首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Close correlations in species numbers may make it possible to indirectly assess the species richness of difficult taxonomic groups by investigating indicator groups, for which data are more easily collected. We asked if species numbers correlate among the four dominating groups of primary producers in boreal forests (liverworts, macrolichens, mosses, and vascular plants) and if substrate affiliation of species (ground vs. other substrates), sample plot size (0.01–1000 m2), and stand age (young vs. old) influence correlation strength. We used three sets of study plots from northern Sweden each including wide ranges of species richness. Although there are large differences in the ecophysiology and substrate use of vascular plants and the two bryophyte groups (mosses and liverworts), we found strong positive correlations among them not previously reported from boreal forests. In contrast, no correlation in total species richness was found between macrolichens and the two bryophyte groups, despite large overlaps in their ecology. We suggest that the positive correlations among land plants (liverworts, mosses, and vascular plants) are linked to positive relationships between site moisture and species number for all three groups. In contrast, total species number of macrolichens has not been shown to be strongly associated with moisture. However, ground‐living lichens and mosses correlated negatively in old forests. This may relate to the inability of macrolichens to exploit shaded and wet old forest ground, a habitat that is used by many moss species. Furthermore, lichens and mosses of ‘other substrates’ correlated positively in old forests, probably because the amount of boulders was positively related to species richness in both groups. Generally, correlations became stronger with increasing plot size, whereas stand age had relatively little influence. We conclude that vascular plants could be used as an indicator group for species richness of mosses and liverworts in boreal landscapes.  相似文献   

2.
Altitudinal changes of composition and richness of montane plant assemblages are complex, depending on the taxonomic group and gradient conditions, with different factors involved that are directly altitude-dependent (e.g., temperatures, air pressure) and altitude-independent (e.g., precipitation, cloud cover, area). In order to assess the relative impacts of temperature, precipitation, air humidity, and area of altitudinal belts on plant diversity, we analyzed diversity patterns of five species-rich groups, mostly herbaceous plants, in 74 forest plots along three climatically contrasting elevational transects from humid tropical lowland vegetation up to cloud forests at Los Tuxtlas, Mexico. We recorded 278 plant species, with ferns being the most species-rich group followed by orchids, bromeliads, aroids, and piperoids. The most striking results were the contrasting patterns and model results for terrestrial and epiphytic taxa. Whereas the richness of all terrestrial species taken together did not change significantly with elevation, vascular epiphytes showed increasing species numbers with altitude. However, a number of individual terrestrial taxa showed also significant elevation-related changes: aroids showed a marked decline with hight, orchids and piperoids increased, and ferns displayed a hump-shaped pattern with highest richness in mid-altitudes. Among the epiphytes, aroids declined while most other groups increased with altitude. This distinction is relevant for projections of responses of plant communities to climate change, which will lead to increased temperatures and to changing precipitation and cloud condensation regimes and thus will likely affect terrestrial and epiphytic species in different ways.  相似文献   

3.
The distribution of water across landscapes affects the diversity and composition of ecological communities, as demonstrated by studies on variation in vascular plant communities along river networks and in relation to groundwater. However, non-vascular plants have been neglected in this regard. Bryophytes are dominant components of boreal flora, performing many ecosystem functions and affecting ecosystem processes, but how their diversity and species composition vary across catchments is poorly known. We asked how terrestrial assemblages of mosses and liverworts respond to variation in (i) catchment size, going from upland-forest to riparian settings along increasingly large streams and (ii) groundwater discharge conditions. We compared the patterns found for liverworts and mosses to vascular plants in the same set of study plots. Species richness of vascular plants and mosses increased with catchment size, whereas liverworts peaked along streams of intermediate size. All three taxonomic groups responded to groundwater discharge in riparian zones by maintaining high species richness further from the stream channel. Groundwater discharge thus provided riparian-like habitat further away from the streams and also in upland-forest sites compared to the non-discharge counterparts. In addition, soil chemistry (C:N ratio, pH) and light availability were important predictors of vascular plant species richness. Mosses and liverworts responded to the availability of specific substrates (stones and topographic hollows), but were also affected by soil C:N. Overall, assemblages of mosses and vascular plants exhibited many similarities in how they responded to hydrological gradients, whereas the patterns of liverworts differed from the other two groups.  相似文献   

4.
Aim To explore species richness patterns in liverworts and mosses along a central Himalayan altitudinal gradient in Nepal (100–5500 m a.s.l.) and to compare these patterns with patterns observed for ferns and flowering plants. We also evaluate the potential importance of Rapoport’s elevational rule in explaining the observed richness patterns for liverworts and mosses. Location Nepal, Central Himalaya. Methods We used published data on the altitudinal ranges of over 840 Nepalese mosses and liverworts to interpolate presence between maximum and minimum recorded elevations, thereby giving estimates of species richness for 100‐m altitudinal bands. These were compared with previously published patterns for ferns and flowering plants, derived in the same way. Rapoport’s elevational rule was assessed by correlation analyses and the statistical significance of the observed correlations was evaluated by Monte Carlo simulations. Results There are strong correlations between richness of the four groups of plants. A humped, unimodal relationship between species richness and altitude was observed for both liverworts and mosses, with maximum richness at 2800 m and 2500 m, respectively. These peaks contrast with the richness peak of ferns at 1900 m and of vascular plants, which have a plateau in species richness between 1500 and 2500 m. Endemic liverworts have their maximum richness at 3300 m, whereas non‐endemic liverworts show their maximum richness at 2700 m. The proportion of endemic species is highest at about 4250 m. There is no support from Nepalese mosses for Rapoport’s elevational rule. Despite a high correlation between altitude and elevational range for Nepalese liverworts, results from null simulation models suggest that no clear conclusions can be made about whether liverworts support Rapoport’s elevational rule. Main conclusions Different demands for climatic variables such as available energy and water may be the main reason for the differences between the observed patterns for the four plant groups. The mid‐domain effect may explain part of the observed pattern in moss and liverwort richness but it probably only works as a modifier of the main underlying relationship between climate and species richness.  相似文献   

5.
《Journal of bryology》2013,35(3):159-168
Abstract

Air pollution in the urban environment of Halle, Germany, has significantly decreased over the last decade. We investigated the distribution and recolonization of the epiphytic bryoflora. We tested the hypothesis that after a period of nearly complete absence of epiphytic mosses and liverworts, recolonization would occur first in the most favourable habitats and proceed from there. The aims of the study were to analyse these habitat conditions, to generate habitat models for the most abundant species and to identity favourability of habitats. At the community level, mixed linear models revealed the factors aspect of plots, inclination of trees and landscape features to be of particular relevance to bryophyte diversity and coverage. At the species level, generalized linear mixed models with logit link functions identified aspect, tree inclination and landscape type to be the key habitat factors for most taxa, while identity of the host tree species and stand structure were of minor importance. In general, epiphytic bryophyte vegetation did not attain high coverage and many species occurred only rarely. Thus, significant habitat models were obtained only for frequent species (e.g. Orthotrichum diaphanum) and only with low coefficients of determination. Nevertheless, the results clearly show that species-sorting is an effective mechanism of community assembly even in this early stage of recolonization.  相似文献   

6.
Site-scale species richness (alpha diversity) patterns are well described for many present-day ecosystems, but they are difficult to reconstruct from the fossil record. Very little is thus known about these patterns in Pleistocene full-glacial landscapes and their changes following Holocene climatic amelioration. However, present-day central Asian ecosystems with climatic features and biota similar to those of the full-glacial periods may serve as proxies of alpha diversity variation through both space and time during these periods. We measured alpha diversity of vascular plants, bryophytes, macrolichens and land snails, as well as environmental variables, in 100-m2 plots located in forests and open habitats in the Russian Altai Mountains and their northern foothills. This region contains adjacent areas that possess climatic and biotic features similar to mid-latitude Europe for both the Last Glacial Maximum and contemporaneous Holocene ecosystems. We related alpha diversity to environmental variables using generalized linear models and mapped it from the best-fit models. Climate was identified as the strongest predictor of alpha diversity across all taxa, with temperature being positively correlated to number of species of vascular plants and land snails and negatively correlated to that of bryophytes and macrolichens. Factors important for only some taxa included precipitation, soil pH, percentage cover of tree layer and proportion of grassland areas in the landscape around plots. These results, combined with the high degree of similarity between the current Altai biota and dry-cold Pleistocene ecosystems of Europe and northern Asia, suggest that vascular plant and land snail alpha diversity was low during cold phases of the Pleistocene with a general increase following the Holocene climatic amelioration. The opposite trend probably existed for terricolous bryophytes and macrolichens.  相似文献   

7.
Punta Lara Natural Reserve shelters the relict of the Southernmost riparian forest in the world, where the flora is threatened by the anthropic expansion and by the introduction of exotic species. In this area the ferns and lycophytes grow in particular environments as marshland, grassland and marginal forest. The aim of this work was to evaluate the diversity of ferns and lycophytes that inhabit in Punta Lara Natural Reserve. Field trips were conducted from 2006 to 2009 and local herbaria and specific bibliography were also revised. As a result of our study twenty four taxa of ferns and lycophytes were recognized. Their habit was mainly terrestrial (70%), fewer aquatic (17%) and epiphytic (13%). Five native taxa were scarcely recorded whereas two native species previously documented were not found. We assume that the main threats on ferns and lycophytes populations in Punta Lara Reserve are: removal for comercialization, invasion by exotic species and climatic fluctuations (drought periods). Keys for taxa identification are given and strategies for the conservation of threatened taxa are proposed.  相似文献   

8.
Elevation is involved in determining plant diversity in montane ecosystems. This study examined whether the distribution of plants in the Yatsugatake Mountains, central Japan, substantiated hypotheses associated with an elevational diversity gradient. Species richness of trees, shrubs, herbs, ferns, and bryophytes was investigated in study plots established at 200‐m elevational intervals from 1,800 to 2,800 m. The changes in plant diversity (alpha and beta diversities, plant functional types, and elevational ranges) with elevation were analyzed in relation to climatic factors and elevational diversity gradient hypotheses, that is, mass effect, mid‐domain effect, and Rapoport''s elevational rule. In addition, the elevational patterns of dominance of plant functional types were also analyzed. A comparison of alpha and beta diversities revealed that different plant groups responded variably to elevation; the alpha diversity of trees and ferns decreased, that of herbs increased, whereas the alpha diversity of shrubs and bryophytes showed a U‐shaped relationship and a hump‐shaped pattern. The beta diversity of shrubs, herbs, and bryophytes increased above the subalpine–alpine ecotone. In accordance with these changes, the dominance of evergreen shrubs and graminoids increased above this ecotone, whereas that of evergreen trees and liverworts decreased. None of the plant groups showed a wide elevational range at higher elevations. These elevational patterns of plant groups were explained by climatic factors, and not by elevational diversity gradient hypotheses. Of note, the changes in the dominance of plant groups with elevation can be attributed to plant–plant interactions via competition for light and the changes in physical habitat. These interactions could alter the elevational diversity gradient shaped by climatic factors.  相似文献   

9.
Species richness on oceanic islands has been related to a series of ecological factors including island size and isolation (i.e. the Equilibrium Model of Island Biogeography, EMIB), habitat diversity, climate (i.e., temperature and precipitation) and more recently island ontogeny (i.e. the General Dynamic Model of oceanic island biogeography, GDM). Here we evaluate the relationship of these factors with the diversity of bryophytes in the Macaronesian region (Azores, Madeira, Canary Islands and Cape Verde). The predictive power of EMIB, habitat diversity, climate and the GDM on total bryophyte richness, as well as moss and liverwort richness (the two dominant bryophyte groups), was evaluated through ordinary least squares regressions. After choosing the best subset of variables using inference statistics, we used partial regression analyses to identify the independent and shared effects of each model. The variables included within each model were similar for mosses and liverworts, with orographic mist layer being one of the most important predictors of richness. Models combining climate with either the GDM or habitat diversity explained most of richness variation (up to 91%). There was a high portion of shared variance between all pairwise combinations of factors in mosses, while in liverworts around half of the variability in species richness was accounted for exclusively by climate. Our results suggest that the effects of climate and habitat are strong and prevalent in this region, while geographical factors have limited influence on Macaronesian bryophyte diversity. Although climate is of great importance for liverwort richness, in mosses its effect is similar to or, at least, indiscernible from the effect of habitat diversity and, strikingly, the effect of island ontogeny. These results indicate that for highly vagile taxa on oceanic islands, the dispersal process may be less important for successful colonization than the availability of suitable ecological conditions during the establishment phase.  相似文献   

10.
Abstract: Based on the evalutation of 957 vegetation plots on the southern slope of Mt. Kilimanjaro, habitat preferences for 140 species of pteridophytes were evaluated. Using the average percentage cover value, and taking into account the pteridophyte flora's composition, life form spectra and its spectra of seasonal growth pattern, eight vegetation formations were recognized. Ferns contributed less than 1 % of the vegetation cover of salt marshes, ruderal vegetation, grasslands and (sub-)alpine heathlands. In contrast, pteridophytes constituted the most important vascular plant group on rocks, where 64 species were found, forming about two-thirds of the vegetation cover. With respect to alpha and beta diversity and fern biomass, luxuriant montane forest was the main habitat for pteridophytes on Mt. Kilimanjaro. Here 130 pteridophyte species (93 % of the whole pteridophyte flora of the study area), on average, contributed 16 % of the total vegetation cover. Epiphytic ferns, tree ferns and filmy ferns had their main distribution between 1900 and 2400 m, in a zone coinciding with the maximum rainfall on Mt. Kilimanjaro's southern slope.
Poikilohydrous species were typical of dry habitats, such as on rocks, in meadows or along roadsides, but they also occurred in the often sun-exposed epiphyte layer in moist montane forests. Deciduous species, which were in many cases fire resistant, had a similar distribution; however, inside the forest belt they were restricted to the lower and upper parts, where fires are a common phenomenon. Evergreen species were the dominant group in swamps, forests and forest clearings.
Compared to other volcanoes in East Africa, Mt. Kilimanjaro is distinctly richer in fern species in general and in filmy ferns, tree ferns and epiphytic ferns in particular, suggesting that the forest belt of the southern slope of Mt. Kilimanjaro is wetter than those of other high mountains in East Africa.  相似文献   

11.
We present a review of the documented fungal colonizations of presumably symbiotic nature in lycophytes and ferns (“pteridophytes”). The sampling covers ca. 11 % (1287 spp.) of the estimated global diversity of these taxa (ca. 12,000 spp.) and shows an average presence of fungal endophytes of 68 %, which is significantly lower than the average presence of mycorrhiza of 80–85 % for the remaining tracheophytes. Above-average colonization rates up to 100 % among ferns are mainly found in phylogenetically old lineages, whereas below-average mycorrhization characterizes the Polypod I clade and the Aspleniaceae of the derived leptosporangiate ferns. Arbuscular Mycorrhizal Fungi (AMF) are found in 54 % of the species, to which 6 % of unspecified records of mycorrhizae should probably be added. Dark Septate Endophytes (DSE) are found in 13 % of the species, in about half the cases (6 %) together with AMF. Ectomycorrhizae have not been confirmed for pteridophytes so far, and basidiomycetes are found very rarely in mycoheterotropic gametophytes. Fungal endophytes are unevenly distributed across the life forms and most frequent with 75 % in the terrestrial species, followed with 69 % in saxicolous and with 58 % in epiphytic species. Although AMF have a low dispersal potential and thus are considered unreliable symbiotic partners for epiphytes, they are still present in 27 % of the investigated epiphytic pteridophytes. The occurrence of mycorrhizae across the taxa of pteridophytes bears a phylogenetic signal, as the derived ferns show a notable trend towards a growing independence from AM, in epiphytes more pronouncedly so than in terrestrial taxa.  相似文献   

12.
Aim General patterns of biodiversity, such as latitudinal gradients and species‐area relationships, are found consistently in a wide range of organisms, but recent results for protist diversity suggest that organisms shorter than 2 mm do not display such patterns. We tested this prediction in bdelloid rotifers, pluricellular metazoans smaller than 2 mm, but with size and ecology comparable to protists. Location A single valley in northern Italy was surveyed in detail and compared to all available faunistic data on bdelloids worldwide. Methods We analysed 171 local assemblages of bdelloid rotifers living in 5 systems of dry mosses and submerged mosses in running water and in lakes. We compared patterns of alpha, beta, and gamma diversity, and nestedness of metacommunities, with those known from protists and larger organisms. Results Bdelloid rotifers showed low local species richness (alpha diversity), with strong habitat selection, as observed in larger organisms. The number of species differed among systems, with a higher number of species in dry than in aquatic mosses. There was no hierarchical structure or exclusion of species in the metacommunity pattern within each system. Local diversity for the entire valley was surprisingly high compared with worldwide bdelloid diversity, similar to observed patterns in protists. Main Conclusions Bdelloid rotifers have some of the peculiarities of protist biodiversity, although at slightly different spatial scales, thus confirming the idea of a major change in biodiversity patterns among organisms shorter than 2 mm. However, bdelloids show stronger habitat selection than protists. We suggest two possible explanations for the observed patterns: (1) dispersal is very rare, and not all bdelloid clones are arriving everywhere; and (2) dispersal is effective in displacing propagules, but environmental heterogeneity is very high and prevents many species from colonizing a given patch of moss.  相似文献   

13.
Describing spatial variation in species richness and understanding its links to ecological mechanisms are complementary approaches for explaining geographical patterns of richness. The study of elevational gradients holds enormous potential for understanding the factors underlying global diversity. This paper investigates the pattern of species richness and range-size distribution of epiphytic bryophytes along an elevational gradient in Marojejy National Park, northeast Madagascar. The main objectives are to describe bryophyte species composition and endemism in Marojejy National Park, to describe the species richness and distribution patterns of epiphytic bryophytes along an elevational gradient from 250 m to 2050 m and to evaluate the explanatory value of environmental variables for the observed patterns. Bryophyte samples were collected following a nested design with four hierarchical levels: elevational belts, plots, quadrats, and microplots. In total, 254 epiphytic bryophyte species were recorded, comprising 157 liverworts and 97 mosses. Twenty-three of these are endemic to Madagascar. Species richness exhibits a hump-shaped pattern along the elevational gradient, peaking at 1,250 m. Eighty-seven percent of the total recorded species have a range distribution lower than 1,000 m, at which point 36% are restricted to these single elevations. Our results suggest that mean temperature, relative humidity, and vapor pressure deficit play important roles in shaping the richness pattern observed in this study. While the liverwort richness pattern did not correlate to vapor pressure deficit and responded only weakly to relative humidity, the richness pattern shown by mosses correlates well with mean temperature, relative humidity, and vapor pressure deficit.  相似文献   

14.
The fern family Polypodiaceae, with over 1600 species, is not only one of the most species-rich families of ferns, but also a major contributor to the vascular epiphytic diversity throughout the tropics. Although the vast majority of species belonging to this family prefer to grow as epiphytes, several species colonize successfully rheophytic, lithophytic, and even terrestrial habitats. Here, we explore the hypothesis that non-epiphytic habitat preferences, including terrestrial growth, evolved secondarily with epiphytes being the plesiomorphic habitat preference. The results of phylogenetic analyses, based on dense taxon sampling and four chloroplast DNA regions, were integrated with divergence time estimates and ancestral character state reconstructions to test these predictions. Both fossils and secondary calibration data were incorporated to obtain divergence time estimations. The results support the prediction of multiple transitions from epiphytic/lithophytic to terrestrial/rheophytic habitats occurring mainly in the Microsoreae lineage. The change in niche preferences coincides with niche colonization opportunities created by climatic fluctuations and geographical changes during the Oligocene and Miocene periods.  相似文献   

15.
Tropical ferns are characterized by a high diversity of plant life forms, yet there have been few large-scale studies on the functional ecology of these different forms. We examined epiphytic, hemiepiphytic, and terrestrial ferns, and asked whether there are differences in the mineral nutrition and water relations across different growth forms of a diverse assemblage of species. We measured specific leaf area, leaf nitrogen concentrations, and natural abundance of the stable isotopes δ15N and δ13C of 48 fern species from 36 genera across a wide range of habitats at La Selva Biological Station in Costa Rica. We found that epiphytes were significantly different in all measured variables from hemiepiphytic and terrestrial species, and that terrestrial and soil-rooted hemiepiphytes were indistinguishable in all variables excluding SLW. A multivariate analysis revealed that aspects of N nutrition were the most reliable at separating epiphytic species from other life forms. Our study demonstrates that the natural abundance of both C and N as well as N relations and leaf morphology are useful when segregating different plant life forms, and that the N cycle of epiphytic and terrestrial habitats function independently from each other.  相似文献   

16.
In semiarid Mediterranean ecosystems, epiphytic plant species are practically absent, and only some species of palm trees can support epiphytes growing in their lower crown area, such as Phoenix dactylifera L. (date palm). In this study, we focused on Sonchus tenerrimus L. plants growing as facultative epiphytes in P. dactylifera and its terrestrial forms growing in adjacent soils. Our aim was to determine the possible presence of arbuscular mycorrhizal fungi (AMF) in these peculiar habitats and to relate AMF communities with climatic variations. We investigated the AMF community composition of epiphytic and terrestrial S. tenerrimus plants along a temperature and precipitation gradient across 12 localities. Epiphytic roots were colonized by AMF, as determined by microscopic observation; all of the epiphytic and terrestrial samples analyzed showed AMF sequences from taxa belonging to the phylum Glomeromycota, which were grouped in 30 AMF operational taxonomic units. The AMF community composition was clearly different between epiphytic and terrestrial root samples, and this could be attributable to dispersal constraints and/or the contrasting environmental and ecophysiological conditions prevailing in each habitat. Across sites, the richness and diversity of terrestrial AMF communities was positively correlated with rainfall amount during the most recent growing season. In contrast, there was no significant correlation between climate variables and AMF richness and diversity for epiphytic AMF communities, which suggests that the composition of AMF communities in epiphytic habitats appears to be largely determined by the availability and dispersion of fungal propagules from adjacent terrestrial habitats.  相似文献   

17.
? Premise of the study: Ferns are an important component of both tropical and temperate forests; yet, our understanding of the water relations of their sporophyte generation is limited. Indeed, to date there has been no large scale survey that attempts to clarify how ferns fit into current ideas of plant water relations. This study examines several tropical ferns with the goal of understanding how these characters vary between species from various habitats and across life forms ? Methods: We measured stipe hydraulic conductivity, water potential, and vulnerability to cavitation along with photosynthetic variables and leaf allometry of 21 species from 14 genera to identify physiological trait assemblages across taxa. ? Key results: Epiphytic ferns have significantly lower hydraulic conductivity and a vascular system more resistant to cavitation (i.e., higher P(50) values). They reached lower mid-day water potentials and produced leaves with reduced stipe lengths and reduced laminar area relative to terrestrial species. Xylem specific hydraulic conductivity (K(S)) was correlated with the mean hydraulic diameter of tracheids in terrestrial species, but not in epiphytes. There was no evidence of safety-efficiency trade-offs in any group. ? Conclusions: When compared across life forms, our data shed light on physiological mechanisms that may have allowed for terrestrial ferns to move into the epiphytic habit. When compared across a diverse assemblage of terrestrial plants, we find that resistance to water flow in fern stipes is significantly higher than that recorded from the stems of seed plants.  相似文献   

18.
We studied the species richness of herbaceous terrestrial plant species along an elevational gradient at 250–2425 m a.s.l. in evergreen tropical forest in Central Sulawesi, Indonesia. We recorded 302 species belonging to 51 families. Ferns and lycophytes contributed 62% of the species, followed by monocots with 24% and dicots with 14%. Overall herb species richness did not show any particular relation with elevation, while the richness of ferns increased significantly with elevation, monocots did not show a pattern, and dicots showed a hump-shaped pattern with maximum richness at 1800 m. These patterns in turn were only partly reflected in the patterns of the individual plant families making up each group. The independence of different taxa was also reflected in their relationships to environmental factors (temperature, precipitation, and area): although, each single family was related to one or several factors, at the group level and at the overall level these trends were lost. These results show that interpreting diversity at higher taxonomic level may overlook important information at the family level and raises the biologically intriguing question whether overall patterns of diversity result from a random accumulation of group-specific patterns or if there is some interaction between groups (e.g., via competition and niche-pre-emption).  相似文献   

19.
An investigation of terrestrial bryophyte species diversity and community structure along an altitudinal gradient from 2,001 to 4,221 m a.s.l. in Gongga Mountain in Sichuan, China was carried out in June 2010. Factors which might affect bryophyte species composition and diversity, including climate, elevation, slope, depth of litter, vegetation type, soil pH and soil Eh, were examined to understand the altitudinal feature of bryophyte distribution. A total of 14 representative elevations were chosen along an altitudinal gradient, with study sites at each elevation chosen according to habitat type (forests, grasslands) and accessibility. At each elevation, three 100 m × 2 m transects that are 50 m apart were set along the contour line, and three 50 cm × 50 cm quadrats were set along each transect at an interval of 30 m. Species diversity, cover, biomass, and thickness of terrestrial bryophytes were examined. A total of 165 species, including 42 liverworts and 123 mosses, are recorded in Gongga mountain. Ground bryophyte species richness does not show any clear elevation trend. The terrestrial bryophyte cover increases with elevation. The terrestrial bryophyte biomass and thickness display a clear humped relationship with the elevation, with the maximum around 3,758 m. At this altitude, biomass is 700.3 g m−2 and the maximum thickness is 8 cm. Bryophyte distribution is primarily associated with the depth of litter, the air temperature and the precipitation. Further studies are necessary to include other epiphytes types and vascular vegetation in a larger altitudinal range.  相似文献   

20.
Studies of species diversity patterns across regional environmental gradients seldom consider the impact of habitat type on within-site (alpha) and between-site (beta) diversity. This study is designed to identify the influence of habitat type across geographic and environmental space, on local patterns of species richness and regional turnover patterns of ant diversity in the northeastern United States. Specifically, I aim to 1) compare local species richness in paired open and forested transects and identify the environmental variables that best correlate with richness; and 2) document patterns of beta diversity throughout the region in both open and forested habitat. I systematically sampled ants at 67 sites from May to August 2010, spanning 10 degrees of latitude, and 1000 meters of elevation. Patterns of alpha and beta diversity across the region and along environmental gradients differed between forested and open habitats. Local species richness was higher in the low elevation and warmest sites and was always higher in open habitat than in forest habitat transects. Richness decreased as temperature decreased or elevation increased. Forested transects show strong patterns of decreasing dissimilarity in species composition between sites along the temperature gradient but open habitat transects did not. Maximum temperature of the warmest month better predicted species richness than either latitude or elevation. I find that using environmental variables as key predictors of richness yields more biologically relevant results, and produces simpler macroecological models than commonly used models which use only latitude and elevation as predictors of richness and diversity patterns. This study contributes to the understanding of mechanisms that structure the communities of important terrestrial arthropods which are likely to be influenced by climatic change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号