首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have generated the Lys67Glu mutant form of neuroglobin. Experimental spectral studies are consistent with a six coordinate heme in which the distal histidine bond is stretched compared to the wild type protein. Carbon monoxide binding to the ferrous form of the mutant follows a hyperbolic concentration dependence limiting at the histidine dissociation rate of 0.7 s(-1). Further analysis indicates a significantly lowered histidine binding constant. Oxygen binding kinetic studies confirm the higher heme ligand dissociation level and indicate a p50 value for oxygen binding<1 mmHg. The ferrous form of the protein yields an oxygenated intermediate on reaction with oxygen. The rate of oxidation, by oxygen, follows a complex concentration dependence, consistent with the presence of two distinct oxidation mechanisms. A quantitative model for the two oxidation processes has been developed, which is consistent with a lowered distal histidine binding constant in the mutant form of the protein. These data suggest that the protein structure surrounding the heme site in neuroglobin limits access to external ligands and provides an energy barrier to the structural changes following ligand binding in this protein. However, the mutation does not appear to affect reactivity with cytochrome c and the anti-apoptotic activity of the mutant in human cells of neuronal origin is increased as compared to the wild type protein.  相似文献   

2.
Caenorhabditis elegans globin GLB-26 (expressed from gene T22C1.2) has been studied in comparison with human neuroglobin (Ngb) and cytoglobin (Cygb) for its electron transfer properties. GLB-26 exhibits no reversible binding for O(2) and a relatively low CO affinity compared to myoglobin-like globins. These differences arise from its mechanism of gaseous ligand binding since the heme iron of GLB-26 is strongly hexacoordinated in the absence of external ligands; the replacement of this internal ligand, probably the E7 distal histidine, is required before binding of CO or O(2) as for Ngb and Cygb. Interestingly the ferrous bis-histidyl GLB-26 and Ngb, another strongly hexacoordinated globin, can transfer an electron to cytochrome c (Cyt-c) at a high bimolecular rate, comparable to those of inter-protein electron transfer in mitochondria. In addition, GLB-26 displays an unexpectedly rapid oxidation of the ferrous His-Fe-His complex without O(2) actually binding to the iron atom, since the heme is oxidized by O(2) faster than the time for distal histidine dissociation. These efficient mechanisms for electron transfer could indicate a family of hexacoordinated globin which are functionally different from that of pentacoordinated globins.  相似文献   

3.
High-resolution resonance Raman spectra of the ferric, ferrous, and carbonmonoxy (CO)-bound forms of wild-type Escherichia coli-expressed Pseudomonas putida cytochrome P450cam and its P420 form are reported. The ferric and ferrous species of P450 and P420 have been studied in both the presence and absence of excess camphor substrate. In ferric, camphor-bound, P450 (mos), the E. coli-expressed P450 is found to be spectroscopically indistinguishable from the native material. Although substrate binding to P450 is known to displace water molecules from the heme pocket, altering the coordination and spin state of the heme iron, the presence of camphor substrate in P420 samples is found to have essentially no effect on the Raman spectra of the heme in either the oxidized or reduced state. A detailed study of the Raman and absorption spectra of P450 and P420 reveals that the P420 heme is in equilibrium between a high-spin, five-coordinate (HS,5C) form and low-spin six-coordinate (LS,6C) form in both the ferric and ferrous oxidation states. In the ferric P420 state, H2O evidently remains as a heme ligand, while alterations of the protein tertiary structure lead to a significant reduction in affinity for Cys(357) thiolate binding to the heme iron. Ferrous P420 also consists of an equilibrium between HS,5C and LS,6C states, with the spectroscopic evidence indicating that H2O and histidine are the most likely axial ligands. The spectral characteristics of the CO complex of P420 are found to be almost identical to those of a low pH of Mb. Moreover, we find that the 10-ns transient Raman spectrum of the photolyzed P420 CO complex possesses a band at 220 cm-1, which is strong evidence in favor of histidine ligation in the CO-bound state. The equilibrium structure of ferrous P420 does not show this band, indicating that Fe-His bond formation is favored when the iron becomes more acidic upon CO binding. Raman spectra of stationary samples of the CO complex of P450 reveal VFe-CO peaks corresponding to both substrate-bound and substrate-free species and demonstrate that substrate dissociation is coupled to CO photolysis. Analysis of the relative band intensities as a function of photolysis indicates that the CO photolysis and rebinding rates are faster than camphor rebinding and that CO binds to the heme faster when camphor is not in the distal pocket.  相似文献   

4.
Neuroglobin is a recently discovered member of the globin superfamily that is suggested to enhance the O(2) supply of the vertebrate brain. Spectral measurements with human and mouse recombinant neuroglobin provide evidence for a hexacoordinated deoxy ferrous (Fe(2+)) form, indicating a His-Fe(2+)-His binding scheme. O(2) or CO can displace the endogenous protein ligand, which is identified as the distal histidine by mutagenesis. The ferric (Fe(3+)) form of neuroglobin is also hexacoordinated with the protein ligand E7-His and does not exhibit pH dependence. Flash photolysis studies show a high recombination rate (k(on)) and a slow dissociation rate (k(off)) for both O(2) and CO, indicating a high intrinsic affinity for these ligands. However, because the rate-limiting step in ligand combination with the deoxy hexacoordinated form involves the dissociation of the protein ligand, O(2) and CO binding is suggested to be slow in vivo. Because of this competition, the observed O(2) affinity of recombinant human neuroglobin is average (1 torr at 37 degrees C). Neuroglobin has a high autoxidation rate, resulting in an oxidation at 37 degrees C by air within a few minutes. The oxidation/reduction potential of mouse neuroglobin (E'(o) = -129 mV) lies within the physiological range. Under natural conditions, recombinant mouse neuroglobin occurs as a monomer with disulfide-dependent formation of dimers. The biochemical and kinetic characteristics are discussed in view of the possible functions of neuroglobin in the vertebrate brain.  相似文献   

5.
Temperature dependence of NO binding modes in human neuroglobin   总被引:3,自引:0,他引:3  
Both the ferrous and ferric forms of wild-type neuroglobin are found to be hexacoordinated with axial ligation of the F8-His and E7-His. Rapidly growing Escherichia coli cell cultures with low O2 concentration generate nitric oxide (NO). Combined electron paramagnetic resonance (EPR) and optical measurements show that wild-type human recombinant neuroglobin, overexpressed in such E. coli cells, still favors the F8His-Fe2+ -E7His conformation, whereby only a small fraction of the protein binds NO. Upon mutation of the E7-His to Leu and Gln, the competition with the distal histidine disappears and the nitrosyl ferrous form is readily observed. At low temperature, the EPR spectra of the NO-ligated Ngb proteins consist of contributions from two geometrically different NO-heme conformations. In combination with EPR data of vertebrate hemoglobins and myoglobins, the temperature dependence of the EPR spectra of the NO adducts of ferrous hNgb and its E7-mutants proves a strong stabilization of one isomer by the E7-histidine in wt hNgb. It is shown that this is not related to the polarity of histidine, but to its specific binding characteristics.  相似文献   

6.
Globins are respiratory proteins that reversibly bind dioxygen and other small ligands at the iron of a heme prosthetic group. Hemoglobin and myoglobin are the most prominent members of this protein family. Unexpectedly a few years ago a new member was discovered and called neuroglobin (Ngb), being predominantly expressed in the brain. Ngb is a single polypeptide of 151 amino acids and despite the small sequence similarity with other globins, it displays the typical globin fold. Oxygen, nitric oxide, or carbon monoxide can displace the distal histidine which, in ferrous Ngb as well as in ferric Ngb, is bound to the iron, yielding a reversible adduct. Recent crystallographic data on carboxy Ngb show that binding of an exogenous ligand is associated to structural changes involving heme sliding and a topological reorganization of the internal cavities; in particular, the huge internal tunnel that connects the bulk with the active site, peculiar to Ngb, is heavily reorganized. We report the results of extended (90 ns) molecular dynamics simulations in water of ferrous deoxy and carboxy murine neuroglobin, which are both coordinated on the distal site, in the latter case by CO and in the former one by the distal His(64)(E7). The long timescale of the simulations allowed us to characterize the equilibrated protein dynamics and to compare protein structure and dynamical behavior coupled to the binding of an exogenous ligand. We have characterized the heme sliding motion, the topological reorganization of the internal cavities, the dynamics of the distal histidine, and particularly the conformational change of the CD loop, whose flexibility depends ligand binding.  相似文献   

7.
We demonstrate that photoexcitation of NAD(P)H reduces heme iron of Mycobacterium tuberculosis P450s CYP121 and CYP51B1 on the microsecond time scale. Rates of formation for the ferrous-carbonmonoxy (Fe(II)-CO) complex were determined across a range of coenzyme/CO concentrations. CYP121 reaction transients were biphasic. A hyperbolic dependence on CO concentration was observed, consistent with the presence of a CO binding site in ferric CYP121. CYP51B1 absorption transients for Fe(II)-CO complex formation were monophasic. The reaction rate was second order with respect to [CO], suggesting the absence of a CO-binding site in ferric CYP51B1. In the absence of CO, heme iron reduction by photoexcited NAD(P)H is fast ( approximately 10,000-11,000 s(-1)) with both P450s. For CYP121, transients revealed initial production of the thiolate-coordinated (P450) complex (absorbance maximum at 448 nm), followed by a slower phase reporting partial conversion to the thiol-coordinated P420 species (at 420 nm). The slow phase amplitude increased at lower pH values, consistent with heme cysteinate protonation underlying the transition. Thus, CO binding occurs to the thiolate-coordinated ferrous form prior to cysteinate protonation. For CYP51B1, slow conversions of both the ferrous/Fe(II)-CO forms to species with spectral maxima at 423/421.5 nm occurred following photoexcitation in the absence/presence of CO. This reflected conversion from ferrous thiolate- to thiol-coordinated forms in both cases, indicating instability of the thiolate-coordinated ferrous CYP51B1. CYP121 Fe(II)-CO complex pH titrations revealed reversible spectral transitions between P450 and P420 forms. Our data provide strong evidence for P420 formation linked to reversible heme thiolate protonation, and demonstrate key differences in heme chemistry and CO binding for CYP121 and CYP51B1.  相似文献   

8.
Neuroglobin protects neurons from hypoxia in vitro and in vivo; however, the underlying mechanisms for this effect remain poorly understood. Most of the neuroglobin is present in a hexacoordinate state with proximal and distal histidines in the heme pocket directly bound to the heme iron. At equilibrium, the concentration of the five-coordinate neuroglobin remains very low (0.1-5%). Recent studies have shown that post-translational redox regulation of neuroglobin surface thiol disulfide formation increases the open probability of the heme pocket and allows nitrite binding and reaction to form NO. We hypothesized that the equilibrium between the six- and five-coordinate states and secondary reactions with nitrite to form NO could be regulated by other hypoxia-dependent post-translational modification(s). Protein sequence models identified candidate sites for both 14-3-3 binding and phosphorylation. In both in vitro experiments and human SH-SY5Y neuronal cells exposed to hypoxia and glucose deprivation, we observed that 1) neuroglobin phosphorylation and protein-protein interactions with 14-3-3 increase during hypoxic and metabolic stress; 2) neuroglobin binding to 14-3-3 stabilizes and increases the half-life of phosphorylation; and 3) phosphorylation increases the open probability of the heme pocket, which increases ligand binding (CO and nitrite) and accelerates the rate of anaerobic nitrite reduction to form NO. These data reveal a series of hypoxia-dependent post-translational modifications to neuroglobin that regulate the six-to-five heme pocket equilibrium and heme access to ligands. Hypoxia-regulated reactions of nitrite and neuroglobin may contribute to the cellular adaptation to hypoxia.  相似文献   

9.
The dimeric hemoglobin isolated from Scapharca inaequivalvis, HbI, is notable for its highly cooperative oxygen binding and for the unusual proximity of its heme groups. We now report that the oxidized protein, an equilibrium mixture of a dimeric high spin aquomet form and a monomeric low spin hemichrome, binds ferrocyanide tightly which allows for internal electron transfer with the heme iron. Surprisingly, when ferricyanide-oxidized HbI is exposed to CO, its spectrum shifts to that of the ferrous CO derivative. Gasometric removal of CO leads to the oxidized species rather than to ferrous deoxy-HbI. At equilibrium, CO binds with an apparent affinity (p50) of about 10-25 mm of Hg and no cooperativity (20 degrees C, 10-50 mM buffers at pH 6.1). The kinetics of CO binding under pseudo-first order conditions are biphasic (t1/2 of 15-50 s at pH 6.1). The rates depend on protein, but not on CO concentration. The nitrite-oxidized protein is not reduced readily in the presence of CO unless one equivalent of ferrocyanide, but not of ferricyanide, is added. We infer that ferrocyanide, produced in the oxidation reaction, is tightly bound to the protein forming a redox couple with the heme iron. CO shifts the redox equilibrium by acting as a trap for the reduced heme. The equilibrium and kinetic aspects of the process have been accounted for in a reaction scheme where the internal electron transfer reaction is the rate-limiting step.  相似文献   

10.
CO recombination to the cloned cytochrome c peroxidase [CCP(MI)] and mutants of CCP(MI) prepared by site-directed mutagenesis was examined as a function of pH by flash photolysis. The mutants examined included distal Arg 48----Leu, Lys; proximal Asp 235----Asn; and His 181----Gly. At alkaline pH, ferrous CCP(MI) was converted to a hexacoordinate form by a cooperative two-proton ionization, apparent pK(a) = 8.0. This change was observed in all of the mutants, although in the His 181----Gly mutant, the conversion to the hexacoordinate form was the result of a single-proton ionization, implicating His 181 as one of the two residues deprotonated in this isomerization. The pH-dependent conversion of CO ferrous CCP(MI) from acidic to alkaline forms was also observed and was similar to that reported for cytochrome c peroxidase from bakers' yeast [Iizuka, T., Makino, R., Ishimura, Y., & Yonetani, T. (1985) J. Biol. Chem. 260, 1407-1412]. Photolysis of the acidic form of the CO complex of CCP(MI) produces a kinetic form of the ferrous enzyme (form A) which exhibits the slow rate of CO recombination (l1' approximately 10(3) M-1 s-1) characteristic of peroxidases, while photolysis of the alkaline form of the CO complex produces a second kinetic form (form B), which exhibits a much faster rate of recombination (l2' approximately 10(5) M-1 s-1). Kinetic forms analogous to forms A and B were observed in all of the mutants examined. A third kinetic form (form B*) with a bimolecular rate constant l3' approximately 10(6) M-1 s-1 was also observed in the mutants at alkaline pH. Although the pH dependence for the conversion of form A to form B with increasing pH was altered by changes in the local heme environment, the rate of CO recombination by the respective forms was not dramatically altered in the mutants. Transient spectra of the reaction of CO with ferrous CCP(MI) after photolysis show that equilibrium between penta- and hexacoordinate ferrous enzyme is rapid relative to CO recombination. The presence of the internal sixth ligand has no discernible effect on the observed rate of recombination, however. The results presented indicate that in CCP(MI) the rate of ligand binding is determined primarily by isomerization of the protein from a closed conformation at acidic pH to an open conformation at alkaline pH and that polar effects of proximal Asp 235 and distal Arg 48 are of minor significance in the rate of CO recombination in both conformations.  相似文献   

11.
In the heme-based sensor Dos from Escherichia coli, the ferrous heme is coordinated by His-77 and Met-95. The latter residue is replaced upon oxygen binding or oxidation of the heme. Here we investigate the early signaling processes upon dissociation of the distal ligand using ultrafast spectroscopy and site-directed mutagenesis. Geminate CO rebinding to the heme domain DosH appears insensitive to replacement of Met-95, in agreement with the notion that this residue is oriented out of the heme pocket in the presence of external ligands. A uniquely slow 35-ps phase in rebinding of the flexible methionine side chain after dissociation from ferrous DosH is completely abolished in rebinding of the more rigid histidine side chain in the M95H mutant protein, where only the 7-ps phase, common to all 6-coordinate heme proteins, is observed. Temperature-dependence studies indicate that all rebinding of internal and external ligands is essentially barrierless, but that CfigsO escape from the heme pocket is an activated process. Solvent viscosity studies combined with molecular dynamics simulations show that there are two configurations in the ferrous 6-coordinate protein, involving two isomers of the Met-95 side chain, of which the structural changes extend to the solvent-exposed backbone, which is part of the flexible FG loop. One of these configurations has considerable motional freedom in the Met-95-dissociated state. We suggest that this configuration corresponds to an early signaling intermediate state, is responsible for the slow rebinding, and allows small ligands in the protein to efficiently compete for binding with the heme.  相似文献   

12.
Neuroglobin is a recently discovered member of the globin superfamily. Combined electron paramagnetic resonance and optical measurements show that, in Escherichia coli cell cultures with low O(2) concentration overexpressing wild-type mouse recombinant neuroglobin, the heme protein is mainly in a hexacoordinated deoxy ferrous form (F8His-Fe(2+)-E7His), whereby for a small fraction of the protein the endogenous protein ligand is replaced by NO. Analogous studies for mutated neuroglobin (mutation of E7-His to Leu, Val, or Gln) reveal the predominant presence of the nitrosyl ferrous form. After sonication of the cells wild-type neuroglobin oxidizes rapidly to the hexacoordinated ferric form, whereas NO ligation initially protects the mutants from oxidation. Flash photolysis studies of wild-type neuroglobin and its E7 mutants show high recombination rates (k(on)) and low dissociation rates (k(off)) for NO, indicating a high intrinsic affinity for this ligand similar to that of other hemoglobins. Since the rate-limiting step in ligand combination with the deoxy-hexacoordinated wild-type form involves the dissociation of the protein ligand, NO binding is slower than for the related mutants. Structural and kinetic characteristics of neuroglobin and its mutants are analyzed. NO production in rapidly growing E. coli cell cultures is discussed.  相似文献   

13.
Neuroglobin, a recently discovered globin predominantly expressed in neuronal tissue of vertebrates, binds small, gaseous ligands at the sixth coordination position of the heme iron. In the absence of an exogenous ligand, the distal histidine (His64) binds to the heme iron in the ferrous and ferric states. The crystal structure of murine ferric (met) neuroglobin at 1.5 A reveals interesting features relevant to the ligand binding mechanism. Only weak selectivity is observed for the two possible heme orientations, the occupancy ratio being 70:30. Two small internal cavities are present on the heme distal side, which enable the His64(E7) side chain to move out of the way upon exogenous ligand binding. Moreover, a third, huge cavity (volume approximately 290 A3) connecting both sides of the heme, is open towards the exterior and provides a potential passageway for ligands. The CD and EF corners exhibit substantial flexibility, which may assist ligands in entering the protein and accessing the active site. Based on this high-resolution structure, further structure-function studies can be planned to elucidate the role of neuroglobin in physiological responses to hypoxia.  相似文献   

14.
Resonance Raman and electron paramagnetic resonance spectroscopy have been utilized to identify histidine as an axial heme ligand in a high spin, heme c-containing protein isolated from the photosynthetic purple sulfur bacterium Chromatium vinosum. Resonance Raman spectroscopy has also been used to characterize the CO adduct of the C. vinosum hemoprotein. Resonance Raman spectra of the heme site obtained within 10 ns of CO photolysis from the ferrous hemoprotein are virtually identical to those of the unligated protein, indicating that there is little or no rearrangement of the heme pocket in response to ligand photolysis. The equilibrium constant for CO binding to the ferrous hemeprotein was measured to be 1.7 X 10(-5) M-1 and the CO association rate constant determined to be 5.4 X 10(3) M-1 S-1. The quantum efficiency for photodissociation of the hemoprotein X CO complex was greater than or equal to 0.9.  相似文献   

15.
Neuroglobin has been identified to protect brain neurons from apoptotic stress. Hydrogen sulphide has a role in the brain as a neuromodulator, involving NMDA receptor activation. Here we report on studies of the in vitro interaction of ferric neuroglobin with hydrogen sulphide. Hydrogen sulphide binds very tightly to the heme group of neuroglobin in a biphasic reaction. The faster of the two reaction processes is concentration dependent whilst the slower process is not. The rate of hydrogen sulphide binding is pH sensitive and as the pH is reduced over the physiological range the rate of reaction increases by a factor of approximately 10. This change in reactivity appears to reflect the ionisation of the heme distal His ligand rather than a preference for the binding of H(2)S. We discuss the potential role of neuroglobin in the modulation of hydrogen sulphide sensitivity of neurons in the brain.  相似文献   

16.
Andrew CR  Green EL  Lawson DM  Eady RR 《Biochemistry》2001,40(13):4115-4122
Resonance Raman (RR) studies have been conducted on Alcaligenes xylosoxidans cytochrome c', a mono-His ligated hemoprotein which reversibly binds NO and CO but not O(2). Recent crystallographic characterization of this protein has revealed the first example of a hemoprotein which can utilize both sides of its heme (distal and proximal) for binding exogenous ligands to its Fe center. The present RR investigation of the Fe coordination and heme pocket environments of ferrous, carbonyl, and nitrosyl forms of cytochrome c' in solution fully supports the structures determined by X-ray crystallography and offers insights into mechanisms of ligand discrimination in heme-based sensors. Ferrous cytochrome c' reacts with CO to form a six-coordinate heme-CO complex, whereas reaction with NO results in cleavage of the proximal linkage to give a five-coordinate heme-NO adduct, despite the relatively high stretching frequency (231 cm(-1)) of the ferrous Fe-N(His) bond. RR spectra of the six-coordinate CO adduct indicate that CO binds to the Fe in a nonpolar environment in line with its location in the hydrophobic distal heme pocket. On the other hand, RR data for the five-coordinate NO adduct suggest a positively polarized environment for the NO ligand, consistent with its binding close to Arg 124 on the opposite (proximal) side of the heme. Parallels between certain physicochemical properties of cytochrome c' and those of heme-based sensor proteins raise the possibility that the latter may also utilize both sides of their hemes to discriminate between NO and CO binding.  相似文献   

17.
We report the mutational analysis of an artificial oxygen transport protein, HP7, which operates via a mechanism akin to that of human neuroglobin and cytoglobin. This protein destabilizes one of two heme-ligating histidine residues by coupling histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Replacement of these glutamate residues with alanine, which is uncharged, increases the affinity of the distal histidine ligand by a factor of 13. Paradoxically, it also decreases heme binding affinity by a factor of 5 in the reduced state and 60 in the oxidized state. Application of a three-state binding model, in which an initial pentacoordinate binding event is followed by a protein conformational change to hexacoordinate, provides insight into the mechanism of this seemingly counterintuitive result: the initial pentacoordinate encounter complex is significantly destabilized by the loss of the glutamate side chains, and the increased affinity for the distal histidine only partially compensates for that. These results point to the importance of considering each oxidation and conformational state in the design of functional artificial proteins.  相似文献   

18.
Neuroglobin is a highly conserved hemoprotein of uncertain physiological function that evolved from a common ancestor to hemoglobin and myoglobin. It possesses a six-coordinate heme geometry with proximal and distal histidines directly bound to the heme iron, although coordination of the sixth ligand is reversible. We show that deoxygenated human neuroglobin reacts with nitrite to form nitric oxide (NO). This reaction is regulated by redox-sensitive surface thiols, cysteine 55 and 46, which regulate the fraction of the five-coordinated heme, nitrite binding, and NO formation. Replacement of the distal histidine by leucine or glutamine leads to a stable five-coordinated geometry; these neuroglobin mutants reduce nitrite to NO ~2000 times faster than the wild type, whereas mutation of either Cys-55 or Cys-46 to alanine stabilizes the six-coordinate structure and slows the reaction. Using lentivirus expression systems, we show that the nitrite reductase activity of neuroglobin inhibits cellular respiration via NO binding to cytochrome c oxidase and confirm that the six-to-five-coordinate status of neuroglobin regulates intracellular hypoxic NO-signaling pathways. These studies suggest that neuroglobin may function as a physiological oxidative stress sensor and a post-translationally redox-regulated nitrite reductase that generates NO under six-to-five-coordinate heme pocket control. We hypothesize that the six-coordinate heme globin superfamily may subserve a function as primordial hypoxic and redox-regulated NO-signaling proteins.  相似文献   

19.
The bacterial heme protein cytochrome ? from Alcaligenes xylosoxidans (AXCP) reacts with nitric oxide (NO) to form a 5-coordinate ferrous nitrosyl heme complex. The crystal structure of ferrous nitrosyl AXCP has previously revealed that NO is bound in an unprecedented manner on the proximal side of the heme. To understand how the protein structure of AXCP controls NO dynamics, we performed absorption and Raman time-resolved studies at the heme level as well as a molecular computational dynamics study at the entire protein structure level. We found that after NO dissociation from the heme iron, the structure of the proximal heme pocket of AXCP confines NO close to the iron so that an ultrafast (7 ps) and complete (99 +/- 1%) geminate rebinding occurs, whereas the proximal histidine does not rebind to the heme iron on the timescale of NO geminate rebinding. The distal side controls the initial NO binding, whereas the proximal heme pocket controls its release. These dynamic properties allow the trapping of NO within the protein core and represent an extreme behavior observed among heme proteins.  相似文献   

20.
Amino acid residues in the ligand binding pocket of human neuroglobin have been identified by site-directed mutagenesis and their properties investigated by resonance Raman and flash photolysis methods. Wild-type neuroglobin has been shown to have six-coordinate heme in both ferric and ferrous states. Substitution of His96 by alanine leads to complete loss of heme, indicating that His96 is the proximal ligand. The resonance Raman spectra of M69L and K67T mutants were similar to those of wild-type (WT) neuroglobin in both ferric and ferrous states. By contrast, H64V was six-coordinate high-spin and five-coordinate high-spin in the ferric and ferrous states, respectively, at acidic pH. The spectra were pH-dependent and six-coordinate with the low-spin component dominating at alkaline pH. In a double mutant H64V/K67T, the high-spin component alone was detected in the both ferric and the ferrous states. This implies that His64 is the endogenous ligand and that Lys67 is situated nearby in the distal pocket. In the ferrous H64V and H64V/K67T mutants, the nu(Fe-His) stretching frequency appears at 221 cm(-1), which is similar to that of deoxymyoglobin. In the ferrous CO-bound state, the nu(Fe-CO) stretching frequency was detected at 521 and 494 cm(-1) in WT, M69L, and K67T, while only the 494 cm(-1) component was detected in the H64V and H64V/K67T mutants. Thus, the 521 cm(-1) component is attributed to the presence of polar His64. The CO binding kinetics were biphasic for WT, H64V, and K67T and monophasic for H64V/K67T. Thus, His64 and Lys67 comprise a unique distal heme pocket in neuroglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号