首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the successful transfer of mammalian in vitro techniques for use with fish and other vertebrates, little progress has been made in the area of invertebrate tissue culture. This paper describes the development of an in vitro technique for the culture of both cells in suspension and tissue explants from the gill, digestive gland and mantle of the zebra mussel (Dreissena polymorpha) and their successful maintenance in culture for up to 14 days. Cell suspensions from the gills and digestive gland were the most successful technique developed with viability >80% maintained for up to 8 days in culture, suitable for use in short term toxicity tests. Tissue explants from the mantle were also maintained in culture for up to 14 days. This paper describes the challenges involved in the development of a novel in vitro culture technique for aquatic invertebrates.  相似文献   

2.
3.
The use of zinc oxide nanoparticles (nanoZnO) as sunscreens has raised concerns about their safety and release in the aquatic environment through swimming activities and within municipally treated wastewaters. This study's purpose was to examine the effects of nanoZnO on the elemental composition (metallome) in exposed freshwater mussels, Elliptio complanata. Mussels were exposed for 21 days to an environmentally realistic (low) concentration (2 μg/L) of nanoZnO and zinc chloride. The mussels were also exposed to a physically and chemically treated municipal effluent (ME), both alone and in the presence of both forms of Zn. The metallome profile was characterized by the following 15 elements in gills, digestive gland and gonad tissues: Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, V and Zn. The levels of metallothioneins (MT) and lipid peroxidation (LPO) in the digestive gland were also measured as biomarkers of toxic effects. The data revealed that exposure to nanoZnO increased the total levels of Zn, MT and LPO in the digestive gland. Discriminate function analysis revealed that the digestive gland responded the most to exposure to either nanoZnO or Zn2 +. For nanoZnO, the observed changes in Al, As and Mo in the digestive gland offered the best discrimination from dissolved Zn2 +. Co-exposure of nanoZnO with the ME changed the metallome profile closer to dissolved Zn2 +, suggesting a common interaction site within the ME. This was observed in changes in Ni, Cu, Se and Zn in the digestive gland of exposed mussels. Canonical analysis of essential and non-essential elements revealed that exposure to nanoZnO increased the relationships between LPO and the sum of essential elements in the digestive gland. Conversely, exposure to dissolved Zn2 + and the ME decreased the relationship between the sum of non-essential elements and LPO and MT. In conclusion, the use of a “metallomic” approach was used to discriminate changes following exposure to nanoZnO and dissolved Zn in freshwater mussels and provided insights into the interaction of forms of Zn in ME towards mussels.  相似文献   

4.
1. The snail Helix aspersa was fed one 24 hr meal containing Al, Fe or both together in barley flour pellets. Accumulation and distribution within the digestive gland, kidney, crop and remaining soft tissues were examined over the subsequent 30 days using atomic absorption spectroscopy (A.A.S.).2. The digestive gland contained significantly (P < 0.05) elevated levels of Al and Fe for 8 and 12 days. The digestive gland is the major sink for both Al and Fe in Helix.3. The kidney rapidly accumulated Al and Fe but the increase was short-lived. The kidney may therefore be involved in the elimination of metal not incorporated into the digestive gland.4. Iron was absorbed by the crop but Al was not. This may indicate a route of uptake of Fe into the digestive gland not shared with Al.5. No obvious pattern of accumulation of Al and Fe were seen in the remaining soft tissues or the blood of Helix.6. Aluminium is present in the faeces for 12 days suggesting that Al is released relatively slowly.7. Presence of both Al and Fe in the feed induced a change in the pattern of accumulation in the digestive gland but not in the kidney, crop and remaining soft tissues.8. The distribution of Al is discussed in relation to the suggestion that Al follows the ferretin pathway during accumulation.  相似文献   

5.
With the increasing occurrence of dietary lead (Pb) contamination in aquatic environment, threat of the dietary Pb toxicity to aquatic organisms attracted more attention. In this study, after being exposed to dietary Pb at concentrations of 0, 100, 400, and 800-μg/g dry weight for 60 days, the groups of tilapia (Oreochromis niloticus) were sacrificed and sampled to analyze the effects of dietary Pb on accumulation, histopathology, and digestive enzyme activities in tissues of the digestive system. The results showed that the Pb accumulation in tissues increased with the dietary Pb concentrations. Moreover, Pb accumulated in sampled tissues in the following order: intestine > stomach > liver. By observation of liver histological sections in optical microscope, lesions could be detected in the Pb-contaminated groups. It was also demonstrated that the inhibitory effect of dietary Pb on digestive enzyme activities was dietary Pb concentration dependent. Different degrees of inhibition of enzyme activities were exhibited in sampled tissues. It was indicated that digestive enzyme activities in the digestive system might be considered as the potential biomarkers of dietary Pb contamination in tilapia.  相似文献   

6.
This study describes the toxic effects of different prominent aquatic pollutants—heavy metals (Cd & Pb), pesticides (alphamethrin and deltamethrin) and salt (NaCl)—on the intracellular proline content in the cyanobacterium, Westiellopsis prolifica–Janet strain–NCCU331. Despite a reduction in growth (measured as chlorophyll a content), the intracellular proline content increased in the presence of heavy metals, pesticides and high salt concentration. The intracellular cyanobacterial proline accumulation was more pronounced under salt stress than in the presence of pesticides and heavy metals. We have also compared whether or not anionic components influence heavy metal toxicity. It was found that the chlorides of Cd and Pb were more toxic than the NO3 and the order of toxicity was CdCl2 > PbCl2 > Cd (NO3)2 > Pb (NO3)2. Among pyrethroids, deltamethrin was more toxic than alphamethrin. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

7.
8.
The objective of this study was to investigate the function of heat shock protein 60 (HSP60) on pancreatic tissues by applying HSP60 small interfering RNA (siRNA) to reduce HSP60 expression. Rat pancreas was isolated and pancreatic tissue snips were prepared, cultured, and stimulated with low and high concentrations of cerulein (10−11 and 10−5 mol/L) or lipopolysaccharide (LPS, 10 and 20 μg/mL). Before the stimulation and 1 and 4 h after the stimulation, the viability and the level of trypsinogen activation peptide (TAP) in the tissue fragments were determined and the levels of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) in the culture supernatants were measured. Real-time PCR and Western blotting were used to evaluate the HSP60 mRNA and protein expression. After the administration of siRNA to inhibit HSP60 expression in the isolated tissues, these injury parameters were measured and compared. The pancreatic tissues in the control (mock-interfering) group showed a decreased viability to varying degrees after being stimulated with cerulein or LPS, and the levels of TAP, TNF-α, and IL-6 increased significantly (p < 0.05) in the tissues and/or in the culture supernatant. The expressions of HSP60 mRNA and protein were raised moderately after stimulating 1 h with low concentrations of cerulein or LPS, but decreased with high concentrations of the toxicants. In particular, the expression of HSP60 protein was reduced significantly (p < 0.05) when the tissues were stimulated by the two toxicants for 4 h. In contrast, the tissue fragments in which HSP60 siRNA was applied showed much lower tissue viability (p < 0.01) and higher levels of TNF-a, IL-6, and TAP (p < 0.01) in the tissues or culture supernatant after stimulating with the toxicants at the same dose and for the same time duration as compared with those of the control groups (p < 0.05). The results indicated that both cerulein and LPS can induce injuries on isolated pancreatic tissues, but the induction effects are dependent on the duration of the stimulation and on the concentrations of the toxicants. HSP60 siRNA reduces HSP60 expression and worsens the cerulein- or LPS-induced injuries on isolated pancreatic tissues, suggesting that HSP60 has a protective effect on pancreatic tissues against these toxicants.  相似文献   

9.
In this study, we screened eight terpenes isolated from the organic extract of Sphaerococcus coronopifolius for their antifouling activity in order to find possible new sources of non-toxic or less toxic bioactive antifoulants. The anti-settlement activity (EC50) and the degree of toxicity (LC50) of S. coronopifolius metabolites was evaluated using larvae of the cirriped crustacean Amphibalanus (Balanus) amphitrite (cyprids and nauplii) as model organism. For five of eight tested metabolites EC50 was lower than 5 mg/L. The most promising results were observed for bromosphaerol (3), which expressed an EC50 value of 0.23 mg/L, in combination with low toxicity levels (LC50 > 100 mg/L). The therapeutic ratio—an index used to estimate whether settlement inhibition is due to toxicity or other mechanisms—is also calculated and discussed.  相似文献   

10.
Aluminum (Al) chemistry was studied in soils and waters of two catchments covered by spruce (Picea abies) monocultures in the Czech Republic that represent geochemical end-members of terrestrial and aquatic sensitivity to acidic deposition. The acid-sensitive Lysina catchment, underlain by granite, was compared to the acid-resistant Pluhův Bor catchment on serpentine. Organically-bound Al was the largest pool of reactive soil Al at both sites. Very high median total Al (Alt) concentrations (40 μmol L−1) and inorganic monomeric Al (Ali) concentrations (27 μmol L−1) were observed in acidic (pH 4.0) stream water at Lysina in the 1990s and these concentrations decreased to 32 μmol L−1 (Alt) and 13 μmol L−1 (Ali) in the 2000s. The potentially toxic Ali fraction decreased in response to long-term decreases in acidic deposition, but Ali remained the largest fraction. However, the organic monomeric (Alo) and particulate (Alp) fractions increased in the 2000s at Lysina. In contrast to Lysina, marked increases of Alt concentrations in circum-neutral waters at Pluhův Bor were observed in the 2000s in comparison with the 1990s. These increases were entirely due to the Alp fraction, which increased more than 3-fold in stream water and up to 8-fold in soil water in the A horizon. Increase of Alp coincided with dissolved organic carbon (DOC) increases. Acidification recovery may have increased the content of colloidal Al though the coagulation of monomeric Al.  相似文献   

11.
Cathepsin B is one of the most important proteolytic enzymes involved in the nutrient metabolism of clam Meretrix meretrix. The recombinant fusion protein GST-MmeCB (rGST-MmeCB) was obtained at a high level from Escherichia coli and identified using LC-ESI-MS/MS. The GST tag was cleaved from rGST-MmeCB, and the resulting recombinant MmeCB (rMmeCB) was able to degrade the selective substrate carbobenzoxy-l-arginyl-l-arginyl-7-amino-4-trifluoromethylcoumarin (Z-Arg-Arg-AFC) in vitro. The kinetic parameters of the rMmeCB were calculated as follows: K m, Vmax and k cat are 6.11 μM, 0.0174 μM min−1 and 277.57 s−1, respectively. Rabbit anti-rGST-MmeCB polyclonal antibodies was prepared and used to analyze the tissue distribution of MmeCB protein in M. meretrix. The results showed that the highest level of cathepsin B was found in the digestive gland and moderate levels were found in gill and mantle. Similar expression patterns were found at the mRNA level as detected by real time PCR. Further analysis showed that starvation caused a slight increase in MmeCB protein synthesis in the digestive gland, while refeeding after starvation caused an apparent increase in MmeCB synthesis in digestive gland, gill and mantle. Real time PCR analysis showed that MmeCB mRNA in digestive gland was significantly up-regulated by starvation and returned to normal level after the starved clams were refed. Together, these results indicated that cathepsin B is probably involved in the nutrient digestion of M. meretrix.  相似文献   

12.
The lipopolysaccharide and β-1,3-glucan-binding protein (LGBP) plays an important function in the innate immune response of invertebrates as a pattern recognition receptor (PRR). Herein, we described the isolation and characterization of pearl oyster Pinctada fucata LGBP (designated as poLGBP). The poLGBP cDNA was 2,075 bp long and consisted of a 5′-untranslated region (UTR) of 18 bp, a 3′-UTR of 299 bp with one cytokine RNA instability motifs (ATTTA), and an open reading frame (ORF) of 1,758 bp encoding a polypeptide of 585 amino acids with an estimated molecular mass of 65.1 kDa and a theoretical isoelectric point of 5.80. Homology analysis of the deduced amino acid sequence of the poLGBP with other known LGBP sequences by MatGAT software revealed that the poLGBP shared 26.3–56.7% identity and 40.5–70.9% similarity to the other known LGBP sequences. SMART and alignment analysis revealed that the poLGBP possessed a potential polysaccharide-binding motif, a glucanase motif, a LPS-binding site, a β-1,3-linkage of polysaccharide, a glycine-rich region, a threonine-rich region and two N-glycosylation sites. In healthy pearl oyster, the poLGBP mRNA was specifically expressed in digestive gland, and not detected in gill, adductor muscle, gonad, intestine, mantle and hemocytes. However, after bacteria stimulation, the expression of the poLGBP mRNA was significantly up-regulated in digestive gland and also weakly detected in haemocytes, gonad and intestine. After LPS stimulation, the poLGBP mRNA expression was significantly up-regulated at 8 and 12 h in digestive gland, and the expression level was 10.7-fold higher than the PBS group at 12 h. After bacteria stimulation, the expression level of the poLGBP mRNA was also significantly up-regulated in digestive gland and was 12.9-fold higher than the PBS group at 8 h. However, during the experiment, the poLGBP mRNA expression was not detected in gill after LPS or bacteria stimulation. The tissue-specific expression and the expression up-regulation after LPS or bacteria stimulation in digestive gland suggested that the poLGBP was an inducible acute-phase protein and might play an important function in digestion as digestive enzyme and pattern recognition receptor.  相似文献   

13.
The effects of exposure to the type species for Karlodinium veneficum (PLY # 103) on immune function and histopathology in the blue mussel Mytilus edulis were investigated. Mussels from Whitsand Bay, Cornwall (UK) were exposed to K. veneficum (PLY # 103) for 3 and 6 days. Assays for immune function included total and differential cells counts, phagocytosis and release of extra cellular reactive oxygen species. Histology was carried out on digestive gland and mantle tissues. The toxin cell quota for K. veneficum (PLY # 103) was measured by liquid chromatography–mass spectrometry detecting two separable toxins KvTx1 (11.6 ± 5.4 ng/ml) and KvTx2 (47.7 ± 4.2 ng/ml). There were significant effects of K. veneficum exposure with increasing phagocytosis and release of reactive oxygen species following 6 days exposure. There were no significant effects on total cell counts. However, differential cell counts did show significant effects after 3 days exposure to the toxic alga. All mussels produced faeces but not pseudofaeces indicating that algae were not rejected prior to ingestion. Digestive glands showed ingestion of the algae and hemocyte infiltration after 3 days of exposure, whereas mantle tissue did not show differences between treatments. As the effects of K. veneficum were not observed in the mantle tissue it can be hypothesized that the algal concentration was not high enough, or exposure long enough, to affect all the tissues. Despite being in culture for more than 50 years the original K. veneficum isolate obtained by Mary Parke still showed toxic effects on mussels.  相似文献   

14.
Acute pancreatitis (AP) is an inflammatory process in which cytokines and chemokines are involved. After onset, extrapancreatic stimuli can induce the expression of cytokines in pancreatic acinar cells, thereby amplifying this inflammatory loop. To further determine the role and mechanism of irritating agents in the pathogenesis of AP, rat pancreatic tissues were stimulated with ascitic fluid (APa) and serum (APs) from rats with AP or with lipopolysaccharide (LPS). In addition, the alteration of heat shock protein 60 (HSP60) expression was evaluated. Rat pancreas was removed and meticulously snipped to fragments. The snips were cultured for up to 48 h. During this period, the tissue viability as well as amylase and TNF-α levels in the supernatant and the HSP60 expression in the pancreatic tissue before and after stimulation by APa, APs, and LPS were assayed time-dependently. At different time-points during the culture, the viability and the amylase activity in the pancreatic tissue remained largely stable. After stimulation with APa, APs, or LPS for 1 h, the pancreatic tissues showed some damage, and this was followed by a sharp decrease in the viability accompanied by increased levels of amylase and TNF-α in the culture medium 2 or 4 h after stimulation (p < 0.05). In contrast, both the HSP60 mRNA and protein levels had a relatively high expression in the freshly prepared tissue fragments (0 h). As the culturing period was extended, the expression of HSP60 mRNA decreased only slightly; at the same time, the HSP60 protein levels decreased over a prolonged culture time, significantly so from 12 through 48 h (p < 0.05). After stimulation with APs, APa, or LPS, both the expression of HSP60 mRNA and protein in the tissue fragments increased slightly at 1 h and decreased significantly thereafter at 2 and 4 h (p < 0.05). APa, APs, or LPS induce injuries on isolated pancreatic tissues, accompanied by an altered HSP60 expression pattern in a time-dependent manner.  相似文献   

15.
Li Q  Han J  Du F  Ju Z  Huang J  Wang J  Li R  Wang C  Zhong J 《Molecular biology reports》2011,38(4):2657-2663
Heat stress induces heat shock proteins (HSPs) expression and HSP70 family is one of them that have been reported to involve in cellular protection against heat stress. But whether there is any association of genetic variation in the HSP70A1A gene with thermo tolerance is unknown. PCR-SSCP and DNA sequencing were used to detect possible SNPs in HSP70A1A gene in 890 Chinese Holstein cattle. Three fragments were amplified and five novel mutations were found in HSP70A1A gene in Chinese Holstein cattle. G/A mutation was found at nucleotide 1524 in coding region that resulting two genotypes of AA and AB. T/C mutation was found at nucleotide 3494 in 3′-UTR resulting three genotypes of CC, CD and DD. The other three point mutations, G/C at nucleotide 6400, C/T at nucleotide 6600 and G/A at nucleotide 6601 were also found in 3′-UTR resulting six genotypes of EE, EF, FF, EG, FG and GG. Linkage disequilibrium (LD) analysis showed that the nucleotide 6400, 6600 and 6601 were in strong LD (D > 0.75). Association analysis indicated that AB, DD and FF genotype were the thermo tolerance genotype. SBYE Green I was used to quantify HSP70A1A mRNA expression in different tissues through quantitative real-time PCR assay. The results of the real-time PCR showed that the expression of HSP70A1A mRNA in the heart was significantly higher than that in the other tissues (P < 0.05). We presume that these mutations could be used in marker assisted selection for anti-heat stress cows in our breeding program.  相似文献   

16.
We have previously shown that a homologue of a conserved nucleoside‐diphosphate‐kinase (Ndk) family of multifunctional enzymes and secreted molecule in Porphyromonas gingivalis can modulate select host molecular pathways including downregulation of reactive‐oxygen‐species generation to promote bacterial survival in human gingival epithelial cells (GECs). In this study, we describe a novel kinase function for bacterial effector, Pgingivalis‐Ndk, in abrogating epithelial cell death by phosphorylating heat‐shock protein 27 (HSP27) in GECs. Infection by Pgingivalis was recently suggested to increase phosphorylation of HSP27 in cancer‐epithelial cells; however, the mechanism and biological significance of antiapoptotic phospho‐HSP27 during infection has never been characterised. Interestingly, using glutathione S‐transferase‐rNdk pull‐down analysed by mass spectrometry, we identified HSP27 in GECs as a strong binder of Pgingivalis‐Ndk and further verified using confocal microscopy and ELISA. Therefore, we hypothesised Pgingivalis‐Ndk can phosphorylate HSP27 for inhibition of apoptosis in GECs. We further employed Pgingivalis‐Ndk protein constructs and an isogenic Pgingivalis‐ndk‐deficient‐mutant strain for functional examination. Pgingivalis‐infected GECs displayed significantly increased phospho‐HSP27 compared with ndk‐deficient‐strain during 24 hr infection. Phospho‐HSP27 was significantly increased by transfection of GFP‐tagged‐Ndk into uninfected‐GECs, and in vitro phosphorylation assays revealed direct phosphorylation of HSP27 at serines 78 and 82 by Pgingivalis‐Ndk. Depletion of HSP27 via siRNA significantly reversed resistance against staurosporine‐mediated‐apoptosis during infection. Transfection of recombinant Pgingivalis‐Ndk protein into GECs substantially decreased staurosporine‐induced‐apoptosis. Finally, ndk‐deficient‐mutant strain was unable to inhibit staurosporine‐induced Cytochrome C release/Caspase‐9 activation. Thus, we show for the first time the phosphorylation of HSP27 by a bacterial effector—Pgingivalis‐Ndk—and a novel function of Ndks that is directly involved in inhibition of host cell apoptosis and the subsequent bacterial survival.  相似文献   

17.
Aims: To determine whether the infestation by the protozoan paramyxean parasite, Marteilia sydneyi, changes the bacterial community of the digestive gland of Sydney rock oysters, Saccostrea glomerata. Methods and Results: Six 16S rDNA clone libraries were established from three M. sydneyi‐infected and three un‐infected oysters. Restriction enzyme analysis followed by sequencing representative clones revealed a total of 23 different operational taxonomic units (OTUs) in un‐infected oysters, comprising the major phyla: Firmicutes, Proteobacteria, Cyanobacteria and Spirocheates, where the clone distribution was 44, 36, 7 and 5%, respectively. Close to half of the OTUs are not closely related to any other hitherto determined sequence. In contrast, S. glomerata infected by M. sydneyi had only one OTU present in the digestive gland. Phylogenetic analysis of the 16S rDNA sequence reveals that this dominant OTU, belonging to the α‐Proteobacteria, is closely related to a Rickettsiales‐like prokaryote (RLP). Conclusions: The microbiota of the digestive gland of Sydney rock oysters is changed by infection by M. sydneyi, becoming dominated by a RLP, and generally less diverse. The bacterial community of un‐infected S. glomerata differs from previous studies in that we identified the dominant taxa as Firmicutes and α‐Proteobacteria, rather than heterotrophic γ‐Proteobacteria. Significance and Impact of the Study: This is the first culture‐independent study of the microbiota of the digestive glands of edible oysters to the species level. The commercial viability of the Sydney rock oyster industry in Australia is currently threatened by Queensland Unknown disease and the changes in the bacterial community of S. glomerata corresponding with infection by M. sydneyi sheds further light on the link between parasite infection and mortality in this economically damaging disease.  相似文献   

18.
Agrochemicals are a major cause of concern for the aquatic environment because of their toxicity, persistence, and tendency to accumulate in the organisms. The impact of these chemicals on aquatic organisms is due to their movement from various diffuse or point sources, which poses a great threat to aquatic fauna especially fishes, which constitute one of the major sources of protein-rich food for mankind. The present study is a first of its kind, where the toxic potential of two sublethal concentration (LC1/10th and LC1/25th) of four different classes of agrochemicals have been tested (Insecticide- Imidacloprid-0.074 ppm, 0.02 ppm, Fungicide-Curzate- 4.9 ppm, 1.96 ppm, Herbicide- Pyrazosulphuron ethyl-50 ppm, 20 ppm and Fertilizer-Micronutrient mixture 500 ppm, 200 ppm) on candidate markers of hypothalamus pituitary-thyroid axis (TSH, T3, T4, TSHβr) in Oreochromis mossambicus (tilapia) by validating hormonal level and mRNA expression. The results reveal that exposure to agrochemicals resulted in a broad range of alterations with maximum damage being caused by insecticide followed by herbicide and fungicide in that order on the thyroid axis. The results of the present study highlight the need for more detailed studies on the effects of agrochemicals that accumulate in organisms and propose that there should be a check on the rampant use of agrochemicals.  相似文献   

19.
Aluminum (Al) is normally present in soils as the insoluble, harmless Al2O3. The highly toxic Al3+ and AlOH2+ monomeric cations are formed in acid soils but there is little consensus on the physiological basis of Al toxicity in plants. A major factor that has retarded progress in understanding aluminum toxicity in vascular plants is the lack of a convenient radioisotope for Al. Yeast and vascular plants share similar membrane transport mechanisms and so yeast (Saccharomyces cerevisiae) provides a convenient model system for studies of Al-toxicity. Al and gallium (Ga) have closely similar toxic effects on the yeast cells (Ki approximately 100 mmol m-3) and Ga3+ and Al3+, respond similarly to pH and are both reversible by a chelation agent (citric acid). We tested the feasibility of using 67Ga radioisotope as a tracer for Al transport with the view of using it to investigate the mechanism of Al uptake and toxicity in plants. The clinically available 67Ga citrate is unsuitable to use as an aluminum analogue because the chelated form is not toxic. Arrangements need to be made for it to be supplied as 67GaCl3. Large amounts of 67Ga rapidly bind to the cell wall of yeasts with a t 1/2 of approximately 1 s. There is a very slow net uptake of 67Ga into a second phase, presumably the cytoplasm. Uptake into the slow phase has a Vmax of only approximately 16 +/- 4 pmol m(-2) s(-1) (n = 16). The Km of 67Ga uptake could not be precisely determined but is below 100 mmol m(-3) (45 +/- 42 mmol m(-3), n = 16).  相似文献   

20.
Measurements were made of the membrane fluxes and toxicitiesof three cations with trivalent forms, Al, Ga and Sc, in internodalcells of the giant alga Chara corallina. With this species itwas possible to separate the cell wall from the cell contentsto obtain membrane fluxes which were not complicated by adsorptionof cations to the cell wall. Net uptake of Al was low, approximately1.5 pmol m–2 s–1, compared to the influxes of thedivalent cation 45Ca of 82 pmol m–2 s–1 and themonovalent cation 22Na of 1100 pmol m–2 s–1 at thesame external concentration. Traditional desorption methodsfor removing cell wall cations were found to be relatively ineffectivein the case of trivalent cations and, consequently, influx measuredwithout separating the cell wall component would greatly overestimatethe true membrane flux, possibly by several orders of magnitude.Al, Ga and Sc all inhibited growth at 20 mmol m–3 at pH4.4. Toxicity decreased in the order Sc>Al>Ga. Sc andAl were also toxic to mature non-growing cells. Influx of 46Scincreased with increasing pH, consistent with membrane permeationby hydroxy Sc rather than Sc3+. However, Sc was more toxic atlow pH where Sc3+ was the dominant species and where influxwas low and binding to cell walls was high. These results argueagainst Sc acting intracellularly and favour a toxicity mechanismwhich is initiated extracellularly. Key words: Aluminium toxicity, trivalent cations, Chara corallina, scandium influx, gallium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号