首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Plant expansin proteins induce plant cell wall extension and have the ability to extend and disrupt cellulose. In addition, these proteins show synergistic activity with cellulases during cellulose hydrolysis. BsEXLX1 originating from Bacillus subtilis is a structural homolog of a β‐expansin produced by Zea mays (ZmEXPB1). The Langmuir isotherm for binding of BsEXLX1 to microcrystalline cellulose (i.e., Avicel) revealed that the equilibrium binding constant of BsEXLX1 to Avicel was similar to those of other Type A surface‐binding carbohydrate‐binding modules (CBMs) to microcrystalline cellulose, and the maximum number of binding sites on Avicel for BsEXLX1 was also comparable to those on microcrystalline cellulose for other Type A CBMs. BsEXLX1 did not bind to cellooligosaccharides, which is consistent with the typical binding behavior of Type A CBMs. The preferential binding pattern of a plant expansin, ZmEXPB1, to xylan, compared to cellulose was not exhibited by BsEXLX1. In addition, the binding capacities of cellulose and xylan for BsEXLX1 were much lower than those for CtCBD3. Biotechnol. Bioeng. 2013; 110: 401–407. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
BsEXLX1 from Bacillus subtilis is the first discovered bacterial expansin as a structural homolog of a plant expansin, and it exhibited synergism with cellulase on the cellulose hydrolysis in a previous study. In this study, binding characteristics of BsEXLX1 were investigated using pretreated and untreated Miscanthus x giganteus in comparison with those of CtCBD3, a cellulose-binding domain from Clostridium thermocellum. The amounts of BsEXLX1 bound to cellulose-rich substrates were significantly lower than those of CtCBD3. However, the amounts of BsEXLX1 bound to lignin-rich substrates were much higher than those of CtCBD3. A binding competition assay between BsEXLX1 and CtCBD3 revealed that binding of BsEXLX1 to alkali lignin was not affected by the presence of CtCBD3. This preferential binding of BsEXLX1 to lignin could be related to root colonization in plants by bacteria, and the bacterial expansin could be used as a lignin blocker in the enzymatic hydrolysis of lignocellulose.  相似文献   

3.
We made use of EXLX1, an expansin from Bacillus subtilis, to investigate protein features essential for its plant cell wall binding and wall loosening activities. We found that the two expansin domains, D1 and D2, need to be linked for wall extension activity and that D2 mediates EXLX1 binding to whole cell walls and to cellulose via distinct residues on the D2 surface. Binding to cellulose is mediated by three aromatic residues arranged linearly on the putative binding surface that spans D1 and D2. Mutation of these three residues to alanine eliminated cellulose binding and concomitantly eliminated wall loosening activity measured either by cell wall extension or by weakening of filter paper but hardly affected binding to whole cell walls, which is mediated by basic residues located on other D2 surfaces. Mutation of these basic residues to glutamine reduced cell wall binding but not wall loosening activities. We propose domain D2 as the founding member of a new carbohydrate binding module family, CBM63, but its function in expansin activity apparently goes beyond simply anchoring D1 to the wall. Several polar residues on the putative binding surface of domain D1 are also important for activity, most notably Asp82, whose mutation to alanine or asparagine completely eliminated wall loosening activity. The functional insights based on this bacterial expansin may be extrapolated to the interactions of plant expansins with cell walls.  相似文献   

4.
Expansin is a plant protein family that induces plant cell wall‐loosening and cellulose disruption without exerting cellulose‐hydrolytic activity. Expansin‐like proteins have also been found in other eukaryotes such as nematodes and fungi. While searching for an expansin produced by bacteria, we found that the BsEXLX1 protein from Bacillus subtilis had a structure that was similar to that of a β‐expansin produced by maize. Therefore, we cloned the BsEXLX1 gene and expressed it in Escherichia coli to evaluate its function. When incubated with filter paper as a cellulose substrate, the recombinant protein exhibited both cellulose‐binding and cellulose‐weakening activities, which are known functions of plant expansins. In addition, evaluation of the enzymatic hydrolysis of filter paper revealed that the recombinant protein also displayed a significant synergism when mixed with cellulase. By comparing the activity of a mixture of cellulase and the bacterial expansin to the additive activity of the individual proteins, the synergistic activity was found to be as high as 240% when filter paper was incubated with cellulase and BsEXLX1, which was 5.7‐fold greater than the activity of cellulase alone. However, this synergistic effect was observed when only a low dosage of cellulase was used. This is the first study to characterize the function of an expansin produced by a non‐eukaryotic source. Biotechnol. Bioeng. 2009;102: 1342–1353. © 2008 Wiley Periodicals, Inc.  相似文献   

5.
Plant cells are caged within a distended polymeric network (the cell wall), which enlarges by a process of stress relaxation and slippage (creep) of the polysaccharides that make up the load-bearing network of the wall. Protein mediators of wall creep have recently been isolated and characterized. These proteins, called expansins, appear to disrupt the noncovalent adhesion of matrix polysaccharides to cellulose microfibrils, thereby permitting turgor-driven wall enlargement. Expansin activity is specifically expressed in the growing tissues of dicotyledons and monocotyledons. Sequence analysis of cDNAs indicates that expansins are novel proteins, without previously known functional motifs. Comparison of expansin cDNAs from cucumber, pea, Arabidopsis and rice shows that the proteins are highly conserved in size and amino acid sequence. Phylogenetic analysis of expansin sequences suggests that this multigene family diverged before the evolution of angiosperms. Speculation is presented about the role of this gene family in plant development and evolution.  相似文献   

6.
The biochemical mechanisms underlying cell wall expansion in plants have long been a matter of conjecture. Previous work in our laboratory identified two proteins (named "expansins") that catalyze the acid-induced extension of isolated cucumber cell walls. Here we examine the mechanism of expansin action with three approaches. First, we report that expansins did not alter the molecular mass distribution or the viscosity of solutions of matrix polysaccharides. We conclude that expansins do not hydrolyze the major pectins or hemicelluloses of the cucumber wall. Second, we investigated the effects of expansins on stress relaxation of isolated walls. These studies show that expansins account for the pH-sensitive and heat-labile components of wall stress relaxation. In addition, these experiments show that expansins do not cause a progressive weakening of the walls, as might be expected from the action of a hydrolase. Third, we studied the binding of expansins to the cell wall and its components. The binding characteristics are consistent with this being the site of expansin action. We found that expansins bind weakly to crystalline cellulose but that this binding is greatly increased upon coating the cellulose with various hemicelluloses. Xyloglucan, either solubilized or as a coating on cellulose microfibrils, was not very effective as a binding substrate. Expansins were present in growing cell walls in low quantities (approximately 1 part in 5000 on a dry weight basis), suggesting that they function catalytically. We conclude that expansins bind at the interface between cellulose microfibrils and matrix polysaccharides in the wall and induce extension by reversibly disrupting noncovalent bonds within this polymeric network. Our results suggest that a minor structural component of the matrix, other than pectin and xyloglucan, plays an important role in expansin binding to the wall and, presumably, in expansin action.  相似文献   

7.
A putative carbohydrate binding module (CBM) from strawberry (Fragaria × ananassa Duch.) expansin 2 (CBM-FaExp2) was cloned and the encoding protein was over-expressed in Escherichia coli and purified in order to evaluate its capacity to bind different cell wall polysaccharides “in vitro”. The protein CBM-FaExp2 bound to microcrystalline cellulose, xylan and pectin with different affinities (Kad = 33.6 ± 0.44 mL g?1, Kad = 11.37 ± 0.87 mL g?1, Kad = 10.4 ± 0.19 mL g?1, respectively). According to “in vitro” enzyme assays, this CBM is able to decrease the activity of cell wall degrading enzymes such as polygalacturonase, endo-glucanase, pectinase and xylanase, probably because the binding of CBM-FaExp2 to the different substrates interferes with enzyme activity. The results suggest that expansins would bind not only cellulose but also a wide range of cell wall polymers.  相似文献   

8.
黄瓜膨胀素的重组表达及活性分析   总被引:1,自引:0,他引:1  
黄萍  刘刚  余少文  邢苗 《生物技术》2006,16(2):23-26
目的:提高纤维素的酶水解效率和开发高效的纤维素酶水解过程。方法:采用RT-PCR方法从黄瓜胚轴细胞中分离了膨胀素S1的cDNA,并使之与毕赤酵母表达质粒pPICZ(A连接,形成重组质粒pPICZ(A-exs1。通过电转化方法,用质粒pPICZ(A-exs1转化巴氏毕赤酵母GS115,得到重组菌株P.pastoris-exs1。在该重组菌株中,膨胀素的基因通过同源重组整合在毕赤酵母的染色体上,并处于毕赤酵母甲醇氧化酶启动子的下游。重组菌株P.pastoris-exs1在甲醇诱导下可合成并分泌膨胀素。结果:培养上清液没有纤维素酶活性,但具有破坏滤纸纤维素结晶结构的能力。培养上清液与里氏木霉纤维素酶等量混合后,可使纤维素酶的滤纸酶活力提高50%。结论:采用巴氏毕赤酵母GS115重组成功表达了黄瓜膨胀素,其表达产物可以促进纤维素酶对滤纸的水解。  相似文献   

9.
Nowadays, much of what we know regarding the isolated cellulolytic bacteria comes from the conventional plate separation techniques. However, the culturability of many bacterial species is controlled by resuscitation‐promoting factors (Rpfs) due to entering a viable but non‐culturable (VBNC) state. Therefore, in this study, Rpf from Micrococcus luteus was added in the culture medium to evaluate its role in bacterial isolation and enhanced effects on cellulose‐degrading capability of bacterial community in the compost. It was found that Proteobacteria and Actinobacteria were two main phyla in the compost sample. The introduction of Rpf could isolate some unique bacterial species. The cellulase activity of enrichment cultures with and without Rpf treatment revealed that Rpf treatment significantly enhanced cellulase activity. Ten isolates unique in Rpf addition displayed carboxymethyl‐cellulase (CMCase) activity, while six isolates possessed filter paper cellulase (FPCase) activity. This study provides new insights into broader cellulose degraders, which could be utilized for enhancing cellulosic waste treatment.  相似文献   

10.
Plant cell wall polysaccharides can be used as the main feedstock for the production of biofuels. Saccharophagus degradans 2–40 is considered to be a potent system for the production of sugars from plant biomass due to its high capability to degrade many complex polysaccharides. To understand the degradation metabolism of plant cell wall polysaccharides by S. degradans, the cell growth, enzyme activity profiles, and the metabolite profiles were analyzed by gas chromatography‐time of flight mass spectrometry using different carbon sources including cellulose, xylan, glucose, and xylose. The specific activity of cellulase was only found to be significantly higher when cellulose was used as the sole carbon source, but the xylanase activity increased when xylan, xylose, or cellulose was used as the carbon source. In addition, principal component analysis of 98 identified metabolites in S. degradans revealed four distinct groups that differed based on the carbon source used. Furthermore, metabolite profiling showed that the use of cellulose or xylan as polysaccharides led to increased abundances of fatty acids, nucleotides and glucuronic acid compared to the use of glucose or xylose. Finally, intermediates in the pentose phosphate pathway seemed to be up‐regulated on xylose or xylan when compared to those on glucose or cellulose. Such metabolic responses of S. degradans under plant cell wall polysaccharides imply that its metabolic system is transformed to more efficiently degrade polysaccharides and conserve energy. This study demonstrates that the gas chromatography‐time of flight mass spectrometry‐based global metabolomics are useful for understanding microbial metabolism and evaluating its fermentation characteristics. Biotechnol. Bioeng. 2010; 105: 477–488. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinnia elegans . Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis, but realistic enough to capture the natural complexity of lignocellulose in the plant cell wall. Consequently, these cells represent a suitable model for analyzing native lignocellulose degradation.  相似文献   

12.
A metagenomic library consisting of 3,024 bacterial artificial chromosome clones was prepared in Escherichia coli DH10B with high-molecular-weight DNA extracted from red soil in South China. A novel cellulase gene with an open reading frame of 1,332 bp, cel5G, encoding an endo-β-1,4-glucanase was cloned using an activity-based screen. The deduced enzyme, Cel5G, belongs to the glycosyl hydrolase family 5 and shares <39% identity with endoglucanases in the GenBank database. cel5G was expressed in E. coli BL21, and the recombinant enzyme Cel5G was purified to homogeneity for enzymatic analysis. Cel5G hydrolyzed a wide range of β-1,4-, β-1,3/β-1,4-, or β-1,3/β-1,6-linked polysaccharides, amorphous cellulose, filter paper, and microcrystalline cellulose. Its highest activity was in 50 mM citrate buffer, pH 4.8, at 50°C. Cel5G is stable over a wide range of pH values (from 2.0 to 10.6) and is thermally stable under 60°C. It is highly tolerant and active in high salt concentrations and is stable in the presence of pepsin and pancreatin. The K m and V max values of Cel5G for carboxymethyl cellulose are 19.92 mg/ml and 1,941 μmol min−1 mg−1, respectively. These characteristics indicate that Cel5G has potential for industrial use.  相似文献   

13.
The non-catalytic, family 11 carbohydrate binding module (CtCBM11) belonging to a bifunctional cellulosomal cellulase from Clostridium thermocellum was hyper-expressed in E. coli and functionally characterized. Affinity electrophoresis of CtCBM11 on nondenaturing PAGE containing cellulosic polysaccharides showed binding with β-glucan, lichenan, hydroxyethyl cellulose and carboxymethyl cellulose. In order to elucidate the involvement of conserved aromatic residues Tyr 22, Trp 65 and Tyr 129 in the polysaccharide binding, site-directed mutagenesis was carried out and the residues were changed to alanine. The results of affinity electrophoresis and binding adsorption isotherms showed that of the three mutants Y22A, W65A and Y129A of CtCBM11, two mutants Y22A and Y129A showed no or reduced binding affinity with polysaccharides. These results showed that tyrosine residue 22 and 129 are involved in the polysaccharide binding. These residues are present in the putative binding cleft and play a critical role in the recognition of all the ligands recognized by the protein.  相似文献   

14.
Mesophyll cells of Zinnia elegans var. Envy that had been induced to differentiate into tracheary elements (TEs) in suspension culture were treated with the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB). The deposition of cellulose into the patterned secondary cell wall thickenings typical of TEs was inhibited as demonstrated by reduced incorporation of [14C]glucose into acetic/nitric insoluble material and absence of cellulose detectable by fluorescence after staining with Tinopal LPW, polarization optics, or labeling with a specific cellulase. Respiration as indicated by release of 14CO2 was inhibited to a much lesser extent, supporting a selective mechanism of action of DCB on the cellulose biosynthetic pathway. Patterned secondary cell wall thickenings were deposited in DCB-treated TEs, but these were smaller and less regularly shaped than those of control TEs. These cellulose-depleted thickenings lacked another abundant component of normal thickenings, the hemicellulose xylan, as indicated by absence of labeling with a specific xylanase or an antibody to xylan. DCB-treated TEs also showed dispersed lignin after staining with phloroglucinol, whereas control TEs contained lignin specifically localized to the secondary cell wall thickenings. Isoxaben, another recently described inhibitor of synthesis of acetic/nitric insoluble cell wall material (putatively cellulose), caused the same absence of detectable cellulose and xylan in the thickenings and dispersed lignin. These data suggest that: (i) the localization of lignin is ultimately dependent on the localization of cellulose; (ii) normal patterned wall assembly in TEs occurs in a self-perpetuating cascade in which some molecules of the secondary cell wall mediate patterning of others.  相似文献   

15.
John F. Robyt 《Biologia》2008,63(6):980-988
The mechanisms for the biosynthesis of three polysaccharides are presented: (i) starch synthesized by starch synthase and adenosine diphospho glucose; (ii) dextran synthesized by Leuconostoc mesenteroides B-512FMC dextransucrase and sucrose; and (iii) Acetobacter xylinum cellulose synthesized by cellulose synthase, uridine diphospho glucose, and bactoprenol phosphate. All three enzymes were pulsed with substrates, containing 14C-glucose and chased with the same nonlabeled substrates. When the polysaccharides were isolated, reduced, and hydrolyzed, the pulsed reactions gave 14C-glucitol, which was significantly decreased in the chase reaction. These experiments definitively show that all three polysaccharides are biosynthesized by the addition of glucose to the reducing-ends of the growing polysaccharides and not by the addition to the nonreducing-ends of primers. Additional evidence indicates that glucose and the polysaccharides are covalently attached to the active-sites of the enzymes. A two catalytic-site insertion mechanism at one active-site is proposed for the biosyntheses. Two of the polysaccharides are α-linked glucans, starch and dextran, and cellulose is a β-linked glucan, known for several years to require a bactoprenol lipid phosphate intermediate. It is shown how this intermediate is involved in determining that β-linkages are synthesized. Other β-linked polysaccharides: bacterial cell wall peptidomurein, Salmonella O-antigen polysaccharide, and Xanthanomonas camprestris xanthan, are heteropolysaccharides, with the later two also being hetero-linked polysaccharides, with the β-linkage at the reducing-end of the repeating unit. All three require bactoprenol lipid phosphate intermediates and are biosynthesized by the addition of the repeating units to the reducing-end of a growing polysaccharide chain, with the formation of a β-linkage.  相似文献   

16.
Summary Cellobiose oxidase from Phanerochaete chrysosporium was used for continuous monitoring of cellulase action on microcrystalline cellulose (Avicel). Two protocols are described, the parameter monitored being either the decline in electrode potential as ferricyanide is reduced or consumption of dioxygen. Most experiments used a commercial cellulase preparation from Trichoderma reesei and ferricyanide as acceptor. Within 1 min of an addition of cellulase, ferricyanide reduction reached a steady rate. This was converted into a rate of production of substrate for celobiose oxidase, in mol·min–1. Experiments were conducted either with a constant concentration of cellulase and increasing Avicel, or with constant Avicel and increasing cellulase. Kinetic analysis of the experiments with constant cellulase indicated a K mof 4.8 ± 1.0 (g cellulose)·1–1, which was close to the value predicted from binding studies. The specific activity of the cellulase was measured as 375±25 mol·(g cellulase)–1·min–1 in experiments with a high cellulose concentration, but was less than half this value when the cellulose was saturated with cellulase. The maximal rate of cellulose degradation was 9.6±1.3 mol·(g cellulose)–1·min–1.  相似文献   

17.
Cellulose is the principal component of the load-bearing system in primary plant cell walls. The great resistance to tensile forces of this polysaccharide and its embedding in matrix components make the cell wall a material similar to a fiber composite. In the rapidly growing pollen tube, the amount of cellulose in the cell wall is untypically low. Therefore, we want to investigate whether the load-bearing function of cellulose is nevertheless important for the architecture of this cell. Enzymatic digestion with cellulase and inhibition of cellulose crystal formation with CGA (1-cyclohexyl-5-(2,3,4,5,6-pentafluorophenoxy)-1λ4,2,4,6-thiatriazin-3-amine) resulted in the formation of tubes with increased diameter in Solanum chacoense and Lilium orientalis when present during germination. In pre-germinated tubes, application of both agents resulted in the transient arrest of growth accompanied by the formation of an apical swelling indicating a role in the mechanical stabilization of this cellular region. Once growth resumed in the presence of cellulase, however, the cell wall in the newly formed tube showed increased amounts of pectins, possibly to compensate for the reduced amount of cellulose. Scanning electron microscopy of pollen tubes subjected to digestion of matrix polysaccharides revealed the mechanical anisotropy of the cell wall. In both Lilium and Solanum, the angle of highest stability revealed by crack formation was significantly below 45°, an indication that in the mature part of the cell cellulose may not the main stress-bearing component against turgor pressure induced tensile stress in circumferential direction.  相似文献   

18.
Carbohydrate binding modules (CBMs) are noncatalytic domains that assist tethered catalytic domains in substrate targeting. CBMs have therefore been used to visualize distinct polysaccharides present in the cell wall of plant cells and tissues. However, most previous studies provide a qualitative analysis of CBM-polysaccharide interactions, with limited characterization of engineered tandem CBM designs for recognizing polysaccharides like cellulose and limited application of CBM-based probes to visualize cellulose fibrils synthesis in model plant protoplasts with regenerating cell walls. Here, we examine the dynamic interactions of engineered type-A CBMs from families 3a and 64 with crystalline cellulose-I and phosphoric acid swollen cellulose. We generated tandem CBM designs to determine various characteristic properties including binding reversibility toward cellulose-I using equilibrium binding assays. To compute the adsorption (nkon) and desorption (koff) rate constants of single versus tandem CBM designs toward nanocrystalline cellulose, we employed dynamic kinetic binding assays using quartz crystal microbalance with dissipation. Our results indicate that tandem CBM3a exhibited the highest adsorption rate to cellulose and displayed reversible binding to both crystalline/amorphous cellulose, unlike other CBM designs, making tandem CBM3a better suited for live plant cell wall biosynthesis imaging applications. We used several engineered CBMs to visualize Arabidopsis thaliana protoplasts with regenerated cell walls using confocal laser scanning microscopy and wide-field fluorescence microscopy. Lastly, we also demonstrated how CBMs as probe reagents can enable in situ visualization of cellulose fibrils during cell wall regeneration in Arabidopsis protoplasts.  相似文献   

19.
A recombinant Trichoderma reesei cellulase was used for the ultrasound‐mediated hydrolysis of soluble carboxymethyl cellulose (CMC) and insoluble cellulose of various particle sizes. The hydrolysis was carried out at low intensity sonication (2.4–11.8 W cm?2 sonication power at the tip of the sonotrode) using 10, 20, and 40% duty cycles. [A duty cycle of 10%, for example, was obtained by sonicating for 1 s followed by a rest period (no sonication) of 9 s.] The reaction pH and temperature were always 4.8 and 50°C, respectively. In all cases, sonication enhanced the rate of hydrolysis relative to nonsonicated controls. The hydrolysis of CMC was characterized by Michaelis‐Menten kinetics. The Michaelis‐Menten parameter of the maximum reaction rate Vmax was enhanced by sonication relative to controls, but the value of the saturation constant Km was reduced. The optimal sonication conditions were found to be a 10% duty cycle and a power intensity of 11.8 W cm?2. Under these conditions, the maximum rate of hydrolysis of soluble CMC was nearly double relative to control. In the hydrolysis of cellulose, an increasing particle size reduced the rate of hydrolysis. At any fixed particle size, sonication at a 10% duty cycle and 11.8 W cm?2 power intensity improved the rate of hydrolysis relative to control. Under the above mentioned optimal sonication conditions, the enzyme lost about 20% of its initial activity in 20 min. Sonication was useful in accelerating the enzyme catalyzed saccharification of cellulose. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1448–1457, 2013  相似文献   

20.
Plant cell wall degradation into fermentable sugars by cellulases is one of the greatest barriers to biofuel production. Expansin protein loosens the plant cell wall by opening up the complex of cellulose microfibrils and polysaccharide matrix components thereby increasing its accessibility to cellulases. We over-expressed cucumber expansin in maize kernels to produce enough protein to assess its potential to serve as an industrial enzyme for applications particularly in biomass conversion. We used the globulin-1 embryo-preferred promoter to express the cucumber expansin gene in maize seed. Expansin protein was targeted to one of three sub-cellular locations: the cell wall, the vacuole, or the endoplasmic reticulum (ER). To assess the level of expansin accumulation in seeds of transgenic kernels, a high throughput expansin assay was developed. The highest expressing plants were chosen and enriched crude expansin extract from those plants was tested for synergistic effects with cellulase on several lignocellulosic substrates. Activity of recombinant cucumber expansin from transgenic kernels was confirmed on these pretreated substrates. The best transgenic lines (ER-targeted) can now be used for breeding to increase expansin expression for use in the biomass conversion industry. Results of these experiments show the success of expansin over-expression and accumulation in transgenic maize seed without negative impact on growth and development and confirm its synergistic effect with cellulase on deconstruction of complex cell wall substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号