首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Androgenetic embryos are useful model for investigating the contribution of the paternal genome to embryonic development. Little work has been done with androgenetic embryo production in domestic animals. The aim of this study was the production of diploid androgenetic sheep embryos. In vitro matured sheep oocytes were enucleated and fertilized in vitro; parthenogenetic and normally fertilized embryos were also produced as a control. Fifteen hours after in vitro fertilization (IVF), presumptive zygotes were centrifuged and scored for the number of pronucleus. IVF, parthenogenetic, and androgenetic embryos (haploid, diploid, and triploid) were cultured in SOFaa medium with bovine serum albumin (BSA). The proportion of oocytes with polyspermic fertilization increased linearly with increasing sperm concentration. After IVF, there was no significant difference in early cleavage and morula formation rates between the groups, while there was a significant difference on blastocyst development between IVF, parthenogenetic, and androgenetic embryos, the last ones displaying poor developmental potential (IVF, parthenogenetic, and haploid, diploid, and triploid androgenetic embryos: 43%, 38%, 0%, 2%, and 2%, respectively). In order to boost androgenetic embryonic development, we produced diploid androgenetic embryos through pronuclear transfer. Single pronuclei were aspirated with a bevelled pipette from haploid or diploid embryos and transferred into the perivitelline space of other haploid embryos, and the zygotes were reconstructed by electrofusion. Fusion rates approached 100%. Pronuclear transfer significantly increased blastocyst development (IVF, parthenogenetic, androgenetic: Diploid into Haploid, and Haploid into Haploid: 42%, 42%, 19%, and 3%, respectively); intriguingly, the Haploid + Diploid group showed the highest development to blastocyst stage. The main findings of our study are: (1) sheep androgenetic embryos display poor developmental ability compared with IVF and parthenogenetic embryos; (2) diploid androgenetic embryos produced by pronuclear exchange developed in higher proportion to blastocyst stage, particularly in the Diploid-Haploid group. In conclusion, pronuclear transfer is an effective method to produce sheep androgenetic blastocysts.  相似文献   

2.
Kragh PM  Du Y  Corydon TJ  Purup S  Bolund L  Vajta G 《Theriogenology》2005,64(7):1536-1545
The purpose of our work was to establish an efficient protocol for activation of porcine cytoplast-fibroblast constructs produced by the handmade cloning technique. Firstly, we investigated a combined electrical and chemical activation protocol for parthenogenetic development of in vitro matured zona-free oocytes. Oocytes were activated by one 80 micros pulse and subsequently cultured in cytochalasin B and cycloheximide. Developmental rates of blastocysts from activated oocytes were 49+/-1 and 40+/-2%, when using one 80 micros pulse of 0.85 or 1.25 kV/cm, respectively. The activation procedure was further confirmed by a simultaneous re-fusion and activation of bisected oocytes, resulting in a blastocyst rate of 41+/-8%. Secondly, the activation protocol was applied in the handmade cloning technique. In vitro matured zona-free porcine oocytes were bisected and halves containing no chromatin, i.e. the cytoplasts, were selected. Reconstructed embryos were produced by a two-step fusion procedure. At the first step, one cytoplast was fused to one fibroblast by one 80 micros pulse of 1.25 kV/cm. After 1h, the cytoplast-fibroblast pair and another cytoplast were fused and activated simultaneously by one 80 micros pulse of 0.85 kV/cm, and subsequently cultured in cytochalasin B and cycloheximide. The development of reconstructed embryos to the blastocyst stage was in average 21+/-4%, and total blastocyst cell counts were in average 48+/-3. Thus, the combined electrical and chemical activation procedure resulted in efficient blastocyst development in the handmade cloning technique.  相似文献   

3.
4.
Improvement of an electrical activation protocol for porcine oocytes   总被引:16,自引:0,他引:16  
Factors influencing pig oocyte activation by electrical stimulation were evaluated by their effect on the development of parthenogenetic embryos to the blastocyst stage to establish an effective activation protocol for pig nuclear transfer. This evaluation included 1) a comparison of the effect of epidermal growth factor and amino acids in maturation medium, 2) an investigation of interactions among oocyte age, applied voltage field strength, electrical pulse number, and pulse duration, and 3) a karyotype analysis of the parthenogenetic blastocysts yielded by an optimized protocol based on an in vitro system of oocyte maturation and embryo culture. In the first study, addition of amino acids in maturation medium was beneficial for the developmental competence of activated oocytes. In the second study, the developmental response of activated oocytes was dependent on interactions between oocyte age at activation and applied voltage field strength, voltage field strength and pulse number, and pulse number and duration. The formation of parthenogenetic blastocysts was optimal when activation was at 44 h of maturation using three 80-microsec consecutive pulses of 1.0 kV/cm DC. Approximately 84% of parthenogenetic blastocysts yielded by this protocol were diploid, implying a potential for further in vivo development.  相似文献   

5.
The objective was to produce porcine tetraploid parthenogenetic embryos using cytochalasin B, which inhibits polar body extrusion. Porcine cumulus-enclosed oocytes aspirated from antral follicles were cultured for 51 h, and treated with cytochalasin B from 35 h to 42 h after the start of culture. After maturation culture, 74.7% (2074/2775) of oocytes treated with cytochalasin B did not extrude a polar body (0PB oocytes). In contrast, 80.4% (1931/2403) of control oocytes extruded a polar body (1PB oocytes). The 0PB oocytes were electrically stimulated, treated with cytochalasin B again for 3 h, and then cultured without cytochalasin B. Six days after electrical stimulation, 49.8% (321/644) reached the blastocyst stage. The number of cells in these blastocysts derived from 0PB oocytes was significantly lower than that from 1PB oocytes (0PB: 24.9 ± 10.6; 1PB: 43.0 ± 17.1; mean ± SD). A porcine chromosome 1-specific sequence was detected in parthenogenetic 0PB embryos by fluorescence in situ hybridization (FISH) analysis. Typical pronucleus-stage samples derived from 0PB embryos had two pronuclei, each with two signals. In two-cell and blastocyst-stage embryos, four signals were detected in each nucleus derived from 0PB embryos. We inferred that 0PB oocytes, which had a tetraploid number of chromosomes, started to develop as tetraploid parthenotes after electrical stimulation, and that tetraploid status was stably maintained during early embryonic development, at least until the blastocyst stage.  相似文献   

6.
Aneuploidy underlies failed development and possibly apoptosis of some preimplantation embryos. We employed a haploid model in the mouse to study the effects of aneuploidy on apoptosis in preimplantation embryos. Mouse metaphase II oocytes that were activated with strontium formed haploid parthenogenetic embryos with 1 pronucleus, whereas activation of oocytes with strontium plus cytochalasin D produced diploid parthenogenetic embryo controls with 2 pronuclei. Strontium induced calcium transients that mimic sperm-induced calcium oscillations, and ploidy was confirmed by chromosomal analysis. Rates of development and apoptosis were compared between haploid and diploid parthenogenetic embryos (parthenotes) and control embryos derived from in vitro fertilization (IVF). Haploid mouse parthenotes cleaved at a slower rate, and most arrested before the blastocyst stage, in contrast to diploid parthenotes or IVF embryos. Developmentally retarded haploid parthenotes exhibited apoptosis at a significantly higher frequency than did diploid parthenotes or IVF embryos. However, diploid parthenotes exhibited rates of preimplantation development and apoptosis similar to those of IVF embryos, indicating that parthenogenetic activation itself does not initiate apoptosis during preimplantation development. These results suggest that haploidy can lead to an increased incidence of apoptosis. Moreover, the initiation of apoptosis during preimplantation development does not require the paternal genome.  相似文献   

7.
8.
To determine whether chromosomes in the porcine first polar body (PB1) can complete the second meiotic division and subsequently undergo normal pre-implantation embryonic development, we examined the developmental competence of PB1 chromosomes injected into enucleated MII stage oocytes by nuclear transfer method (chromosome replacement group, CR group). After parthenogenetic activation (PA) or in vitro fertilization (IVF), the cleavage rate of reconstructed oocytes in the IVF group (CR-IVF group, 36.4 ± 3.2%) and PA group (CR-PA group, 50.8 ± 4.2%) were significantly lower than that of control groups in which normal MII oocytes were subjected to IVF (MII-IVF group, 75.8 ± 1.5%) and PA (MII-PA group, 86.9 ± 3.7%). Unfertilized rates was significantly higher in the CR-IVF group (48.6 ± 3.3%) than in the MII-IVF group (13.1 ± 3.4%). The blastocyst formation rate was 8.3 ± 1.9% in the CR-PA group, whereas no blastocyst formation was observed in the CR-IVF group. To produce tetraploid parthenogenetic embryos, intact MII stage oocytes injected with PB1chromosomes were electrically stimulated, treated with 7.5 μg/mL cytochalasin B for 3 h (MII oocyte + PB1 + CB group), and then cultured without cytochalasin B. The average cleavage rate of reconstructed oocytes was 72.5% (48 of 66), and the blastocyst formation rate was 18.7% (9 of 48). Chromosome analysis showed similar proportions of haploid and diploid cells in the control (normal MII oocytes) and CR groups after PA; overall, 23.6% of blastocysts were tetraploid in the MII oocyte + PB1 + CB group. These results demonstrate that chromosomes in PB1 can participate in normal pre-implantation embryonic development when injected into enucleated MII stage oocytes, and that tetraploid PA blastocysts are produced (although at a low proportion) when PB1 chromosomes are injected into intact MII stage oocytes.  相似文献   

9.
The objective of this study was to determine developmental pattern, total cell number, apoptosis and apoptosis-related gene expression in haploid and diploid embryos following parthenogenetic activation. In vitro-matured porcine oocytes were activated by electrical pulses and cultured in the absence or presence of cytochalasin B for 3 h. Zygotes with two polar bodies (haploid) and one polar body (diploid) were carefully selected and were further cultured in NCSU 23 medium containing 0.4% bovine serum albumin (BSA) for 7 days. The percentage of development to blastocyst stage was higher (p < 0.01) in the diploid than in the haploid parthenotes. In haploid blastocysts, average total cell number was significantly reduced (p < 0.05) and apoptosis was increased at day 7. The relative abundance of Bcl-xL and Bak mRNA in the diploid blastocysts was similar to that of in vivo-fertilized embryos. However, Bcl-xL was significantly decreased, and Bak mRNA was significantly increased (p < 0.05) in haploid parthenotes compared with the diploid parthenotes. These results suggest that the haploid state affects apoptosis-related gene expression which results in increased apoptosis and decreased developmental competence of haploid parthenotes.  相似文献   

10.
In this study, we compared the developmental capacity of bovine haploid and diploid androgenetic and parthenogenetic embryos obtained by different methods. Androgenetic embryos were produced by piezo-intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF) of enucleated oocytes with or without subsequent pronuclear transfer from one haploid zygote to another. Parthenogenetic embryos were obtained by activation of matured oocytes by ionomycin combined with cycloheximide or 6-dimethylaminopurine (DMAP) treatment. Only few cleaved androgenetic haploid embryos were able to compact (2.7%) and to form blastocysts (1.8%), while significantly more haploid parthenogenotes underwent compaction (24-37%) and a minority developed to blastocysts at different rates, depending on the activation procedure (cycloheximide 3%, 6-DMAP 14.5%). By contrast, development to blastocyst of diploid androgenotes, cloned androgenetic embryos, and parthenogenotes (31%, 39%, and 43%, respectively) was similar to IVF control embryos (35%). Cell number on Day 7 was higher for IVF blastocysts and decreased in consecutive order in diploid androgenotes, diploid parthenogenotes, and haploid uniparental embryos. Following transfer of diploid androgenetic embryos, a pregnancy was established and maintained up to Day 28.  相似文献   

11.
The present study was conducted to investigate the effects of different culture durations (24-36 hr) on bovine oocyte maturation in vitro and the effect of the presence or absence of cumulus cells at the time of treatment to induce parthenogenetic activation (exposure to ethanol and cytochalasin B; CB) (experiment I). The effects of dosage (2.5 or 5.0 micrograms/ml) and incubation time (2.5, 5, or 10 hr) in CB (experiment II) on the subsequent development to the blastocyst stage in vitro was also investigated. In experiment I, cleavage and development to the blastocyst stage were not affected by the presence or absence of cumulus cells at the time of parthenogenetic activation. However, the 24-hr culture duration for in vitro maturation had a significantly lower rate of development to the blastocyst stage than the longer culture durations (27-36 hr). In experiment II, treatment with 5 micrograms/ml CB for 5 hr showed the highest percentage of development to blastocyst in the oocytes matured for both 27 and 30 hr. To determine the viability of the parthenogenetic embryos (morulae and blastocysts), four recipient heifers received two embryos each, and one heifer was found to be pregnant on day 35 following transfer. Although fetal heartbeat was not observed, the subsequent estrus was prolonged in all heifers. The present results demonstrate development of in vitro-matured, parthenogenetically activated bovine embryos up to the preimplantation stage.  相似文献   

12.
Our Department of Experimental Embryology originated from The Laboratory of Embryo Biotechnology, which was organized and directed by Dr. Maria Czlonkowska until her premature death in 1991. Proving successful international transfer of frozen equine embryos and generation of an embryonic sheep-goat chimaera surviving ten years were outstanding achievements of her term. In the 1990s, we produced advanced fetuses of mice after reconstructing enucleated oocytes with embryonic stem (ES) cells, as well as mice originating entirely from ES cells by substitution of the inner cell mass with ES cells. Attempts at obtaining ES cells in sheep resulted in the establishment of embryo-derived epithelioid cell lines from Polish Heatherhead and Polish Merino breeds, producing overt chimaeras upon blastocyst injection. Successful re-cloning was achieved from 8-cell rabbit embryos, and healthy animals were born from the third generation of cloned embryos. Recently mice were born after transfer of 8-cell embryonic nuclei into selectively enucleated zygotes, and mouse blastocysts were produced from selectively enucleated germinal vesicle oocytes surrounded by follicular cells, upon their reconstruction with 2-cell nuclei and subsequent activation. Embryonic-somatic chimaeras were born after transfer of foetal fibroblasts into 8-cell embryos (mouse) and into morulae and blastocysts (sheep). We also regularly perform the following applications: in vitro production of bovine embryos from slaughterhouse oocytes or those recovered by ovum pick up; cryopreservation of oocytes and embryos (freezing: mouse, rabbit, sheep, goat; vitrification: rabbit, cow); and banking of somatic cells from endangered wild mammalian species (mainly Cervidae).  相似文献   

13.
In many animals, cytochalasins have generally been used as cytoskeletal inhibitors for the diploid complement retention of somatic cell nuclear transfer (SCNT) embryos. However, limited information is available on the effects of cytochalasins on the in vitro development of SCNT embryos. Hence, we compared the effects of cytochalasin B (CB) and cytochalasin D (CD) on pseudo-polar body (pPB) extrusion, cortical actin filament (F-actin) distribution in porcine parthenogenetic oocytes and in vitro development of SCNT embryos that were reconstructed using foetal fibroblasts in the G0/G1 phase derived from miniature pigs. CB (7.5 microg/ml) and CD (2.5 microg/ml) treatments effectively inhibited pPB extrusion in SCNT embryos. CB (2.5 microg/ml) treatment could not inhibit pPB extrusion and insufficiently destabilized F-actin immediately following artificial activation. In parthenogenetic oocytes treated with 2.5 microg/ml CD, normal reorganization and uniform distribution of cortical F-actin at the cytoplasmic membrane were observed at 8 h after artificial activation; this finding was similar to that of control oocytes. In contrast, parthenogenetic oocytes treated with 7.5 microg/ml CB showed non-uniform distribution of F-actin at 8 h after artificial activation. On day 5 after in vitro cultivation, the blastocyst formation rate of SCNT embryos treated with 2.5 microg/ml CD was significantly higher than that of SCNT embryos treated with 2.5 and 7.5 microg/ml CB (p < 0.05). Hence, the present findings suggest that CD is more effective than CB as the cytoskeletal inhibitor for the production of SCNT embryos in miniature pigs.  相似文献   

14.
小鼠孤雌胚胎干细胞集落的建立   总被引:2,自引:0,他引:2  
ESTABLISHMENTOFSTEMCELLCOLONIESFROMPARTHENOGENETICALLYDERIVEDBLASTOCYSTSOFMOUSE小鼠孤雌胚胎干细胞集落的建立KeywordsMouse,Parthenogeneticem...  相似文献   

15.
目的:探讨建立合适的小鼠孤雌胚胎干细胞建系方法。方法:采用氯化锶联合细胞松弛素B激活B6D2F1杂交小鼠卵母细胞,所获得的囊胚与桑椹胚分别用于孤雌胚胎干细胞的建系,观察两者的建系成功率。结果:共建立了12株小鼠孤雌胚胎干细胞系,这些细胞SSEA-1抗原阳性,SSEA-4,TRA-1-81,TRA-1-60表面抗原阴性,具有AKP活性,保持正常染色体核型,体内外分化分别形成畸胎瘤和拟胚体。结论:采用囊胚和去透明带的桑葚胚建立孤雌胚胎干细胞系获得成功。该方法为人类纯合子的胚胎干细胞建系提供基础,在自体细胞治疗领域中具有潜在的应用价值。  相似文献   

16.
17.
This study was designed to examine the developmental ability of porcine embryos after somatic cell nuclear transfer. Porcine fibroblasts were isolated from fetuses at Day 40 of gestation. In vitro-matured porcine oocytes were enucleated and electrically fused with somatic cells. The reconstructed eggs were activated using electrical stimulus and cultured in vitro for 6 days. Nuclear-transferred (NT) embryos activated at a field strength of 120 V/mm (11.6 +/- 1.6%) showed a higher developmental rate as compared to the 150-V/mm group (6.5 +/- 2.3%) (P: < 0.05), but the mean cell numbers of blastocysts were similar between the two groups. Rates of blastocyst development from NT embryos electrically pulsed at different times (2, 4, and 6 h) after electrofusion were 11.6 +/- 2.9, 6.6 +/- 2.3, and 8.1 +/- 3.3%, respectively. The mean cell numbers of blastocysts developed from NT embryos were gradually decreased (30.4 +/- 10.4 > 24.6 +/- 10.1 > 16.5 +/- 7.4 per blastocyst) as exposure time (2, 4, and 6 h) of nuclei to oocyte cytoplast before activation was prolonged. There was a significant difference in the cell number between the 2- and 6-h groups (P: < 0. 05). Nuclear-transferred embryos (9.4 +/- 0.9%) had a lower developmental rate than in vitro fertilization (IVF)-derived (21.4 +/- 1.9%) or parthenogenetic embryos (22.4 +/- 7.2%) (P: < 0.01). The mean cell number (28.9 +/- 11.4) of NT-derived blastocysts was smaller than that (38.6 +/- 10.4) of IVF-derived blastocysts (P: < 0. 05) and was similar to that (29.9 +/- 12.1) of parthenogenetic embryos. Our results suggest that porcine NT eggs using somatic cells after electrical activation have developmental potential to the blastocyst stage, although with smaller cell numbers compared to IVF embryos.  相似文献   

18.
19.
This study was undertaken to investigate the development of immature oocytes after their fusion with male somatic cells expressing red fluorescence protein (RFP). RFP‐expressing cells were fused with immature oocytes, matured in vitro and then parthenogenetically activated. Somatic nuclei showed spindle formation, 1st polar body extrusion after in vitro maturation and protruded the 2nd polar body after parthenogenetic activation. RFP was expressed in the resultant embryos; two‐cell stage and blastocysts. Chromosomal analysis showed aneuploidy in 81.82% of the resulting blastocysts while 18.18% of the resulting blastocysts were diploid. Among eight RFP‐expressing blastocysts, Xist mRNAs was detected in six while Sry mRNA was detected in only one blastocyst. We propose “prematuration somatic cell fusion” as an approach to generate embryos using somatic cells instead of spermatozoa. The current approach, if improved, would assist production of embryos for couples where the male partner is sterile, however, genetic and chromosomal analysis of the resultant embryos are required before transfer to the mothers.  相似文献   

20.
Melatonin secreted from the mammalian pineal gland is a free-radical scavenger that protects tissues from cell damage. The present study examined the effects of addition of melatonin to the culture medium on the developmental potential of parthenogenetic and somatic cell nuclear-transferred (SCNT) porcine oocytes. Supplementation of the maturation medium with melatonin did not increase the maturation rate, the proportion of oocytes that cleaved and developed into blastocysts after parthenogenetic activation, or the blastocyst cell number compared to controls. When 10-7 M melatonin was added to the culture medium, the proportion of parthenogenetic oocytes that developed to the 2-cell and 4-cell stages was significantly higher than that of controls. The potential of melatonin-treated oocytes to develop into blastocysts was high but not significantly different from that of controls. The addition of 10-7 M melatonin to the culture medium did not increase the preimplantation development of SCNT oocytes. Melatonin treatment significantly reduced the levels of reactive oxygen species in 4-cell parthenogenetic and SCNT embryos, but did not reduce the proportion of apoptotic cells in parthenogenetic and SCNT blastocysts. Although the results indicated that parthenogenetic and SCNT melatonin -treated embryos had significantly lower levels of reactive oxygen species than controls, the potential of melatonin-treated embryos to develop into blastocysts was not significantly higher than that of controls, in contrast to previous reports. The beneficial effects of melatonin on the developmental potential of oocytes might depend on the culture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号