首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excretory-secretory (E-S) products obtained during in vitro Schistosoma mansoni miracidium-to-sporocyst transformation were found to contain a 108-kDa polypeptide capable of scavenging both exogenously produced and M-line Biomphalaria glabrata hemocyte-derived superoxide (O2-) anions. Separation of crude transformation E-S products using HPLC and ion exchange chromatography resulted in the separation of two isoforms of the 108-kDa molecule. Using an in vitro phagocytosis assay, both isoforms were found to be capable of reducing O2- production by phagocytically stimulated M-line B. glabrata hemocytes without cell loss and without a concomitant reduction in phagocytosis. Although parasite antioxidant molecules appear to play a role in the evasion of host oxidative defense systems in several parasite-vertebrate systems, no previous reports of a parasite antioxidant capability against the potential of oxidative killing by invertebrate defense systems has been reported. In conjunction with the previously confirmed production of O2- by B. glabrata hemocytes and reports of reactive oxygen metabolite production by hemocytes from several molluscan species, these results indicate that reactive forms of oxygen and parasite antioxidant systems may play an important role in the determination of compatibility in the trematode-mollusc relationship.  相似文献   

2.
The fate of Schistosoma mansoni (Trematoda) sporocysts in its molluscan host Biomphalaria glabrata (Gastropoda) is determined by circulating phagocytes (hemocytes). When the parasite invades a resistant snail, it is attacked and destroyed by hemocytes, whereas in a susceptible host it remains unaffected. We used 3 inbred strains of B. glabrata: 13-16-R1 and 10-R2, which are resistant to the PR-1 strain of S. mansoni, and M-line Oregon (MO), which is susceptible to PR-1. In an in vitro killing assay using plasma-free hemocytes from these strains, the rate of parasite killing corresponded closely to the rate by which S. mansoni sporocysts are killed in vivo. Hemocytes from resistant snails killed more than 80% of S. mansoni sporocysts within 48 hr, whereas sporocyst mortality in the presence of hemocytes from susceptible snails was <10%. Using this in vitro assay, we assessed the involvement of reactive oxygen species (ROS) produced by resistant hemocytes, during killing of S. mansoni sporocysts. Inhibition of NADPH oxidase significantly reduced sporocyst killing by 13-16-R1 hemocytes, indicating that ROS play an important role in normal killing. Reduction of hydrogen peroxide (H2O2) by including catalase in the killing assay increased parasite viability. Reduction of superoxide (O2-), however, by addition of superoxide dismutase or scavenging of hydroxyl radicals (*OH) and hypochlorous acid (HOCl) by addition of hypotaurine did not alter the rate of sporocyst killing by resistant hemocytes. We conclude that H2O2 is the ROS mainly responsible for killing.  相似文献   

3.
Circulating hemocytes of the snail, Biomphalaria glabrata, synthesize and secrete a variety of polypeptides when maintained in vitro in serum-free medium containing [35S] methionine. SDS-PAGE/fluorographic analysis of supernatants from resistant snail (10-R2-OK strain) hemocyte cultures revealed the presence of numerous labeled polypeptides ranging in Mr from 220 to 14 kDa. Most of these same proteins were also produced by hemocytes of a susceptible B. glabrata strain (M-line), but the overall rate of secretory protein synthesis was reduced from that of resistant snail cells. In addition, excretory-secretory (ES) products contained in supernatants from Schistosoma mansoni miracidial transformation and 1-day primary sporocyst cultures stimulated increases in the synthesis of various polypeptides. Particularly striking was a 3-fold increase in the synthesis of a 66-kDa secretory polypeptide by hemocytes of both snail strains, and a concomitant increase in M-line hemocytes and decrease in 10-R2-OK cells of a 63-kDa polypeptide. Overall, however, the level of ES product-induced secretory protein synthesis was greater in 10-R2-OK snail hemocytes than in those of the M-line strain. Exposure of a nonhemocytic B. glabrata cell line to parasite culture supernatants had no stimulatory/inhibitory effect on labeled protein ouput, suggesting that the observed hemocyte response may be snail cell-type specific. Finally, the larval ES components responsible for modulating hemocyte protein metabolism are mainly concentrated in a heat-stable fraction composed of molecules of greater than 30 kDa. However, the loss of the ability of heated parasite products to stimulate synthesis of certain hemocyte proteins and the presence of minor stimulating activity in a low molecular weight fraction (less than 10 kDa) implies the possible existence of multiple larval components affecting formation of specific hemocyte secretory polypeptides. It is concluded that snail hemocytes are capable of in vitro synthesis and secretion of a variety of methionine-containing polypeptides, and that ES products of early larval schistosomes can modulate (i.e., stimulate or inhibit) this metabolic process. A differential response of susceptible vs. resistant hemocytes to larval products suggests that the degree to which these cells can be metabolically activated may determine their cytotoxic effectiveness.  相似文献   

4.
Humoral factors have been associated with resistance of Biomphalaria glabrata to infection by Schistosoma mansoni. The goal of this study was to determine which serum (cell-free hemolymph) proteins bind to the surface of S. mansoni sporocysts. For this, 125I-labeled serum from schistosome-resistant (10-R2) and -susceptible (M-line) B. glabrata was incubated with sporocysts, washed, and then subjected to SDS-PAGE and autoradiography. Other samples examined included radiolabeled 10-R2 and M-line serum, sporocysts incubated with unlabeled serum followed by incubation with radiolabeled serum, and radiolabeled sporocysts. Results indicated that many polypeptides in the serum from both strains of B. glabrata were radiolabeled. Dominating both profiles were bands in the 90-210-kDa range. However, some differences between the serum of the 2 snail strains were observed with M-line serum having several radiolabeled polypeptides in the 31-40- and 66-85-kDa range that were absent in serum from 10-R2 B. glabrata. When sporocysts were incubated with radiolabeled serum, 3 polypeptides (116, 180, 210 kDa) from both snail strains bound to the surface of the parasite. Further, a 55-kDa polypeptide bound to sporocysts incubated with 10-R2 serum but did not bind to those parasites incubated with M-line serum. Preincubation of sporocysts with unlabeled serum prior to incubation with radiolabeled serum significantly inhibited the uptake of radiolabeled proteins. This differential binding of serum polypeptides from different strains of B. glabrata may be important in determining resistance or susceptibility of the snail to larval schistosome infection.  相似文献   

5.
Excretory-secretory (E-S) products contained in supernatants from in vitro cultured Schistosoma mansoni primary sporocysts were assayed for their effects on the in vitro motility of Biomphalaria glabrata hemocytes. Both whole (unfractionated) and fractionated E-S products were tested in modified Boyden chemotaxis chambers. E-S product fractionation was accomplished using both membrane ultrafiltration (MF) and high-pressure liquid chromatography (HPLC). Transformation (Tr) products, but not those products released by 8-day sporocysts, significantly inhibited the random motility of hemocytes from an S. mansoni susceptible strain (M-Line) of B. glabrata. This activity was found in both high and low MF fractions of Tr but not in an intermediate MF fraction. In an effort to isolate the active component(s) of the high MF fraction, HPLC was used to separate components based on size exclusion. Although each of four HPLC fractions displayed some inhibitory activity, the greatest consistent activity was found in fraction 3, which was composed, predominantly, of a 108-kDa protein. In contrast to the response of M-Line cells to Tr E-S products, the motility of hemocytes from an S. mansoni-resistant strain (10-R2-OK) of B. glabrata was not significantly reduced from controls. The high MF fraction, however, elicited a slight positive chemokinetic response, while the low MF fraction reduced 10-R2-OK hemocyte motility slightly but not significantly. While three HPLC fractions significantly reduced 10-R2-OK hemocyte motility, this effect was significantly less than that produced by the same HPLC fractions on M-Line hemocyte motility. These data suggest that S. mansoni sporocyst Tr E-S products differentially affect the random motility of M-Line and 10-R2-OK snail hemocytes. Although the significance of this differential effect on the in vivo defenses of B. glabrata is not known, it could be important in the host-parasite interaction which leads to either resistance or susceptibility.  相似文献   

6.
Abstract. The cytokine interleukin-1β (IL-1β) mediates interactions of immune and inflammatory cells in mammals. Previous reports also have linked plasma (cell-free hemolymph) levels of IL-1β in the snail Biomphalaria glabrata to resistance against Schistosoma mansoni . In the present study, fluorescent probes were used to study larval schistosome and snail hemocyte viability during in vitro encounters. Hemolymph (plasma and hemocytes) from schistosome-susceptible (M-line) and resistant (13–16-R1) B. glabrata was added to sporocysts of S. mansoni and the viability of hemocytes and parasites was assessed. Next, IL-1β was added to sporocyst-hemolymph samples, the viability of sporocysts and hemocytes determined and then compared to control assays. The number of live sporocysts present after incubation for 1 h with hemolymph from M-line snails was significantly greater than the number seen when hemolymph from 13–16-R1 snails was tested. Nearly all sporocysts survived the 1 h incubation with M-line hemolymph, and most of the hemocytes attached to sporocysts were dead. In contrast, nearly all sporocysts were dead when hemolymph from 13–16-R1 snails was tested, and most attached hemocytes were alive. Addition of IL-1β to M-line hemolymph resulted in a dramatic increase in sporocyst death. Addition of IL-1β to 13–16-R1 hemolymph produced a small but significant increase in the rate of sporocyst death. These results indicate that the concentration of IL-1β present in hemolymph from B. glabrata is directly related to the ability of this snail to kill S. mansoni sporocysts in vitro.  相似文献   

7.
Schistosoma mansoni modulation of phagocytosis in Biomphalaria glabrata   总被引:1,自引:0,他引:1  
Both short-term (3 hr) exposure of Biomphalaria glabrata snails (M-line and 13-16-R1) to Schistosoma mansoni (PR1) miracidia and in vitro incubation of parasite sporocysts with host hemolymph components altered host phagocytic ability. Hemocytes obtained from susceptible (M-line) snails that had been exposed to parasite miracidia for 3 hr showed reduced levels of phagocytosis of yeast cells in vitro compared to hemocytes from unexposed individuals. Incubation of whole hemolymph with sporocysts in vitro also reduced yeast phagocytosis in this susceptible strain. In contrast, resistant (13-16-R1) hemocytes showed increased levels of yeast phagocytosis after in vitro incubation with the parasite, and the opsonic properties of 13-16-R1 plasma were greater after exposure of snails to miracidia. These strain-specific effects of S. mansoni on host hemocyte phagocytosis and plasma opsonization were seen only when both plasma and hemocytes were present at the time of exposure to the parasite.  相似文献   

8.
Normally benign hemocytes from a strain (M-line) of the snail, Biomphalaria glabrata, susceptible to Schistosoma mansoni, became cytotoxic toward the sporocyst stage if the parasite was first treated with the lectin, concanavalin A. Concanavalin A binding was inhibitable with alpha-methyl mannoside and killing was dose-dependent. Maximal levels of concanavalin A-induced cytotoxicity were comparable with levels observed when hemocytes from a resistant snail strain (13-16-R1) encountered untreated sporocysts. Induction of the cytotoxic response did not occur if hemocytes alone were pretreated with the lectin. A unique method incorporating ultraviolet microscopy and the vital fluorescent dye, eosin Y, was used for discriminating between live and dead sporocysts. This model may prove useful in understanding mechanisms used by invertebrate effector cells in recognition and killing of invading organisms.  相似文献   

9.
Passive transfer of natural resistance to Schistosoma mansoni (PR-1 strain) has been successfully accomplished in the snail intermediate host, Biomphalaria glabrata (PR albino, M-line strain). Injection of serum (cell-free hemolymph) from a naturally schistosome-resistant strain of B. glabrata (10-R2) into PR albino snails induced a complete protection from a primary infection with the parasite in 29 of 48 snails (60.4%). In comparison, inoculation of homologous PR albino serum or heterologous proteins (fetal calf serum) had no effect. Moreover, this protection could be induced 24 hr prior to, or 24 hr after, exposure to the parasite, although heating of 10-R2 serum to 70 C for 30 min destroyed its protective ability. When in vitro transformed sporocysts were preincubated in 10-R2 or PR albino serum and then were injected into susceptible snails, a high level of infection (88.5 and 83.3%, respectively) was produced in both groups. Thus, the 10-R2 serum factor does not appear to be mediating specific parasite recognition by host hemocytes. Alternatively, our results suggest that 10-R2 serum possesses a heat-labile factor which specifically activate B. glabrata hemocytes to encapsulate and destroy sporocysts whereas PR albino serum lacks this factor.  相似文献   

10.
Miracidia of Echinostoma paraensei were cultured in medium containing 14C-labeled amino acids, allowed to transform into sporocysts, and their excretory/secretory products (E-S) were collected and characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. Effects of E-S on hemocytes of Biomphalaria glabrata were also assessed. E-S collected during day 1 of culture (E-S1) contained several polypeptides, none of which were labeled, suggesting that E-S1 are largely preformed. E-S1 significantly depressed the ability of hemocytes to phagocytose sheep red blood cells (SRBC), but otherwise had little effect on hemocyte structure or behavior. E-S released by sporocysts in day-2 cultures (E-S2) and in older cultures generally were similar and also contained several polypeptides, many of which were labeled, indicating active synthesis of E-S in vitro. E-S2 strongly inhibited hemocyte uptake of SRBC. Also, hemocytes pretreated with E-S2 assumed a spherical shape and failed to spread normally. E-S obtained through 10 days of culture mediated this effect. Active components of E-S2 were greater than 100 kDa in their native configuration, were heat- and trypsin-labile, and were bound by anti-E-S antibodies. Both greater than 200- and 80-kDa bands were prominent in anti-E-S immunoprecipitates. Hemocytes derived from snails of the 13-16-R1 strain of B. glabrata (a strain resistant to infection with Schistosoma mansoni), when pretreated with E-S2, bound to sporocysts of S. mansoni but lost their ability to damage such sporocysts. E-S2 interfered with hemocyte functions in ways inferred from earlier classic in vivo studies of trematode-snail interactions.  相似文献   

11.
Hemocytes taken from six different gastropod snails, Achatina achatina, A. fulica, Biomphalaria glabrata, Bulinus natalensis, Helix aspersa, and Lymnaea stagnalis, were compared for morphology, peroxidase activity, and, using methods developed for L. stagnalis, the ability to generate reactive oxygen inermediates upon phagocytic stimulation. Numbers of hemocytes per milliliter hemolymph and hemocytes' microscopical morphology showed some variation among the snail species. Peroxidase activity was demonstrated in all snail hemocytes except in those of B. glabrata and A. fulica. Hemocytes of all species generated superoxide upon phagocytic stimulation with zymosan (tested by superoxide dismutase-inhibitable reduction of nitroblue tetrazolium). When tested, hemocytes of A. achatina and of A. fulica displayed luminol-dependent chemiluminescence activity.  相似文献   

12.
A polyvalent antiserum (anti-HPR) generated in rabbits to cell-free hemolymph from a PR albino (M-line) stock of snail, Biomphalaria glabrata, was employed as a membrane probe to determine if antigens related to snail hemolymph were associated with the surface membranes of phosphate-buffered saline (PBS) washed hemocytes from a schistosome-susceptible (PR albino) and refractory (10-R2) stock of B. glabrata. Immunofluorescent and immunoelectron microscopical analyses revealed a strong cross-reactivity between anti-HPR antibodies and hemocytes from both PR albino and 10-R2 snails indicating the presence of surface-associated hemolymph or hemolymph-like antigens. Hemoglobin isolated from PR albino B. glabrata hemolymph competitively inhibited the binding of anti-HPR to hemocytes suggesting that cross-reactive membrane components were, at least in part, antigenically related to snail hemoglobin. Antigens reactive with antihemolymph antibodies also were resistant to protease treatment. No antigenic differences between PR albino and 10-R2 snail hemocytes could be detected due to the heterospecific nature of the probe antiserum, however, it is believed that the major cross-reactive membrane components, e.g., hemoglobin-like determinants, are shared in common by hemocytes of both snail stocks.  相似文献   

13.
In strains of the snail Biomphalaria glabrata (Gastropoda) that are resistant to the parasite Schistosoma mansoni (Trematoda), hemocytes in the hemolymph are responsible for elimination of S. mansoni sporocysts. The defensive role of reactive nitrogen species was investigated in in vitro interactions between hemocytes derived from the resistant 13-16-R1 strain of B. glabrata and the parasite. The nitric oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine methylester (L-NAME) and the nitric oxide (NO) scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide reduced cell-mediated killing of S. mansoni sporocysts. To determine if peroxynitrite (ONOO-) is involved in killing, assays were run in the presence of the ONOO- scavengers uric acid and deferoxamine. These did not influence the rate of parasite killing, indicating that NO is directly responsible for mediating cytotoxicity, but ONOO- is not. The combination of the NOS inhibitor L-NAME and catalase, an enzyme that detoxifies hydrogen peroxide (H2O2), reduced average sporocyst mortality to a greater extent than L-NAME alone. Killing of the sporocysts was, however, not totally inhibited. It is suggested that NO and H2O2 are both involved in hemocyte-mediated toxicity of 13-16-R1 B. glabrata against S. mansoni sporocysts.  相似文献   

14.
The production of reactive oxygen species by hemocytes from the gastropod Biomphalaria glabrata has been linked to their ability to kill the trematode parasite Schistosoma mansoni. For 2 laboratory strains of the snail, 1 resistant (13-16-R1) and 1 susceptible (MO) to the PR1 strain of S. mansoni, we compared hemocyte production of extracellular hydrogen peroxide when stimulated with the protein kinase C agonist phorbol myristate acetate (PMA). The time course of the PMA-induced response is similar in both strains with respect to onset, peak production, and termination of the respiratory burst. However, the magnitude of the response differs between strains, in that hemocytes from resistant snails generate significantly more hydrogen peroxide. These findings suggest that the capacity to produce hydrogen peroxide could be critical in determining susceptibility or resistance to S. mansoni.  相似文献   

15.
Reactive oxygen intermediates (ROIs), including superoxide anions and hydrogen peroxide, are generated by phagocytes in invertebrates, as well as in vertebrates. To understand the molecular mechanisms underlying the generation of ROIs by hemocytes of the solitary ascidian Halocynthia roretzi, we established a method of measuring ROIs using luminol-dependent chemiluminescence (LDCL). LDCL analyses revealed that both zymosan and phorbol myristate acetate (PMA), but not lipopolysaccharide, beta1,3-glucan, or formylpeptide, induced the generation of ROIs by H. roretzi hemocytes. The zymosan-induced LDCL was markedly inhibited by the addition of superoxide dismutase (SOD) or H. roretzi plasma. A calcium-chelating reagent, BAPTA-AM, completely inhibited the zymosan-induced LDCL. On the other hand, the PMA-induced LDCL was only slightly inhibited by the addition of SOD or BAPTA-AM. Spectroscopic analysis at a low temperature revealed that H. roretzi hemocytes had absorption spectra specific for type b cytochrome, a component of the NADPH oxidase complex in mammalian phagocytes. These results strongly suggest that H. roretzi hemocytes generate superoxide anions upon phagocytosis and that intracellular calcium ions and possibly an NADPH oxidase complex are involved in their generation by H. roretzi hemocytes.  相似文献   

16.
The distribution and abundance of the lysosomal enzyme markers, acid phosphatase (AP), peroxidase (PO), and nonspecific esterase (NE), within circulating blood cells (hemocytes) were examined in a schistosome-susceptible (PR albino M-line) and a resistant (10-R2) strain of Biomphalaria glabrata during the course of infection with Schistosoma mansoni. The dynamics of serum (cell-free hemolymph) AP activities and total hemocyte numbers in infected snails also were investigated. Hemocyte subpopulations, as determined by these enzyme markers, responded differently to parasite infection between snail strains. Generally, the hemocyte subpopulations within PR albino snails remained largely unchanged, whereas the same subpopulations in 10-R2 snails fluctuated considerably. The distribution of AP in the hemocytes of 10-R2 snails decreased by 1 hr postexposure (PE) to the parasite and remained low through 12 hr before increasing to control values at 24 hr and 2 wk PE. In comparison, PO activity increased by 1 hr PE and peaked at 12 hr before dropping to 0 hr values by 2 wk PE. The NE activity exhibited still another pattern with the percentage of NE-positive cells decreasing from 0 to 12 hr PE followed by a recovery to 0-hr values by 24 hr. The abundance of these hemocyte enzymes followed a similar pattern to that of their distribution, although some differences were observed. Serum AP values varied little in PR albino snails except for a significant increase at 2 wk PE, indicating a possible response to tissue damage resulting from migrating daughter sporocysts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Hemocytes derived from a strain (13-16-R1) of Biomphalaria glabrata resistant to Schistosoma mansoni were significantly more likely to bind untreated latex beads than hemocytes from the schistosome-susceptible M line strain. Beads preincubated in 13-16-R1 plasma were more readily bound by both 13-16-R1 and M line hemocytes than beads preincubated in M line plasma. Beads preincubated in plasma derived from snails of either strain infected with the trematode Echinostoma paraensei were more readily bound by hemocytes than beads preincubated in plasma from control snails of the corresponding strain. Plasma from snails exposed to S. mansoni did not have a similar effect. Throughout these experiments, beads receiving a particular treatment were consistently bound at higher rates by 13-16-R1 than M line hemocytes. SDS-PAGE of plasma components eluted from beads revealed differences between treatments, particularly in diffuse bands falling into two groups, of 75-130 and 150-220 kDa. The results indicate that both hemocytes and plasma components from the two host strains differ and identify plasma molecules deserving of additional study as possible modulators of hemocyte effector functions. Also, S. mansoni and E. paraensei provoked different responses in the same host snail.  相似文献   

18.
In vitro phagocytosis of erythrocytes by hemocytes of B. glabrata, intermediate host of S. mansoni, is strongly influenced by calcium, several lectins, and plasma factors. Our results indicate that two different mechanisms of non-self-recognition in B. glabrata may occur: (1) In the presence of calcium, phagocytosis occurs in noninfected and in infected snails without involvement of any other substances, and hemocytes of schistosome resistant as well as those of susceptible snails are able to recognize and phagocytose the target cells. (2) In the absence of calcium, phagocytosis occurs if bridging molecules (heterologous lectins in our assays) were present for which effector and target cells possess binding sites or if target cells were plasma coated prior to the assays. In suspensions in homologous plasma, hemocytes of both snail strains, infected or noninfected, subsequently showed phagocytic activities of about 70-80%. Preincubation of target cells in homologous plasma resulted in similar high phagocytic activities of hemocytes even in the absence of plasma during the standard assay. In these assays, a significantly higher proportion of hemocytes of resistant snails phagocytosed plasma-opsonized erythrocytes, whereas hemocytes of susceptible snails internalized less erythrocytes per cell and needed 60 min to phagocytose at percentages equivalent to that of resistant hemocytes within 10 min. Preincubation of erythrocytes in resistant plasma significantly increased the subsequent phagocytic activity of susceptible hemocytes, whereas preincubation of erythrocytes in susceptible plasma decreased the phagocytosis level of resistant hemocytes.  相似文献   

19.
Responses of the hematopoietic organ (HO) in Biomphalaria glabrata snails to extracts and excretory-secretory (E-S) products of Echinostoma paraensei larvae were studied to understand the HO-activating mechanism. M-line B. glabrata snails were injected with materials from E. paraensei larvae, and the size of the HO was ascertained in histological sections. The size of HO in snails injected with extracts and E-S products from sporocysts and rediae was significantly larger than that in snails injected with culture medium. E-S products of sporocysts were fractionated using ultrafiltration membranes, polyacrylamide gel electrophoresis, and electrophoretic elution. Examination of fractionated E-S products of sporocysts revealed that specific components of E-S products were responsible for HO-stimulating activity.  相似文献   

20.
Lectins/carbohydrate binding can be involved in the Schistosoma mansoni recognition and activation of the Biomphalaria hemocytes. Therefore, expression of lectin ligands on Biomphalaria hemocytes would be associated with snail resistance against S. mansoni infection. To test this hypothesis, circulating hemocytes were isolated from B. glabrata BH (snail strain highy susceptible to S. mansoni), B. tenagophila Cabo Frio (moderate susceptibility), and B. tenagophila Taim (completely resistant strains), labelled with FITC conjugated lectins (ConA, PNA, SBA, and WGA) and analyzed under fluorescence microscopy. The results demonstrated that although lectin-labelled hemocytes were detected in hemolymph of all snail species tested, circulating hemocytes from both strains of B. tenagophila showed a larger number of lectin-labelled cells than B. glabrata. Moreover, most of circulating hemocytes of B. tenagophila were intensively labelled by lectins PNA-FITC and WGA-FITC, while in B. glabrata small hemocytes were labeled mainly by ConA. Upon S. mansoni infection, lectin-labelled hemocytes almost disappeared from the hemolymph of Taim and accumulated in B. glabrata BH. The role of lectins/carbohydrate binding in resistance of B. tengophila infection to S. mansoni is still not fully understood, but the data suggest that there may be a correlation to its presence with susceptibility or resistance to the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号