首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Immunoscreening of a Candida albicans expression library resulted in the isolation of a novel gene encoding a 32.9-kDa polypeptide (288 amino acids), with 27.7% homology to the product of Saccharomyces cerevisiae YGR106c, a putative vacuolar protein. Heterozygous mutants in this gene displayed an altered budding growth pattern, characterized by the formation of chains of buds, decreasingly in size towards the apex, without separation of the daughter buds. Consequently, this gene was designated ABG1. A conditional mutant for ABG1 with the remaining allele under the control of the MET3 promoter did not grow in the presence of methionine and cysteine, demonstrating that ABG1 was essential for viability. Western analysis revealed the presence of a major 32.9-kDa band, mainly in a particulate fraction (P40) enriched in vacuoles, and tagging with green fluorescent protein confirmed that Abg1p localized to the vacuole. Vacuole inheritance has been linked to the regulation of branching frequency in C. albicans. Under repressing conditions, the conditional mutant had an increased frequency of branching under hyphal inducing conditions and an altered sensitivity to substances that interfered with cell wall assembly. Repression of ABG1 in the conditional mutant strain caused disturbance of normal size and number of vacuoles both in yeast and mycelial cells and also in the asymmetric vacuole inheritance associated with the characteristic pattern of germ tubes and branching in C. albicans. These observations indicate that ABG1 plays a key role in vacuole biogenesis, cytokinesis, and hyphal branching.  相似文献   

11.
C Boone  A Sdicu  M Laroche    H Bussey 《Journal of bacteriology》1991,173(21):6859-6864
The KRE1 gene of Saccharomyces cerevisiae, sacKRE1, appears to be involved in the synthesis of cell wall beta-glucan. S. cerevisiae strains with mutations in the KRE1 gene produce a structurally altered cell wall (1----6)-beta-glucan, which results in resistance to K1 killer toxin. We isolated the canKRE1 gene from Candida albicans by its ability to complement a kre1 mutation in S. cerevisiae and confer sensitivity to killer toxin. Sequence analysis revealed that the predicted protein encoded by canKRE1 shares an overall structural similarity with that encoded by sacKRE1. The canKRE1 protein is composed of an N-terminal signal sequence, a central domain of 46% identity with the sacKRE1 protein, and a C-terminal hydrophobic tract. These structural and functional similarities imply that the canKRE1 gene carries out a function in C. albicans cell wall assembly similar to that observed for sacKRE1 in S. cerevisiae.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Saccharomyces cerevisiae GSC1 (also called FKS1) and GSC2 (also called FKS2) have been identified as the genes for putative catalytic subunits of beta-1,3-glucan synthase. We have cloned three Candida albicans genes, GSC1, GSL1, and GSL2, that have significant sequence homologies with S. cerevisiae GSC1/FKS1, GSC2/FKS2, and the recently identified FKSA of Aspergillus nidulans at both nucleotide and amino acid levels. Like S. cerevisiae Gsc/Fks proteins, none of the predicted products of C. albicans GSC1, GSL1, or GSL2 displayed obvious signal sequences at their N-terminal ends, but each product possessed 10 to 16 potential transmembrane helices with a relatively long cytoplasmic domain in the middle of the protein. Northern blotting demonstrated that C. albicans GSC1 and GSL1 but not GSL2 mRNAs were expressed in the growing yeast-phase cells. Three copies of GSC1 were found in the diploid genome of C. albicans CAI4. Although we could not establish the null mutation of C. albicans GSC1, disruption of two of the three GSC1 alleles decreased both GSC1 mRNA and cell wall beta-glucan levels by about 50%. The purified C. albicans beta-1,3-glucan synthase was a 210-kDa protein as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all sequences determined with peptides obtained by lysyl endopeptidase digestion of the 210-kDa protein were found in the deduced amino acid sequence of C. albicans Gsc1p. Furthermore, the monoclonal antibody raised against the purified beta-1,3-glucan synthase specifically reacted with the 210-kDa protein and could immunoprecipitate beta-1,3-glucan synthase activity. These results demonstrate that C. albicans GSC1 is the gene for a subunit of beta-1,3-glucan synthase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号