric restriction (CR/LCD combined), TDEE adjusted for body composition, was significantly lower by −431±51 and −240±83 kcal/d at M3 and M6, respectively, indicating a metabolic adaptation. Likewise, physical activity (TDEE adjusted for sleeping metabolic rate) was significantly reduced from baseline at both time points. For control and CR+EX, adjusted TDEE (body composition or sleeping metabolic rate) was not changed at either M3 or M6.

Conclusions

For the first time we show that in free-living conditions, CR results in a metabolic adaptation and a behavioral adaptation with decreased physical activity levels. These data also suggest potential mechanisms by which CR causes large inter-individual variability in the rates of weight loss and how exercise may influence weight loss and weight loss maintenance.

Trial Registration

ClinicalTrials.gov NCT00099151  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号