首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inter-Alu PCR is increasingly useful in human genome mapping studies. One use is the generation of alumorphs, polymorphisms resulting from the presence or absence of inter-Alu PCR products. In this study, we have increased the proportion of the genome that can be analyzed by this technique with the use of long interspersed elements (LINEs). The set of polymorphisms detected by both Alu and LINE primers are referred to as interspersed repetitive sequence variants or IRS-morphs. Since a presence-absence variant may have been the result of a recent Alu or LINE insertion, we analyzed 7 isolated IRS-morphs that were generated, in part, with a primer derived from either a consensus LINE or a young Alu subfamily specific sequence, and observed by Southern blot analysis that these variants resulted from other types of genomic alterations. The use of these primers, however, reduces background from the numerous LINEs and Alu elements in the genome, providing sharp DNA fingerprint profiles. We have demonstrated the potential usefulness of these IRS-morph profiles in human population studies. We compared 12 IRS-morphs from a single amplification reaction from five distinct population groups (Caucasian (northern European descent), Hispanic (Mexican-American), Hindu-Indian, Papua New Guinean, and Greenland Eskimo) and observed that most have variable allelic frequencies among populations. The utilization of additional IRS-morph profiles will perpetuate this technique as a tool for DNA fingerprinting and for the analysis of human populations. Key words : Alu elements, DNA fingerprint, human populations, LINEs, SINEs.  相似文献   

2.

Background  

In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards.  相似文献   

3.

Background  

DNA barcodes are a global standard for species identification and have countless applications in the medical, forensic and alimentary fields, but few barcoding methods work efficiently in samples in which DNA is degraded, e.g. foods and archival specimens. This limits the choice of target regions harbouring a sufficient number of diagnostic polymorphisms. The method described here uses existing PCR and sequencing methodologies to detect mitochondrial DNA polymorphisms in complex matrices such as foods. The reported application allowed the discrimination among 17 fish species of the Scombridae family with high commercial interest such as mackerels, bonitos and tunas which are often present in processed seafood. The approach can be easily upgraded with the release of new genetic diversity information to increase the range of detected species.  相似文献   

4.

Background

Genetic material extracted from in situ microbial communities has high promise as an indicator of biological system status. However, the challenge is to access genomic information from all organisms at the population or community scale to monitor the biosystem’s state. Hence, there is a need for a better diagnostic tool that provides a holistic view of a biosystem’s genomic status. Here, we introduce an in vitro methodology for genomic pattern classification of biological samples that taps large amounts of genetic information from all genes present and uses that information to detect changes in genomic patterns and classify them.

Results

We developed a biosensing protocol, termed Biological Memory, that has in vitro computational capabilities to “learn” and “store” genomic sequence information directly from genomic samples without knowledge of their explicit sequences, and that discovers differences in vitro between previously unknown inputs and learned memory molecules. The Memory protocol was designed and optimized based upon (1) common in vitro recombinant DNA operations using 20-base random probes, including polymerization, nuclease digestion, and magnetic bead separation, to capture a snapshot of the genomic state of a biological sample as a DNA memory and (2) the thermal stability of DNA duplexes between new input and the memory to detect similarities and differences. For efficient read out, a microarray was used as an output method. When the microarray-based Memory protocol was implemented to test its capability and sensitivity using genomic DNA from two model bacterial strains, i.e., Escherichia coli K12 and Bacillus subtilis, results indicate that the Memory protocol can “learn” input DNA, “recall” similar DNA, differentiate between dissimilar DNA, and detect relatively small concentration differences in samples.

Conclusions

This study demonstrated not only the in vitro information processing capabilities of DNA, but also its promise as a genomic pattern classifier that could access information from all organisms in a biological system without explicit genomic information. The Memory protocol has high potential for many applications, including in situ biomonitoring of ecosystems, screening for diseases, biosensing of pathological features in water and food supplies, and non-biological information processing of memory devices, among many.
  相似文献   

5.
Monozygotic (identical) twins have been widely used in genetic studies to determine the relative contributions of heredity and the environment in human diseases. Discordance in disease manifestation between affected monozygotic twins has been attributed to either environmental factors or different patterns of X chromosome inactivation (XCI). However, recent studies have identified genetic and epigenetic differences between monozygotic twins, thereby challenging the accepted experimental model for distinguishing the effects of nature and nurture. Here, we report the genomic and epigenomic sequences in skin fibroblasts of a discordant monozygotic twin pair with Rett syndrome, an X-linked neurodevelopmental disorder characterized by autistic features, epileptic seizures, gait ataxia and stereotypical hand movements. The twins shared the same de novo mutation in exon 4 of the MECP2 gene (G269AfsX288), which was paternal in origin and occurred during spermatogenesis. The XCI patterns in the twins did not differ in lymphocytes, skin fibroblasts, and hair cells (which originate from ectoderm as does neuronal tissue). No reproducible differences were detected between the twins in single nucleotide polymorphisms (SNPs), insertion-deletion polymorphisms (indels), or copy number variations. Differences in DNA methylation between the twins were detected in fibroblasts in the upstream regions of genes involved in brain function and skeletal tissues such as Mohawk Homeobox (MKX), Brain-type Creatine Kinase (CKB), and FYN Tyrosine Kinase Protooncogene (FYN). The level of methylation in these upstream regions was inversely correlated with the level of gene expression. Thus, differences in DNA methylation patterns likely underlie the discordance in Rett phenotypes between the twins.  相似文献   

6.

Background  

DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis.  相似文献   

7.
The analysis of the genetic variability associated to Alu sequences was hampered by the absence of genome-wide methodologies able to efficiently detect new polymorphisms/mutations among these repetitive elements. Here we describe two Alu insertion profiling (AIP) methods based on the hybridization of Alu-flanking genomic fragments on tiling microarrays. Protocols are designed to preferentially detect active Alu subfamilies. We tested AIP methods by analyzing chromosomes 1 and 6 in two genomic samples. In genomic regions covered by array-features, with a sensitivity of 2% (AIP1) -4% (AIP2) and 5% (AIP1) -8% (AIP2) for the old J and S Alu lineages respectively, we obtained a sensitivity of 67% (AIP1) -90% (AIP2) for the young Ya subfamily. Among the loci showing sample-to-sample differences, 5 (AIP1) -8 (AIP2) were associated to known Alu polymorphisms. Moreover, we were able to confirm by PCR and DNA sequencing 4 new intragenic Alu elements, polymorphic in 10 additional individuals.  相似文献   

8.

Background

Extensive genome-wide analyses of many human populations, using microarrays containing hundreds of thousands of single-nucleotide polymorphisms, have provided us with abundant information about global genomic diversity. However, these data can also be used to analyze local variability in individual genomic regions. In this study, we analyzed the variability in two genomic regions carrying the genes of the GSTA and GSTM subfamilies, located on different chromosomes.

Results

Analysis of the polymorphisms in GSTA and GSTM gene clusters showed similarities in their allelic and haplotype diversities. These patterns were similar in three Russian populations and the CEU population of European origin. There were statistically significant differences in all the haploblocks of both the GSTM and GSTA regions when the Russian populations were compared with populations from China and Japan. Most haploblocks also differed between the Russians and Nigerians from Yoruba, but, some of them had similar allelic frequencies. Special attention was paid to SNP rs4986947 from the intron of the GSTA4 gene, which is represented in apes by an A nucleotide. In the Asian and African samples, it was represented only by a G allele, and both allelic variants (G/A) occurred in the Russian and European populations.

Conclusions

The results obtained suggest the presence of common features in the evolutionary histories of the GSTA and GSTM gene regions, and that African subpopulations were involved differently in the formation of the European and Asian human lineages.  相似文献   

9.

Background

Coronary artery disease (CAD) is a complex disease and the leading cause of death in the world. Populations of different ancestry do not always share the same risk markers. Natural selective processes may be the cause of some of the population differences detected for specific risk mutations.

Objective

In this study, 384 single nucleotide polymorphisms (SNPs) located in four genomic regions associated with CAD (1p13, 1q41, 9p21 and 10q11) are analysed in a set of 19 populations from Europe, Middle East and North Africa and also in Asian and African samples from the 1000 Genomes Project. The aim of this survey is to explore for the first time whether the genetic variability in these genomic regions is better explained by demography or by natural selection.

Results

The results indicate significant differences in the structure of genetic variation and in the LD patterns among populations that probably explain the population disparities found in markers of susceptibility to CAD.

Conclusions

The results are consistent with potential signature of positive selection in the 9p21 region and of balancing selection in the 9p21 and 10q11. Specifically, in Europe three CAD risk markers in the 9p21 region (rs9632884, rs1537371 and rs1333042) show consistent signals of positive selection. The results of this study are consistent with a potential selective role of CAD in the configuration of genetic diversity in current human populations.  相似文献   

10.

Background

Genetic polymorphisms in the human MDM2 gene are suggested to be a tumor susceptibility marker and a prognostic factor for cancer. It has been reported that a single nucleotide polymorphism (SNP) c.309T>G in the MDM2 gene attenuates the tumor suppressor activity of p53 and accelerates tumor formation in humans.

Methodology

In this study, to detect the SNP c.309T>G in the MDM2 gene, we have developed a new SNP detection method, named “Duplex SmartAmp,” which enabled us to simultaneously detect both 309T and 309G alleles in one tube. To develop this new method, we introduced new primers i.e., nBP and oBPs, as well as two different fluorescent dyes that separately detect those genetic polymorphisms.

Results and Conclusions

By the Duplex SmartAmp method, the genetic polymorphisms of the MDM2 gene were detected directly from a small amount of genomic DNA or blood samples. We used 96 genomic DNA and 24 blood samples to validate the Duplex SmartAmp by comparison with results of the conventional PCR-RFLP method; consequently, the Duplex SmartAmp results agreed totally with those of the PCR-RFLP method. Thus, the new SNP detection method is considered useful for detecting the SNP c.309T>G in the MDM2 gene so as to judge cancer susceptibility against some cellular stress in the clinical setting, and also to handle a large number of samples and enable rapid clinical diagnosis.  相似文献   

11.

Background  

In the studies incorporating worldwide sampling of A. thaliana populations, the samples from East Asia, especially from China, were very scattered; and the studies focused on global patterns of cpDNA genetic variation among accessions of A. thaliana are very few. In this study, chloroplast DNA sequence variability was used to infer phylogenetic relationships among Arabidopsis thaliana accessions from around the world, with the emphasis on samples from China.  相似文献   

12.

Background

Genome-wide profiling of single-nucleotide polymorphisms is receiving increasing attention as a method of pre-implantation genetic diagnosis in humans and of commercial genotyping of pre-transfer embryos in cattle. However, the very small quantity of genomic DNA in biopsy material from early embryos poses daunting technical challenges. A reliable whole-genome amplification (WGA) procedure would greatly facilitate the procedure.

Results

Several PCR-based and non-PCR based WGA technologies, namely multiple displacement amplification, quasi-random primed library synthesis followed by PCR, ligation-mediated PCR, and single-primer isothermal amplification were tested in combination with different DNA extractions protocols for various quantities of genomic DNA inputs. The efficiency of each method was evaluated by comparing the genotypes obtained from 15 cultured cells (representative of an embryonic biopsy) to unamplified reference gDNA. The gDNA input, gDNA extraction method and amplification technology were all found to be critical for successful genome-wide genotyping. The selected WGA platform was then tested on embryo biopsies (n = 226), comparing their results to that of biopsies collected after birth. Although WGA inevitably leads to a random loss of information and to the introduction of erroneous genotypes, following genomic imputation the resulting genetic index of both sources of DNA were highly correlated (r = 0.99, P<0.001).

Conclusion

It is possible to generate high-quality DNA in sufficient quantities for successful genome-wide genotyping starting from an early embryo biopsy. However, imputation from parental and population genotypes is a requirement for completing and correcting genotypic data. Judicious selection of the WGA platform, careful handling of the samples and genomic imputation together, make it possible to perform extremely reliable genomic evaluations for pre-transfer embryos.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-889) contains supplementary material, which is available to authorized users.  相似文献   

13.
Summary The polymerase chain reaction (PCR) was used to generate random amplified polymorphic DNA (RAPD) from honey bee DNA samples in order to follow the patterns of inheritance of RAPD markers in a haplodiploid insect. The genomic DNA samples from two parental bees, a haploid drone and a diploid queen, were screened for polymorphism with 68 different tennucleotide primers of random sequence. Parents were scored for the presence or absence of individual bands. An average of 6.3 bands and 1.3 polymorphisms for presence/absence were observed per primer between the parents. Thirteen of these primers were used to determine the inheritance of RAPD marker alleles in the resulting progeny and in haploid drones from a daughter queen. Four types of polymorphisms were observed. Polymorphisms for band presence/absence as well as for band brightness were inherited as dominant markers, meeting Mendelian expectations in haploid and diploid progeny. Polymorphisms for fragment-length were also observed. These segregated in a near 11 ratio in drone progeny. The last type of polymorphism was manifested as a diploid-specific band. Mixing of amplification products after PCR showed that the diploid-specific band was the result of heteroduplex formation from the DNA of alternate alleles in heterozygotes. In two of the four cases of heteroduplex formation, the alternative alleles were manifested as small fragment-length polymorphisms, resulting in co-dominant markers. This is the first demonstration that a proportion of RAPD markers are not inherited in a dominant fashion.  相似文献   

14.
15.

Background  

Advances in automated DNA sequencing technology have greatly increased the scale of genomic and metagenomic studies. An increasingly popular means of increasing project throughput is by multiplexing samples during the sequencing phase. This can be achieved by covalently linking short, unique "barcode" DNA segments to genomic DNA samples, for instance through incorporation of barcode sequences in PCR primers. Although several strategies have been described to insure that barcode sequences are unique and robust to sequencing errors, these have not been integrated into the overall primer design process, thus potentially introducing bias into PCR amplification and/or sequencing steps.  相似文献   

16.
Random amplification of polymorphic DNA (RAPD) is widely used to detect polymorphisms in many organisms. Individual (or strain) specific amplified bands are generated with single or pairs of primers in PCR reactions and can serve as genetic markers. We have used this method to generate a large number of reproducible bands with single primers, random and retroviral related, on 92 human DNA samples. Theoretically, RAPD PCR presents a logical approach for assessing variability among individuals. We used ten retroviral related primers (12, 20 and 22 bp) and eight random primers (10 bp) to assess individual differences in the context of testing the retroviral hypothesis for schizophrenia. Three pairs of discordant monozygotic twins, four pairs of discordant full sibs and 53 schizophrenic individuals with 25 of their unrelated matched controls were analyzed. Ten of these primers resulted in a total of approx. 850 amplified bands (65-110 bands per primer). Almost all of these bands were identical among each individual analyzed. However, the results are inconclusive with respect to the retroviral hypothesis for schizophrenia. The general lack of RAPD polymorphism in this study may argue for mechanisms other than rearrangements such as inversions, associated with the evolution of the human genome.  相似文献   

17.
18.
Levels of genetic variability at 12 microsatellite loci and 19 single nucleotide polymorphisms in mitochondrial DNA were studied in four farm strains and four wild populations of Atlantic salmon. Within populations, the farm strains showed significantly lower allelic richness and expected heterozygosity than wild populations at the 12 microsatellite loci, but a significantly higher genetic variability with respect to observed number of haplotypes and haplotype diversity in mtDNA. Significant differences in allele- and haplotype-frequencies were observed between farm strains and wild populations, as well as between different farm strains and between different wild populations. The large genetic differentiation at mitochondrial DNA between wild populations (FST = 0.24), suggests that the farm strains attained a high mitochondrial genetic variability when created from different wild populations seven generations ago. A large proportion of this variability remains despite an expected lower effective population size for mitochondrial than nuclear DNA. This is best explained by the particular mating schemes in the breeding programmes, with 2–4 females per male. Our observations suggest that for some genetic polymorphisms farm populations might currently hold equal or higher genetic variability than wild populations, but lower overall genetic variability. In the short-term, genetic interactions between escaped farm salmon and wild salmon might increase genetic variability in wild populations, for some, but not most, genetic polymorphisms. In the long term, further losses of genetic variability in farm populations are expected for all genetic polymorphisms, and genetic variability in wild populations will be reduced if escapes of farm salmon continue.  相似文献   

19.

Background  

Single nucleotide polymorphisms (SNPs) are locations at which the genomic sequences of population members differ. Since these differences are known to follow patterns, disease association studies are facilitated by identifying SNPs that allow the unique identification of such patterns. This process, known as haplotype tagging, is formulated as a combinatorial optimization problem and analyzed in terms of complexity and approximation properties.  相似文献   

20.
We demonstrate the existence of polymorphic DNA minisatellites in Drosophila mauritiana, a close relative of D. melanogaster. One of these sequences (minisatellite mD4.2) consists of 13 tandemly repeated monomers, 10 of which are 33 base pairs long. Each of the repeat monomers contains sequences identical or very similar to the Chi sequence (GCTGGTGG), a signal for recBCD-dependent recombination in Escherichia coli. Sequences hybridizing to the mD4.2 minisatellite are present in at least 20–25 genomic locations and exhibit substantial variability among different populations of three Drosophila species and two populations of the house fly, Musca domestica. Interpopulational variation is a result of length differences rather than restriction site polymorphisms and genetic crosses establish that the hybridizing restriction fragment patterns have an underlying genetic basis. The presence of these sequences in the genetically well known Drosophila species allows critical examination of processes that produce and maintain the remarkable variability associated with these genomic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号