首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lu L  Sheng H  Li H  Gan W  Liu C  Zhu J  Loos RJ  Lin X 《Human genetics》2012,131(3):505-512
Recent studies have identified common variants in or near GC, CYP2R1 and NADSYN1/DHCR7 to be associated with 25-hydroxyvitamin D [25(OH)D] levels in European populations. We aimed to examine whether these variants also influence 25(OH)D levels in Chinese. Seven common variants were successfully genotyped and tested for associations with plasma 25(OH)D levels in a population-based cohort of 3,210 Chinese Hans from Beijing and Shanghai. Six common variants at GC (rs4588, rs7041, rs2282679 and rs1155563) and NADSYN1/DHCR7 (rs3829251 and rs1790349) loci were all significantly associated with lower plasma 25(OH)D levels (−0.036 ≤ β ≤ −0.076 per risk-allele, P ≤ 5.7 × 10−5), while CYP2R1-rs2060793 showed a trend toward association with 25(OH)D levels in the Shanghai subpopulation (P = 0.08), but not in the Beijing subpopulation (P = 0.82). Haplotype-based association analyses of the four GC variants showed that only the haplotype that contained all risk-alleles (TACC) was significantly associated with lower plasma 25(OH)D levels (β = −0.085, P = 2.3 × 10−9), while the haplotype containing the risk-alleles of rs4588 and rs2282679 (TATC) was marginally associated with lower 25(OH)D levels (β = −0.054, P = 0.0562) when compared with GCTA haplotype carrying the four protective alleles. Most notably, conditional analyses showed that only GC-rs4588 and GC-rs2282679 (r 2 = 0.97) remained significantly associated with 25(OH)D concentrations (P ≤ 1.9 × 10−5) after adjusting for the other two SNPs in GC. In conclusion, GC and NADSYN1/DHCR7 loci individually and collectively contribute to variation in plasma vitamin D levels in Chinese Hans.  相似文献   

2.
An N-acetylglucosaminidase produced by Streptomyces cerradoensis was partially purified giving, by SDS-PAGE analysis, two main protein bands with Mr of 58.9 and 56.4 kDa. The Km and Vmax values for the enzyme using p-nitrophenyl-β-N-acetylglucosaminide as substrate were of 0.13 mM and 1.95 U mg−1 protein, respectively. The enzyme was optimally activity at pH 5.5 and at 50 °C when assayed over 10 min. Enzyme activity was strongly inhibited by Cu2+ and Hg2+ at 10 mM, and was specific to substrates containing acetamide groups such as p-nitrophenyl-β-N-acetylglucosaminide and p-nitrophenyl-β-D-N,N′-diacetylchitobiose.  相似文献   

3.
Panicum meyerianum Nees is a wild relative of Panicum maximum Jacq. (guinea grass), which is an important warm-season forage grass and biomass crop. We investigated the conditions that maximized the transformation efficiency of P. meyerianum by Agrobacterium infection by monitoring the expression of the β-glucuronidase (GUS) gene. The highest activities of GUS in calli were achieved by the co-cultivation of plants with Agrobacterium at 28°C for 6 days. We transferred the ddsA gene, which encodes decaprenyl diphosphate synthase and is required for coenzyme Q10 (CoQ10) synthesis, into P. meyerianum by using our optimized co-cultivation procedure for transformation. We confirmed by PCR and DNA gel blot hybridization that all hygromycin-resistant plants retained stable insertion of the hpt and ddsA genes. We also demonstrated strong expression of S14:DdsA protein in the leaves of transgenic P. meyerianum. Furthermore, we showed that transgenic P. meyerianum produced CoQ10 at levels 11–20 times higher than that of non-transformants. By comparison, the CoQ9 level in transgenic plants was dramatically reduced. This is the first report of efficient Agrobacterium-mediated transfer of a foreign gene into the warm-season grass P. meyerianum.  相似文献   

4.
Two chitinolytic fungal strains, Trichoderma aureoviride DY-59 and Rhizopus microsporus VS-9, were isolated from soil samples of Korea and Vietnam, respectively. DY-59 and VS-9 crude chitinases secreted by these fungi in the 0.5% swollen chitin culture medium had an optimal pH of 4 and the optimal temperatures of 40°C and 60°C, respectively. Enzymatic hydrolysis products from crab swollen chitin were N-acetyl-β-D-glucosamine (GlcNAc) by DY-59 chitinase, and GlcNAc and N, N′-diacetylchitobiose (GlcNAc)2 by VS-9 chitinases. The chitinases degraded the cell wall of Fusarium solani hyphae to produce oligosaccharides, among which GlcNAc, (GlcNAc)2, and pentamer (GlcNAc)5 were identified by high-pressure liquid chromatography. DY-59 and VS-9 chitinases inhibited F. solani microconidial germination by more than 70% and 60% at final protein concentrations of 5 and 27 μg mL−1, respectively, at 30°C for 20 h treatment.  相似文献   

5.
Carotenoids represent a group of valuable molecules for the pharmaceutical, chemical, food and feed industries, not only because they can act as vitamin A precursors, but also for their coloring, antioxidant and possible tumor-inhibiting activity. Animals cannot synthesize carotenoids, and these pigments must therefore be added to the feeds of farmed species. The synthesis of different natural commercially important carotenoids (β-carotene, torulene, torularhodin and astaxanthin) by several yeast species belonging to the genera Rhodotorula and Phaffia has led to consider these microorganisms as a potential pigment sources. In this review, we discuss the biosynthesis, factors affecting carotenogenesis in Rhodotorula and Phaffia strains, strategies for improving the production properties of the strains and directions for potential utility of carotenoid-synthesizing yeast as a alternative source of natural carotenoid pigments.  相似文献   

6.
Two species of Trentepohlia, i.e., Trentepohlia aurea and Trentepohlia cucullata were collected from walls and tree bark, respectively, at two different seasons in a year. The total carotenoid content in both the species is very high during winter but decreases significantly during summer. By spectroscopic analysis, it was found that. T. aurea and T. cucullata growing in natural habitats are rich sources of carotenoids. The individual carotenoids were separated, identified, and estimated by HPLC, and identified as β-carotene along with some other carotenoids, i.e., neoxanthin, lutein, β-cryptoxanthin, β,γ-carotene, β,ε-carotene (absent during summer).  相似文献   

7.
A thermostable cellulase-producing fungus, HML 0278, was identified as Fusarium chlamydosporum by morphological characteristics and ITS rDNA sequence analysis. HML 0278 produced extracellular cellulases in solid-state fermentation using sugar cane bassage as the carbon source. Native-PAGE analysis demonstrated that this fungus strain was capable of producing the three major components of cellulases and xylanase, with a yield of 281.8 IU/g for CMCase, 182.4 IU/g for cellobiohydrolase, 135.2 IU/g for β-glucosidase, 95.2 IU/g for filter paper activity, and 4,720 IU/g for xylanase. More importantly, the CMCase and β-glucosidase produced by HML 0278 showed stable enzymatic activities within pH 4–9 and pH 4–10, and at temperatures below 70 and 60°C, respectively.  相似文献   

8.
The filamentous fungi Phycomyces blakesleeanus and Blakeslea trispora (Zygomycota, Mucorales) are actual or potential industrial sources of β-carotene and lycopene. These chemicals and the large terpenoid moiety of ubiquinone derive from geranylgeranyl pyrophosphate. We measured the ubiquinone and carotene contents of wild-type and genetically modified strains under various conditions. Light slightly increased the ubiquinone content of Blakeslea and had no effect on that of Phycomyces. Oxidative stress modified ubiquinone production in Phycomyces and carotene production in both fungi. Sexual interaction and mutations in both organisms made the carotene content vary from traces to 23 mg/g dry mass, while the ubiquinone content remained unchanged at 0.3 mg/g dry mass. We concluded that the biosyntheses of ubiquinone and carotene are not coregulated. The specific regulation for carotene biosynthesis does not affect even indirectly the production of ubiquinone, as would be expected if terpenoids were synthesized through a branched pathway that could divert precursor flows from one branch to another.  相似文献   

9.
A glucosyltransferase (GT) of Phytolacca americana (PaGT3) was expressed in Escherichia coli and purified for the synthesis of two O-β-glucoside products of trans-resveratrol. The reaction was moderately regioselective with a ratio of 4′-O-β-glucoside: 3-O-β-glucoside at 10:3. We used not only the purified enzyme but also the E. coli cells containing the PaGT3 gene for the synthesis of glycoconjugates. E. coli cell cultures also have other advantages, such as a shorter incubation time compared with cultured plant cells, no need for the addition of exogenous glucosyl donor compounds such as UDP-glucose, and almost complete conversion of the aglycone to the glucoside products. Furthermore, a homology model of PaGT3 and mutagenesis studies suggested that His-20 would be a catalytically important residue.  相似文献   

10.
A 777-bp cDNA fragment encoding a mature alkaline lipase (LipI) from Penicillium cyclopium PG37 was amplified by RT–PCR, and inserted into the expression plasmid pPIC9 K. The recombinant plasmid, designated as pPIC9 K-lipI, was linearized with SalI and transformed into Pichia pastoris GS115 (his4, Mut+) by electroporation. MD plate and YPD plates containing G418 were used for screening of the multi-copy P. pastoris transformants (His+, Mut+). One transformant resistant to 4.0 mg/ml of G418, numbered as P. pastoris GSL4-7, expressing the highest recombinant LipI (rLipI) activity was chosen for optimizing expression conditions. The integration of the gene LipI into the P. pastoris GS115 genome was confirmed by PCR analysis using 5′- and 3′-AOX1 primers. SDS–PAGE and lipase activity assays demonstrated that the rLipI, a glycosylated protein with an apparent molecular weight of about 31.5 kDa, was extracellularly expressed in P. pastoris. When the P. pastoris GSL4-7 was cultured under the optimized conditions, the expressed rLipI activity was up to 407 U/ml, much higher than that (10.5 U/ml) expressed with standard protocol. The rLipI showed the highest activity at pH 10.5 and 25°C, and was stable at a broad pH range of 7.0–10.5 and at a temperature of 30°C or below.  相似文献   

11.
Melon (Cucumis melo L.) is highly nutritious vegetable species and an important source of β-carotene (Vitamin A), which is an important nutrient in the human diet. A previously developed set of 81 recombinant inbred lines (RIL) derived from Group Cantalupensis US Western Shipper market type germplasm was examined in two locations [Wisconsin (WI) and California (CA), USA] over 2 years to identify quantitative trait loci (QTL) associated with quantity of beta-carotene (QβC) in mature fruit. A moderately saturated 256-point RIL-based map [104 SSR, 7 CAPS, 4 SNP in putative carotenoid candidate genes, 140 dominant markers and one morphological trait (a) spanning 12 linkage groups (LG)] was used for QβC–QTL analysis. Eight QTL were detected in this evaluation that were distributed across four LG that explained a significant portion of the associated phenotypic variation for QβC (R 2 = 8 to 31.0%). Broad sense heritabilities for QβC obtained from RIL grown in WI. and CA were 0.56 and 0.68, respectively, and 0.62 over combined locations. The consistence of QβC in high/low RIL within location across years was confirmed in experiments conducted over 2 years. QTL map positions were not uniformly associated with putative carotenoid genes, although one QTL (β-car6.1) interval was located 10 cM from a β-carotene hydroxylase gene. These results suggest that accumulation of β-carotene in melon is under complex genetic control. This study provides the initial step for defining the genetic control of QβC in melon leading to the development of varieties with enhanced β-carotene content.  相似文献   

12.
The generation of superoxide anion radical (O2 ·−) in the cytochrome b 6 f complex (Cyt b 6 f) of spinach under high-light illumination was studied using electron paramagnetic resonance spectroscopy. The generation of O2 ·− was lost in the absence of molecular oxygen. It was also suppressed in the presence of NaN3 and could be scavenged by extraneous antioxidants such as ascorbate, β-carotene, and glutathione. The results also indicate that O2 ·−, which is produced under high-light illumination of the Cyt b 6 f from spinach, might be generated from a reaction involing 1O2, and the Rieske Fe-S protein could serve as the electron donor in the O2 ·− production. The mechanism of photoprotection of the Cyt b 6 f complex by antioxidants is discussed.  相似文献   

13.
This paper describes multiple shoot regeneration from leaf and nodal segments of a medicinally important herb Centella asiatica L. on Murashige and Skoog’s (MS) medium supplemented with a range of growth regulators. The highest number of multiple shoots was observed on MS augmented with 3.0 mg dm−3 N6-benzylaminopurine (BAP) and 0.05 mg dm−3 α-naphthaleneacetic acid (NAA). Leaf explant showed maximum percentage of cultures regenerating shoots (81.6 %), with the highest shoot number (8.3 shoots per explant) and the shoot length (2.1 cm) whereas, nodal explant showed less number of shoots with callus formation at the base cut end. Successive shoot cultures were established by repeatedly sub-culturing the original explant on a fresh medium. Rooting of in vitro raised shoots was best induced on half strength MS supplemented with 0.5 mg dm−3 indole-3-butyric acid (IBA) with highest percentage of shoot regenerating roots (76.8 %) with 3–4 roots per shoot. Plantlets were acclimated in Vermi-compost and eventually established in soil. Contents of chlorophyll, total sugars, reducing sugars and proteins were estimated in leaf tissue from both in vivo and in vitro raised plants. Chlorophyll content was higher in in vivo plants, whereas other three components were higher in in vitro plants.  相似文献   

14.
The new flavonoid: herbacetin 3-O-β-glucopyranoside-8-O-β-glucuronopyranoside (1) together with known gossypetin 3-O-β-glucopyranoside - 8-O-β-glucuronopyranoside (2) and isoscutellarein: 8-O-β-glucuronopyranoside (3) as well as 4′-methyl ether-8-O-β-glucuronopyranoside (4), were isolated from the calyx and epicalyx leaves of Malope trifida and identified on the basis of their spectroscopic properties: UV, 1H and 13C NMR, ESI/MS. Two other flavonoids were identified as isoscutellarein: 3′-hydroxy 4′-methyl ether-8-O-β-glucuronoside (5) and 8-O- rhamnoglucoside (6) on the basis of their UV and ESI/MS data.  相似文献   

15.
The cytochrome b 6 f (Cyt b 6 f) complex, which functions as a plastoquinol-plastocyanin oxidoreductase and mediates the linear electron flow between photosystem II (PSII) and photosystem I (PSI) and the cyclic electron flow around PSI, was isolated from spinach (Spinacia oleracea L.) chloroplasts using n-octyl-β-D-glucopyranoside (β-OG). The preparation was also able to catalyze the peroxidase-like reaction in the presence of hydrogen peroxide (H2O2) and guaiacol. The optimal conditions for peroxidase activity of the preparation included: pH 3.6, ionic strength 0.1, and temperature 35°C. The apparent Michaelis constant (K m) values for H2O2 and guaiacol were 50 mM and 2 mM, respectively. The bimolecular rate constant (k obs) was about 26 M−1 s−1 and the turnover number (K cat) was about 60 min−1 (20 mM guaiacol, 100 mM sodium phosphate, pH 3.6, 25°C, [H2O2]<100mM). These parameters were similar to those of several other heme-containing proteins, such as myoglobin and Cyt c.  相似文献   

16.
An endo-β-1,4-xylanase gene, designated xyn10G5, was cloned from Phialophora sp. G5 and expressed in Pichia pastoris. The 1,197-bp full-length gene encodes a polypeptide of 399 amino acids consisting of a putative signal peptide at residues 1–20, a family 10 glycoside hydrolase domain, a short Gly/Thr-rich linker and a family 1 carbohydrate-binding module (CBM). The deduced amino acid sequence of XYN10G5 shares the highest identity (53.4%) with a putative xylanase precursor from Aspergillus terreus NIH2624. The purified recombinant XYN10G5 exhibited the optimal activity at pH 4.0 and 70 °C, remained stable at pH 3.0–9.0 (>70% of the maximal activity), and was highly thermostable at 70 °C (retaining ~90% of the initial activity for 1 h). Substrate specificity studies have shown that XYN10G5 had the highest activity on soluble wheat arabinoxylan (350.6 U mg−1), and moderate activity to various heteroxylans, and low activity on different types of cellulosic substrates. Under simulated gastric conditions, XYN10G5 was stable and released more reducing sugars from soluble wheat arabinoxylan; when combined with a glucanase (CelA4), the viscosity of barley–soybean feed was significantly reduced. These favorable enzymatic properties make XYN10G5 a good candidate for application in the animal feed industry.  相似文献   

17.
Thirteen steroidal compounds including three new polyhydroxysteroids, (24R,25S)-24-methyl-5α-cholestane-3β,6α,8,15β,16β,26-hexaol, (22E,24R,25S)-24-methyl-5α-cholest-22-ene-3β,6α,8,15β,16β,26-hexaol, and (22E,24R,25S)-24-methyl-5α-cholest-22-ene-3β,4β,6α,8,15β,16β,26-heptaol, have been isolated along with ten previously known polyhydroxysteroids from the tropical starfish Asteropsis carinifera collected near the coast of Vietnam. The structures of the new compounds were elucidated by spectroscopic methods (mainly 2D NMR and ESI mass spectrometry).  相似文献   

18.
The effects of irradiance and photoperiod on growth rates, chlorophyll a, β-carotene, total protein, and fatty acid content of Chlorella vulgaris were determined. The maximum growth rate (1.13 day−1) was at 100 μmol photons m−2 s−1 and 16:8-h light/dark photoperiod. Chlorophyll a and β-carotene contents significantly differed under different light regimes with chlorophyll a content lower at high irradiance and longer light duration, while β-carotene showed the inverse trend. The total protein and fatty acid content also significantly differed in different light regimes; the maximum percentage of protein (46%) was at 100 μmol photons m−2 s−1 and 16:8 h photoperiod, and minimum (33%) was at 37.5 μmol photons m−2 s−1 and 8:16 h photoperiod; the total saturated fatty acids increased, while monounsaturated and polyunsaturated fatty acids decreased with increasing irradiance and light duration.  相似文献   

19.
The Bacteroides genus, the most prevalent anaerobic bacteria of the intestinal tract, carries a plethora of the mobile elements, such as plasmids and conjugative and mobilizable transposons, which are probably responsible for the spreading of resistance genes. Production of β-lactamases is the most important resistance mechanism including cephalosporin resistance to β-lactam agents in species of the Bacteroides fragilis group. In our previous study, the cfxA gene was detected in B. distasonis species, which encodes a clinically significant broad-spectrum β-lactamase responsible for widespread resistance to cefoxitin and other β-lactams. Such gene has been associated with the mobilizable transposon Tn4555. Therefore, the aim of this study was to detect the association between the cfxA gene and the presence of transposon Tn4555 in 53 Bacteroides strains isolated in Rio de Janeiro, Brazil, by PCR assay. The cfxA gene was detected in 11 strains and the Tn4555 in 15. The transposon sequence revealed similarities of approximately 96% with the B. vulgatus sequence which has been deposited in GenBank. Hybridization assay was performed in attempt to detect the cfxA gene in the transposon. It was possible to associate the cfxA gene in 11 of 15 strains that harbored Tn4555. Among such strains, 9 presented the cfxA gene as well as Tn4555, but in 2 strains the cfxA gene was not detected by PCR assay. Our results confirm the involvement of Tn4555 in spreading the cfxA gene in Bacteroides species.  相似文献   

20.
Two novel strains of budding bacteria, Z-0071T and Z-0072, were isolated from dystrophic humified waters formed by xylotrophic fungi in the course of spruce wood degradation. The cells of both strains are coccoid (0.95–1.80 μm), nonmotile, single or arranged in pairs. The cells have a complex system of intracellular membranes and are covered with fimbriae and surrounded by a mucous capsule up to 0.3 μm thick. Both strains are aerobic organoheterotrophic, mesophilic, and acid-tolerant microorganisms that are able to grow under microaerobic conditions. They utilize N-acetyl-glucosamine, carbohydrates, and lactate as growth substrates. The strains grow in a pH range of 4.0–7.5 with an optimum at 6.0–6.5. The temperature range for growth is 4–30°C, with an optimum at 25–28°C. Strains Z-0071T and Z-0072, inhabitants of dystrophic low-mineral waters, are NaCl-sensitive: the NaCl content in the media above 0.5 g/l inhibited growth. The main fatty acids of strains Z-0071T and Z-0072 are C16:0, C18:1ω9c, and C18:2ω9c, 12c. The DNA G + C base content is 51.2–51.7 mol %. The sequences of the 16S rRNA gene fragments (1310 bp) of strains Z-0071T and Z-0072 were found to be identical. The obtained sequences showed a 94.3% similarity with the sequences of the type strain of the most closely related species Singulisphaera acidiphila MOB10≅T. The phenotypic and phylogenetic properties of strains Z-0071T and Z-0072 support classification of these strains within the genus Singulisphaera as a new species Singulisphaera mucilagenosa sp. nov., with the type strain Z-0071T (VKM B-2626).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号