首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Abstract: Oocytes from the frog Xenopus laevis were shown recently to express native nicotinic acetylcholine receptors after injection with purified Torpedo electroplaque membrane vesicles. Injection of Xenopus oocytes with rat cortical or nigral synaptosomes has now been shown to result in the expression of γ-aminobutyric acid type A (GABAA) receptor-mediated Cl currents. Electrophysiological characterization of the responses of these receptors to GABA and other agents revealed that they were incorporated into the oocyte membrane and that they retained their original pharmacological properties, such as sensitivity to Cl channel blockers, benzodiazepines, and general anesthetics. These results suggest that this approach to the expression of heterologous proteins in Xenopus oocytes may facilitate the study of native synaptic proteins derived from brain tissue.  相似文献   

2.
mRNA prepared from various tissues and cultured cells was injected into Xenopus laevis oocytes. Three to five days after injection, the response of the oocytes to the peptide bradykinin was monitored. The oocytes were voltage clamped and the membrane currents generated on application of agonist were recorded. mRNA from NG108-15, rat uterus, and human fibroblast cell line WI38 gave similar responses to bradykinin (1 microM), with an initial inward current (10-20 nA) followed by a prolonged period of membrane current oscillations. The same pattern of response was given by total RNA from rat dorsal root ganglia. No response to bradykinin (10 microM) was recorded from oocytes injected with rat brain mRNA, although these oocytes gave peak inward currents of about 75 nA in response to serotonin (10 microM). mRNA from both NG108-15 cells and rat uterus was fractionated on sucrose gradients. This resulted in an approximately five-fold increase in the size of the response compared to that given by unfractionated mRNA. The largest responses were given by mRNA fractions with a size of approximately 4.5 kb. Data were obtained consistent with the expression of both B1 and B2 receptors by WI38 human fibroblasts and with the expression of only the B2 type of receptor by NG108-15 cells.  相似文献   

3.
Several recent papers have reported the difficulties in expressing olfactory receptor proteins (ORs) in heterologous systems, and proposed that some sequences in ORs have negative effects on their efficient expression. To obtain an efficient expression system of ORs, we modified N-terminal sequences of ORs through the addition of exogenous sequences. Three kinds of sequences, designated as 5HT, V, and VL, were used. 5HT and V corresponded to the signal leader (SL) sequences of 5HT3R and VIPR, respectively. VL corresponded to the first extracellular region of VIPR containing the SL sequence and three potential asparagine- (Asn-) linked glycosylation sites. The myc epitope was also added to the C-termini of the sequences. Several ORs including I7 of rat, GUST43 of rat, Y1 of medaka, FOR1-3 of pufferfish, 47E of carp, and ODR-10 of nematode were subjected to the modifications, and the RNAs encoding modified ORs were injected into Xenopus oocytes. The membrane fraction of the oocytes were analyszed by Western blotting to examine the expression of the proteins. In the cases of ORs modified with 5HT and V, only ODR-10 and 47E, both of which have more than two Asn-linked glycosylation sites in their extracellular regions, were detected as the bands of predicted molecular weights. On the other hand, most of the ORs modified with VL showed the bands of predicted molecular weights. These results suggest that SL sequences together with potential Asn-linked glycosylation sites have positive effects on the expression of ORs in heterologous systems.  相似文献   

4.
Abstract: Incubation of intact Xenopus oocytes with the opioid radioligand [3H]diprenorphine (0.5 n M ) resulted in specific binding of 1.7 ± 0.3 fmol per oocyte. Morphine (10 μ M ) inhibited the uptake of 45Ca2+ into the oocyte by 66 ± 9%. The opioid antagonist naltrexone partially blocked this effect of morphine. Preincubation of oocytes with morphine (10 μ M , 2 min) partially inhibited the fast and slow responses of the oocyte to acetylcholine by 26 and 52%, respectively. We conclude that native Xenopus oocytes possess opioid receptors that may modulate the muscarinic response by limiting calcium influx into the cell.  相似文献   

5.
Abstract: In rat olfactory bulb, muscarinic and opioid receptor agonists stimulate basal adenylyl cyclase activity in a GTP-dependent and pertussis toxin-sensitive manner. However, in the present study, we show that in the same brain area activation of these receptors causes inhibition of adenylyl cyclase activity stimulated by Ca2+ and calmodulin (CaM) and by forskolin (FSK), two direct activators of the catalytic unit of the enzyme. The opioid and muscarinic inhibitions consist of a decrease of the maximal stimulation elicited by either CaM or FSK, without a change in the potency of these agents. [Leu5]Enkephalin and selective δ- and μ-, but not κ-, opioid receptors agonists inhibit the FSK stimulation of adenylyl cyclase activity with the same potencies displayed in stimulating basal enzyme activity. Similarly, the muscarinic inhibition of FSK-stimulated adenylyl cyclase activity shows agonist and antagonist sensitivities similar to those characterizing the muscarinic stimulation of basal enzyme activity. Fluoride stimulation of adenylyl cyclase is not affected by either carbachol or [Leu5]enkephalin. In vivo treatment of olfactory bulb with pertussis toxin prevents both opioid and muscarinic inhibition of Ca2+/CaM- and FSK-stimulated enzyme activities. These results indicate that in rat olfactory bulb δ- and μ-opioid receptors and muscarinic receptors, likely of the M4 subtype, can exert a dual effect on cyclic AMP formation by interacting with pertussis toxin-sensitive GTP-binding protein(s) and possibly by affecting different molecular forms of adenylyl cyclase.  相似文献   

6.
In rat olfactory bulb homogenate, carbachol stimulated adenylate cyclase activity in a concentration-dependent manner (EC50 = 1.1 microM). The carbachol stimulation occurred fully in membranes that had been prepared in the presence of 1 mM EGTA and incubated in a Ca2(+)-free enzyme reaction medium. Under these conditions, exogenous calmodulin (1 microM) failed to stimulate adenylate cyclase activity. In miniprisms of olfactory bulb, carbachol (1 mM) increased accumulation of inositol phosphates, but this response was markedly reduced in a Ca2(+)-free medium. Moreover, the carbachol stimulation of adenylate cyclase activity was not affected by staurosporine at a concentration (1 microM) that completely blocked the stimulatory effect of phorbol 12-myristate 13-acetate, an activator of Ca2+/phospholipid-dependent protein kinase. Quinacrine, a nonselective phospholipase A2 inhibitor, reduced the carbachol stimulation of adenylate cyclase activity, but this inhibition appeared to be competitive with a Ki of 0.2 microM. Nordihydroguaiaretic acid and indomethacin, two inhibitors of arachidonic acid metabolism, failed to affect the carbachol response. These results indicate that in rat olfactory bulb, muscarinic receptors stimulate adenylate cyclase activity through a mechanism that is independent of Ca2+ and phospholipid hydrolysis.  相似文献   

7.
主要嗅觉表皮组织(MOE)是哺乳动物感知气味分子的重要器官,气味诱导是嗅觉受体神经元(ORN)活动的起点,嗅觉受体(OR)结合气味分子后通过环腺苷酸(cAMP)信号通路向下游传递信号。腺苷酸环化酶3(AC3)是此通路中的重要分子。为了探讨AC3缺失对小鼠MOE内ORs基因表达的影响,本文以AC3敲除型小鼠(AC3-/-)和野生型小鼠(AC3+/+)为材料,采用荧光定量PCR(qRT-PCR)、荧光原位杂交(FISH)技术分析了部分ORs基因及与其相关因子在MOE中的表达。qRT-PCR表明,3月龄AC3-/-小鼠MOE中嗅觉受体 Olfr15、Olfr16、Olfr533、Olfr536、Olfr1507和Olfr642的表达量均显著下降。出生后PND7、PND30和PND90 三个不同发育时期的AC3-/-小鼠MOE原位杂交显示,嗅觉受体Olfr15、Olfr536和Olfr1507表达的细胞数目均减少。进一步qRT-PCR分析发现,3月龄AC3-/-小鼠嗅觉受体相关因子Rtp1、Rtp2、Reep1、Lhx2、Emx2和Ric-8b的表达也均发生显著下调。由此推测,AC3缺失导致的ORs及其相关因子的表达下调可能是嗅觉行为障碍的原因之一。  相似文献   

8.
The effects of acute and extended ethanol exposure on N-methyl-D-aspartate- and kainate-induced currents were examined electrophysiologically in Xenopus oocytes expressing rat hippocampal mRNA. Ethanol inhibited responses stimulated by low and high concentrations of N-methyl-D-aspartate to a similar degree. However, responses produced by low or high concentrations of kainate were differentially inhibited by ethanol. Low kainate concentration responses were much more sensitive to ethanol than high kainate concentrations (e.g., 50 mM ethanol inhibited 12.5 microM kainate responses by 45% compared to 15% inhibition of 400 microM kainate responses). In oocytes cultured in 100 mM ethanol for 1-5 days, the ethanol inhibition of maximum N-methyl-D-aspartate and kainate responses was not different from that in non-ethanol-exposed oocytes. Ethanol treatment, however, selectively decreased the ethanol sensitivity of low kainate concentration responses. Currents stimulated by N-methyl-D-aspartate or kainate were not different between control and ethanol-treated oocytes, indicating that ethanol exposure did not interfere with channel expression. The selective actions of acute and extended ethanol exposure on low kainate responses may indicate selective actions of ethanol on subtypes of kainate receptors expressed in oocytes.  相似文献   

9.
Localization of the gamma and delta types of mRNAs for Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) was determined in the rat brain, making use of in situ hybridization histochemistry. The gamma and delta mRNAs as well as the alpha and beta mRNAs for CaM-kinase II were heterogeneously and distinctly distributed. In the Purkinje cell layer of the cerebellum, alpha, beta, and gamma mRNAs but not delta mRNA were present, whereas beta, gamma, and delta mRNAs were present in the locus coeruleus. These findings provide evidence that CaM-kinase II exists in a variety of forms in different cells composed of a variable number and type of subunits.  相似文献   

10.
To study the effects of bisphenol-A (BPA) known to have estrogenic actions, and its derivatives, 3,5-dimethylphenol (DMP) and p-t-butylphenol (TBP), on ionotropic γ-aminobutyric acid (GABA) receptors, GABAA receptors were expressed in Xenopus oocytes by injecting both poly(A)+RNA prepared from rat whole brain and cRNAs synthesized from cloned cDNAs of α1 and β1 subunit of the bovine receptors, and their electrical responses were measured by the voltage clamping method. BPA caused the potentiation and inhibition of the former receptor-responses, while it caused only inhibition of the latter ones. In the presence of low concentrations of GABA, DMP and TBP potentiated the responses of both receptors. DMP and TBP also increased the rate of decay of the response, possibly by desensitization of the receptors when GABA solution was continuously bath-applied. Diethyl terephthalate (DTP), which is also known to have estrogenic actions, had little effect on both the responses and the decay of both receptors.  相似文献   

11.
Summary— To separate and concentrate various cytoplasmic organelles in wild type and albino Xenopus oocytes, defolliculated cells were loaded on a Ficoll-400 gradient and centrifuged. Optimum results were obtained with centrifugations at 10 000 g for 5 min at 20°C. The cells became pear-shaped and appeared stratified with the white lipid yolk on top, an intermediate transparent zone of about 100–300 μm, and the greenish protein yolk at the bottom. To determine the cellular constituents, particularly of the transparent zone, electron microscopy was performed. The transparent zone was found to contain (from animal to vegetal) the various endoplasmic reticula, a layer of mitochondria, cytoplasm enriched in ribosomes and the depressed nucleus. In centrifuged stratified wild type oocytes, most of the pigment was layered on top of the protein yolk. The typical cortical aspects of the oocyte persisted. Centrifuged albino oocytes had a very pronounced transparent zone with sharp transitions to the lipid phase and to the protein yolk. The resting membrane potentials of centrifuged oocytes were between ?35 and ?65 mV, and the membrane resistances were in the 500 kΩ to 1 MΩ range. Under voltage clamp conditions, the oocytes exhibited Ca2+-activated Cl? currents with biphasic kinetics and spontaneous oscillations of these currents. It is concluded that centrifuged stratified oocytes have normal electrophysiological properties, and that they are a suitable preparation to study the contribution of various cellular organelles to the propagation of second messengers in the cytosol.  相似文献   

12.
GABA-activated Cl current was expressed in Xenopus oocytes after injecting cRNA that had been transcribed in vitro from complementary DNA (cDNA) coding for a single GABA ρi-subunit cloned from human retina. The expressed current was insensitive to 100 μm bicuculline, but was activated by the GABA analogue trans-4-aminocrontonic acid (TACA). Anion-selective permeability of the expressed ρ1-subunit was determined by isotonically replacing the extracellular Cl with different anions. The anion permeability was very similar to the native GABAA receptor/channel following a sequence of SCN > I > NO3 > Br≥ Cl. Halogenated fatty acids, such as chlorotrifluoroethylene (CTFE) and perfluorinated oligomer acids inhibited the GABA-induced current in oocytes expressing the human retinal GABA ρ1-subunit or rat brain GABAA receptor α122 subunits. The inhibitory effect of halogenated fatty acids demonstrated a carbon chain length-dependent manner of: C10 > C8 > C6 > C4. Perfluorinated C8-oligomer acid (PFOA) was less effective at blocking this channel than the C8-CTFE oligomer acid. Radiolabeled GABA binding assay indicated that CTFE oligomer acids do not interfere at the GABA binding site of the receptor. Furthermore, the C8-CTFE oligomer fatty acid did not compete with picrotoxin for binding sites within the pore of the channel. These studies demonstrated that the heterologous expression system is useful for studying the molecular interaction between potential neurotoxic agents and neuroreceptors. Our results provide detailed information that should contribute to our understanding of the structure and function of retinal GABA receptors. Received: 12 June 1995/Revised: 21 September 1995  相似文献   

13.
Renal reabsorption appears to play a major role in d-mannose homeostasis. Here we show that in rat kidney, the transport of d-mannose by brush border membrane vesicles from tubular epithelial cells involves an uphill and rheogenic Na-dependent system, which is fully inhibited by d-mannose itself, incompletely inhibited by d-glucose, d-fructose, phloridzin, and phloretin, and noninhibited by l-mannose or disaccharides. In addition, this system exhibits both low capacity (112.9 ± 15.6 pmol/mg/second) and high affinity (0.18 ± 0.04 mm), with a 2:1 stoichiometry for the Na:d-mannose interaction, and low affinity for sodium (16.6 ± 3.67 mm). We also show expression of d-mannose transport by Xenopus laevis oocytes injected with rat renal polyA+ RNA. Kinetic analysis of the expressed transport was performed after RNA enrichment by fractionation through a sucrose density gradient and was shown to be identical to that measured in membrane vesicles. The RNA species encoding the expressed transport has a small mean size, 1 kb approximately, and shows no homology with the SGLT family of Na-dependent d-glucose transporters, as shown by low stringent RT-PCR and northern analysis. The expressed transport is specific for d-mannose, since in spite of a significant inhibition by d-glucose and d-fructose, neither of these two substrates was transported above the level of the water-injected oocytes. Received: 29 February 2000/Revised: 25 August 2000  相似文献   

14.
We have developed a coupled Xenopus oocyte expression system for evaluating the functional effects of mutations in known or suspected adhesion molecules, which allows for a very rapid assessment of intercellular adhesion. As a model protein, we first used Protein zero (Po), an adhesion molecule that mediates self-adhesion of the Schwann cell plasma membrane to form compact myelin in the mammalian PNS. A wide variety of mutations in Po cause certain human peripheral neuropathies, such as the Charcot-Marie-Tooth disease (CMT) type 1B and Dejerine-Sottas syndrome (DSS). After wild-type Po mRNA is injected, the protein is synthesized and correctly targeted to the oocyte cell surface. When two oocytes are paired, wild-type Po redistributes and concentrates at the cell-cell apposition region, and by electron microscopy, the oocyte pairs show close cell-cell appositions and are devoid of the microvilli that are observed in uninjected oocyte pairs. These are hallmark features of highly adhesive cell:cell interfaces. Several point mutations in Po were engineered, corresponding to the molecular defects in the CMT type 1B or DSS. The proteins encoded by these mutations reached the cell surface but failed to concentrate at the oocyte interface. Po carrying a point mutation that is found in DSS is not targeted on the plasma membrane and fail to accumulate at the cell-cell contact site.  相似文献   

15.
D L Lewis  S R Ikeda  D Aryee  R H Joho 《FEBS letters》1991,290(1-2):17-21
Rat basophilic leukemia cells (RBL-2H3) have previously been shown to contain a single type of voltage-activated channel, namely an inwardly rectifying K+ channel, under normal recording conditions. Thus, RBL-2H3 cells seemed like a logical source of mRNA for the expression cloning of inwardly rectifying K+ channels. Injection of mRNA isolated from RBL-2H3 cells into Xenopus oocytes resulted in the expression of an inward current which (1) activated at potentials negative to the K+ equilibrium potential (EK), (2)decreased in slope conductance near EK, (3) was dependent on [K+]o and (4) was blocked by external Ba2+ and Cs+. These properties were similar to those of the inwardly rectifying K+ current recorded from RBL-2H3 cells using whole-cell voltage clamp. Injection of size-fractionated mRNA into Xenopus oocytes revealed that the current was most strongly expressed from the fraction containing mRNA of approximately 4–5 kb. Expression of this channel represents a starting point for the expression cloning of a novel class of K+ channels.  相似文献   

16.
Mixed and muscarinic cholinergic agonists (acetylcholine, carbamylcholine, methacholine, oxotremorine, and pilocarpine) accelerated in a dose-dependent manner the progesterone-induced maturation of Xenopus laevis oocytes. None of these agonists induced oocyte maturation in the absence of progesterone. The accelerating effect of cholinergic agonists was blocked in a dose-dependent manner by specific muscarinic antagonists (atropine and scopolamine) but not by specific nicotinic antagonists (d-tubocurarine and hexamethonium). The specific nicotinic agonist, dimethylphenylpiperazine, alone induced maturation in the absence of progesterone. The optimal promoting effect of acetylcholine was observed when oocytes were exposed to acetylcholine for 30 min, 5 min after the addition of progesterone, and was markedly better than when oocytes were exposed to acetylcholine throughout their incubation with progesterone. The effect of acetylcholine was observed in both follicle-enclosed and in defolliculated oocytes, indicating that follicular cells were not the target of the cholinergic drugs.  相似文献   

17.
Abstract: Expression of rat brain γ-aminobutyric acid type A (GABAA) receptors in Xenopus laevis oocytes can be achieved by injection of the oocytes with synaptosomes. This approach has now been applied to evaluate changes in the function of nigral GABAA receptors after degeneration of the striatonigral GABAergic pathway induced by the unilateral infusion of kainic acid into the rat striatum. Ten days after striatal injection, synaptosomal membranes were prepared from the substantia nigra and introduced into oocytes. Nigral GABAA receptors incorporated into the oocyte cell membrane were then characterized electrophysiologically under voltage-clamp conditions. The maximal amplitude of GABA-induced Cl? currents in oocytes injected with synaptosomes from denervated substantia nigra was twice that observed in oocytes injected with synaptosomes from control substantia nigra. The concentration of GABA required for the half-maximal response did not differ between the two groups of oocytes. In addition, the potentiation of GABA-induced currents by the benzodiazepine diazepam (1 µM) and the steroid derivative allopregnanolone (3 µM) was increased by ~65 and 60%, respectively, in oocytes injected with synaptosomes from denervated substantia nigra compared with those injected with control synaptosomes. The concentrations of diazepam and allopregnanolone giving half-maximal responses were not affected by denervation. In contrast, the inhibitory effects of the benzodiazepine receptor inverse agonists FG 7142 (10 µM) and 6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylic acid ethyl ester (1 µM) were reduced by 48 and 38%, respectively, after denervation. These results indicate that the up-regulation of nigral GABAA receptors induced by degeneration of the striatonigral GABAergic pathway is associated with an increased efficacy of positive allosteric modulators, such as benzodiazepines and steroids, and with a reduced efficacy of negative allosteric modulators such as β-carbolines.  相似文献   

18.
The mRNA that encodes a serotonin transporter was expressed using the Xenopus laevis oocyte expression system. Poly(A)+ RNA isolated from mouse brainstem was injected into Xenopus laevis oocytes, and the ability of oocytes to take up serotonin was measured 3 days postinjection. RNA-dependent serotonin uptake was sensitive to citalopram, a specific inhibitor of serotonin uptake, whereas background levels of serotonin uptake were not citalopram sensitive. Two RNA size fractions, 4.0 and 4.5 kb, were most efficient in stimulating uptake. Injection into Xenopus laevis oocytes of the 4.5-kb size fraction of mouse brainstem RNA resulted in threefold more serotonin uptake than did injection of unfractionated poly(A)+ RNA.  相似文献   

19.
This collaborative laboratory exercise integrates two upper division laboratory courses (Developmental Biology and Neurobiology) offered to biology majors at Wake Forest University. The laboratory exercise involves the use of the Xenopus oocyte expression system to study the function of specific membrane receptors and ligand-activated channels. cDNA or mRNA for receptor proteins is injected into Xenopus oocytes. The oocytes are assayed for expression of receptor proteins and two-electrode voltage clamping is done to determine whether the expressed proteins are functional in the oocyte system. This series of laboratory exercises is innovative in its interdisciplinary and collaborative approach to undergraduate teaching, and in its use of sophisticated molecular biological and physiological techniques in the undergraduate teaching laboratory. Students learn first-hand how these techniques have been used to achieve a new level of understanding of both development and neurobiology. Journal of Industrial Microbiology & Biotechnology (2000) 24, 353–358. Received 02 April 1999/ Accepted in revised form 10 November 1999  相似文献   

20.
Xenopus V2R (xV2R), a family of G-protein-coupled receptors with seven transmembrane domains, is expressed in the Xenopus vomeronasal organ (VNO). There are six subgroups of xV2R, one of which, xV2RE, is predominantly expressed in the VNO. To understand the function of xV2R during VNO development, we developed a new method to achieve stable siRNA-suppression of the V2RE genes by introducing siRNA expression transgenes into the genomes of unfertilized eggs. We found that some of the derived transgenic tadpoles lacked VNOs and that their olfactory epithelium was fused. With the exception of one tadpole, expression of xV2RE was not detected in morphologically abnormal mutant tadpoles, although the olfactory marker protein and the olfactory receptors were expressed. These results suggest that we successfully produced transgenic tadpoles in which xV2RE expression was stably suppressed by siRNA, and that xV2RE plays a role in the morphogenesis of olfactory organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号