首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
General diffusion pores and specific porin channels from outer membranes of gram-negative bacteria were reconstituted into lipid bilayer membranes. The current noise of the channels was investigated for the different porins in the open state and in the ligand-induced closed state using fast Fourier transformation. The open channel noise exhibited 1/f-noise for frequencies up to 200 Hz. The 1/f-noise was investigated using the Hooge formula (Hooge, Phys. Lett. 29A: 139–140 (1969)), and the Hooge parameter α was calculated for all bacterial porins used in this study. The 1/f-noise was in part caused by slow inactivation and activation of porin channels. However, when care was taken that during the noise measurement no opening or closing of porin channels occurred, the Hooge Parameter α was a meaningful number for a given channel. A linear relationship was observed between α and the single-channel conductance, g, of the different porins. This linear relation between single-channel conductance and the Hooge parameter α could be qualitatively explained by assuming that the passing of an ion through a bacterial porin channel is—to a certain extent—influenced by nonlinear effects between channel wall and passing ion. Received: 8 May 1996/Revised: 27 January 1997  相似文献   

2.
The open channel characteristics of the bacterial porin Omp32 from Comamonas acidovorans were investigated by means of conductance measurements in planar lipid bilayers of the Montal-Mueller type. Particularly at low salt conditions (< or = 30 mM KCl) Omp32 exhibited some unusual asymmetric and nonlinear functional properties. Current-voltage relationship measurements showed that conductance depends on the orientation of porin molecules and is a nonlinear function of the applied membrane potential. Conductance also depends on the salt concentration in a manner not common to porins and the salt concentration modulates the nonlinearity of conductance-voltage relationships. Omp32 is strongly anion-selective. The nonlinear and asymmetric conductance of the open channel is a new observation in porins.  相似文献   

3.
K Pohlmeyer  J Soll  R Grimm  K Hill    R Wagner 《The Plant cell》1998,10(7):1207-1216
The pea chloroplastic outer envelope protein OEP24 can function as a general solute channel. OEP24 is present in chloroplasts, etioplasts, and non-green root plastids. The heterologously expressed protein forms a voltage-dependent, high-conductance (Lambda = 1.3 nS in 1 M KCl), and slightly cation-selective ion channel in reconstituted proteoliposomes. The highest open probability (P open approximately 0. 8) is at 0 mV, which is consistent with the absence of a transmembrane potential across the chloroplastic outer envelope. The OEP24 channels allow the flux of triosephosphate, dicarboxylic acids, positively or negatively charged amino acids, sugars, ATP, and Pi. Structure prediction algorithms and circular dichroism spectra indicate that OEP24 contains seven amphiphilic beta strands. The primary structure of OEP24 shows no homologies to mitochondrial or bacterial porins on a primary sequence basis, and OEP24 is functionally not inhibited by cadaverine, which is a potent inhibitor of bacterial porins. We conclude that OEP24 represents a new type of solute channel in the plastidic outer envelope.  相似文献   

4.
Bacterial porins are water-filled β-barrel channels that allow translocation of solutes across the outer membrane. They feature a constriction zone, contributed by the plunging of extracellular loop 3 (L3) into the channel lumen. Porins are generally in the open state, but undergo gating in response to external voltages. To date the underlying mechanism is unclear. Here we report results from molecular dynamics simulations on the two porins of Providenica stuartii, Omp-Pst1 and Omp-Pst2, which display distinct voltage sensitivities. Voltage gating was observed in Omp-Pst2, where the binding of cations in-between L3 and the barrel wall results in exposing a conserved aromatic residue in the channel lumen, thereby halting ion permeation. Comparison of Omp-Pst1 and Omp-Pst2 structures and trajectories suggests that their sensitivity to voltage is encoded in the hydrogen-bonding network anchoring L3 onto the barrel wall, as we observed that it is the strength of this network that governs the probability of cations binding behind L3. That Omp-Pst2 gating is observed only when ions flow against the electrostatic potential gradient of the channel furthermore suggests a possible role for this porin in the regulation of charge distribution across the outer membrane and bacterial homeostasis.  相似文献   

5.
A 36-kDa polypeptide of unknown function was identified by us in the boundary membrane fraction of cucumber seedling glyoxysomes. Evidence is presented in this study that this 36-kDa polypeptide is a glyoxysomal membrane porin. A sequence of 24 amino acid residues derived from a CNBr-cleaved fragment of the 36-kDa polypeptide revealed 72% to 95% identities with sequences in mitochondrial or non-green plastid porins of several different plant species. Immunological evidence indicated that the 36-kDa (and possibly a 34-kDa polypeptide) was a porin(s). Antiserum raised against a potato tuber mitochondrial porin recognized on immunoblots 34-kDa and 36-kDa polypeptides in detergent-solubilized membrane fractions of cucumber seedling glyoxysomes and mitochondria, and in similar glyoxysomal fractions of cotton, castor bean, and sunflower seedlings. The 36-kDa polypeptide seems to be a constitutive component because it was detected also in membrane protein fractions derived from cucumber leaf-type peroxisomes. Compelling evidence that one or both of these polypeptides were authentic glyoxysomal membrane porins was obtained from electron microscopic immunogold analyses. Antiporin IgGs recognized antigen(s) in outer membranes of glyoxysomes and mitochondria. Taken together, the data indicate that membranes of cucumber (and other oilseed) glyoxysomes, leaf-type peroxisomes, and mitochondria possess similar molecular mass porin polypeptide(s) (34 and 36 kDa) with overlapping immunological and amino acid sequence similarities.  相似文献   

6.
C Berrier  A Coulombe  C Houssin  A Ghazi 《FEBS letters》1992,306(2-3):251-256
E. coli porins (OmpF and OmpC) were purified and reconstituted into liposomes which were enlarged to giant proteoliposomes by dehydration-rehydration and studied by patch-clamp. The porins could be closed by voltage pulses under -100 mV. The kinetics of closure was slow, with closure events of about 200 pS in 0.1 M KCl. Rapid fluctuations (in the millisecond range) of about one third (60-70 pS) of the large closure steps were also observed. The data are interpreted as follows: an increase in membrane potential favours the cooperation transition of multimers towards an inactivated state, while monomers which have not been inactivated can flicker rapidly between an open and a short-lived closed state.  相似文献   

7.
A H Delcour  J Adler  C Kung  B Martinac 《FEBS letters》1992,304(2-3):216-220
The outer membrane of Escherichia coli is a diffusion barrier for macromolecules, but allows the passage of small hydrophilic solutes through non-specific channels, the porins. Some electrophysiological studies find reconstituted porins in a mostly open state, while those done with the patch-clamp technique performed on live cells suggest that the vast majority of the native channels are closed. We present here current measurements through porins from reconstituted outer membrane, which demonstrate that bacterial metabolites, the MDO's, which bathe the periplasmic side of the outer membrane, induce the channels to close. These findings illustrate that the degree of openness of porins can be regulated by compounds naturally found in bacteria.  相似文献   

8.
Porin of Dictyostelium discoideum was extracted from mitochondria with Genapol X-80 and was purified by hydroxyapatite and CM-cellulose chromatography. The purified protein displayed a single band of 30 kDa in SDS-polyacrylamide gel electrophoresis. The formation of channels in artificial lipid bilayer membranes defined its function as a channel-forming component. Its average single-channel conductance was 3.9 nanosiemens in 1 M KCl, which suggested that the effective diameter of the channel is approximately 1.7 nm at small transmembrane potentials. The channel displayed a characteristic voltage dependence for potentials higher than 20 mV. It switched to substates of smaller conductance and a selectivity different to that of the open state. The closed state was stabilized at low ionic strength. The cDNA sequence of mitochondrial porin from D. discoideum was determined. It showed little sequence similarities to other known mitochondrial porins. The functional similarity, however, was striking. Localization of the porin in the mitochondrial outer membrane was confirmed by immunogold labeling of cryosections of fixed cells.  相似文献   

9.
A Schmid  R Benz    B Schink 《Journal of bacteriology》1991,173(16):4909-4913
Porins were purified from cells of the anaerobic gram-negative bacterium Pelobacter venetianus grown with 20-kDa polyethylene glycol. After treatment of the cell envelope fraction with sodium dodecyl sulfate-containing solutions, the murein contained only two major peptidoglycan-associated proteins of 14 and 23 kDa. Both proteins were released from the peptidoglycan by the detergent Triton X-100. Genapol X-80 released only the 23-kDa protein. This protein was purified by chromatography on a hydroxyapatite column. It did not form sodium dodecyl sulfate-resistant oligomers. Reconstituted in lipid bilayer membranes, the 23-kDa protein formed cation-selective channels with a single-channel conductance of 230 pS in 1 M KCl. The channel is not a general-diffusion pore, since its conductance depends only moderately on the salt concentration. The channel conducted ammonium much better than potassium or rubidium ions, suggesting that it is probably involved in ammonium uptake. The outer membrane of P. venetianus contains a further, non-murein-associated pore with an unknown molecular mass. It is also cationically selective and has a single-channel conductance of 1.6 nS in 1 M KCl, which suggests that its effective diameter is similar to that of porins from enteric bacteria.  相似文献   

10.
P Labarca  S Lobos  I Calderón  G Mora 《FEBS letters》1986,197(1-2):211-216
Native porins, from Salmonella typhi Ty2 outer membrane, and porins alkylated with pyridoxal phosphate (Plp) were studied in planar lipid bilayers. The conductance of bilayers exposed to native or chemically modified porins increases in discrete jumps. Conductance histograms for native porins displayed two major peaks at 1.7 and 6.7 nS (in 0.5 M KCl). On the other hand, Plp-treated porins exhibited a single major peak at 1 nS. The relation between bilayer conductance and native porin concentration was linear. However, this relation became logarithmic in the presence of modified porins. The results support the notion that alkaline reduction of S. typhi Ty2 porins with Plp dissociates porin channel trimers in a reversible fashion.  相似文献   

11.
Trypsin activation of Cry4B, a 130-kDa Bacillus thuringiensis (Bt) protein, produces a 65-kDa toxin active against mosquito larvae. The active toxin is made of two protease resistant-products of ca. 45 kDa and ca. 20 kDa. The cloned 21-kDa fragment consisting of the N-terminal region of the toxin was previously shown to be capable of permeabilizing liposomes. The present study was designed to test the following hypotheses: (1) Cry4B, like several other Bt toxins, is a channel-forming toxin in plannar lipid bilayers; and (2) the 21-kDa N-terminal region, which maps for the first five helices (alpha1-alpha5) of domain 1 in other Cry toxins, and which putatively shares a similar tri-dimensional structure, is sufficient to account for the ion channel activity of the whole toxin. Using circular dichroism spectroscopy and planar lipid bilayers, we showed that the 21-kDa polypeptide existed as an alpha-helical structure and that both Cry4B and its alpha1-alpha5 fragment formed ion channels of 248 +/- 44 pS and 207 +/- 23 pS, respectively. The channels were cation-selective with a potassium-to-chloride permeability ratio of 6.7 for Cry4B and 4.5 for its fragment. However, contrary to the full-length toxin, the alpha1-alpha5 region formed channels at low dose; they tended to remain locked in their open state and displayed flickering activity bouts. Thus, like the full-length toxin, the alpha1-alpha5 region is a functional channel former. A pH-dependent, yet undefined region of the toxin may be involved in regulating the channel properties.  相似文献   

12.
Porins of Escherichia coli: unidirectional gating by pressure.   总被引:2,自引:0,他引:2       下载免费PDF全文
OmpC and PhoE porins of Escherichia coli were examined by the patch-clamp technique following reconstitution in liposomes, and were observed primarily in the open (conducting) state. With application of negative voltage and positive hydrostatic pressure, OmpC exhibited marked gating towards a more closed state whereas PhoE remained largely unaffected by pressure application. Hybrid chimeric OmpC-PhoE proteins showed an increased tendency for pressure-dependent gating as the OmpC proportion in the chimeric molecule increased. In addition, several PhoE mutants with amino acid substitutions and insertions in either the L3 or L4 loop of the monomer exhibited pressure sensitivity comparable with the wild-type OmpC porin. Our data support the structural plasticity model of porins and are consistent with the 'charge-screening-unscreening' hypothesis that describes how these proteins may exist in distinct conformations.  相似文献   

13.
J C Todt  E J McGroarty 《Biochemistry》1992,31(43):10479-10482
Porin is a channel-forming protein in the outer membrane of Gram-negative bacteria. In the previous paper (Todt et al., 1992), we showed that the pH induced a switch in the channel size in vitro for the porins OmpF, OmpC, and PhoE. In the results presented here, His21 of OmpC and OmpF from Escherichia coli was chemically modified with diethyl pyrocarbonate. Functional analysis of these modified porins at different pHs suggested that this histidine is involved in the pH-induced switch in channel size. Secondary structure analysis of porins at various pHs using Fourier transform infrared spectroscopy indicated that there was no global change in structure accompanying the pH-induced switch in channel size.  相似文献   

14.
15.
The outer membrane (OM) of Gram-negative bacteria contains a large number of channel proteins that mediate the uptake of ions and nutrients necessary for growth and functioning of the cell. An important group of OM channel proteins are the porins, which mediate the non-specific, diffusion-based passage of small (<600 Da) polar molecules. All porins of Gram-negative bacteria that have been crystallized to date form stable trimers, with each monomer composed of a 16-stranded beta-barrel with a relatively narrow central pore. In contrast, the OmpG porin is unique, as it appears to function as a monomer. We have determined the X-ray crystal structure of OmpG from Escherichia coli to a resolution of 2.3 A. The structure shows a 14-stranded beta-barrel with a relatively simple architecture. Due to the absence of loops that fold back into the channel, OmpG has a large ( approximately 13 A) central pore that is considerably wider than those of other E. coli porins, and very similar in size to that of the toxin alpha-hemolysin. The architecture of the channel, together with previous biochemical and other data, suggests that OmpG may form a non-specific channel for the transport of larger oligosaccharides. The structure of OmpG provides the starting point for engineering studies aiming to generate selective channels and for the development of biosensors.  相似文献   

16.
The sulfhydryl-gated 106-kDa Ca(2+)-release channel (SG-106) was purified by biotin-avidin chromatography from skeletal sarcoplasmic reticulum (SR) vesicles and used as an antigen to raise polyclonal antibodies. Western blots showed that the antisera crossreacted with the antigenic SG-106 and not with SR Ca2+, Mg(2+)-ATPase or with junctional foot proteins (JFPs) (Zaidi et al., 1989, J. Biol. Chem. 264(36), 21, 725-21, 736; 21, 737-21, 747). Polyclonal antibody-affinity columns were used to selectively purify SG-106-kDa proteins which, upon incorporation in planar bilayers, revealed the presence of a cationic channels with properties similar to "native" Ca(2+)-release channels obtained through the fusion of SR vesicles with planar bilayers. In agreement with measurements of Ca2+ release from SR vesicles, sulfhydryl oxidizing and reducing agents (i.e., 2,2'-dithiodipyridine and dithiothreitol) respectively increased and decreased the open-time probability of 106-kDa Ca(2+)-release channels. In contrast with reports on JFPs, ryanodine at 0.5-1 nM increased the open-time probability and at 2-10 nM locked 106-kDa Ca(2+)-release channels in a closed state rather than an open subconductance state. The SG-106 was activated by millimolar ATP, inhibited by millimolar Mg2+, and blocked by micromolar ruthenium red. Adriamycin (2-10 microM) caused a transient activation of SG-106 Ca(2+)-release channels, followed by closure in about 5 min, and intermittent activation to a subconductance state. Polyclonal antibodies used to purify the SG-106 also activated the channel when added to the cis side but not the trans side of the bilayer. Thus, SG-106 channels possess features that are similar to "native" SR Ca(2+)-release channels, are immunologically distinct from JFPs, and interact in seconds with nanomolar ryanodine in planar bilayers.  相似文献   

17.
We characterized type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm by immunoaffinity chromatography using a specific antibody. The purified receptor was free from 12-kDa FK506-binding protein, although it retained the ability to bind 12-kDa FK506-binding protein. Negatively stained images of RyR3 show a characteristic rectangular structure that was indistinguishable from RyR1. The location of the D2 segment, which exists uniquely in the RyR1 isoform, was determined as the region around domain 9 close to the corner of the square-shaped assembly, with use of D2-directed antibody as a probe. The RyR3 homotetramer had a single class of high affinity [3H]ryanodine-binding sites with a stoichiometry of 1 mol/mol. In planar lipid bilayers, RyR3 displayed cation channel activity that was modulated by several ligands including Ca2+, Mg2+, caffeine, and ATP, which is consistent with [3H]ryanodine binding activity. RyR3 showed a slightly larger unit conductance and a longer mean open time than RyR1. Whereas RyR1 showed two classes of channel activity with distinct open probabilities (Po), RyR3 displayed a homogeneous and steeply Ca2+-dependent activity with Po approximately 1. RyR3 was more steeply affected in the channel activity by sulfhydryl-oxidizing and -reducing reagents than RyR1, suggesting that the channel activity of RyR3 may be transformed more precipitously by the redox state. This is also a likely explanation for the difference in the Ca2+ dependence of RyR3 between [3H]ryanodine binding and channel activity.  相似文献   

18.
The major outer membrane protein of Acinetobacter baumannii is the heat-modifiable protein HMP-AB, a porin with a large pore size allowing the penetration of solutes having a molecular weight of up to approximately 800 Da. Cross-linking experiments with glutardialdehyde failed to show any cross-linking between the monomers, a fact that proves again that this porin protein functions as a monomeric porin. The specific activity of this porin was found to be similar to that of other monomeric porins. Tryptic digestion of the outer membrane yielded a 23-kDa fragment of the HMP-AB protein that was resistant to further trypsin treatment. This observation indicates that HMP-AB is assembled in the membrane in a manner similar to monomeric porins. Cloning of the HMP-AB gene revealed an open reading frame of 1038 bp encoding a protein of 346 amino acids and a calculated molecular mass of 35,636 Da. The amino acid sequence and composition were typical of Gram-negative bacterial porins: a highly negative hydropathy index, absence of hydrophobic residue stretches, a slightly negative total charge, low instability index, high glycine content, and an absence of cysteine residues. Sequence comparison of HMP-AB with other outer membrane proteins revealed a clear homology with the monomeric outer membrane proteins, outer membrane protein A (OmpA) of Enterobacteria, and outer membrane protein F (OprF) of Pseudomonas sp. Secondary structure analysis indicated that HMP-AB has a 172-amino acid N-terminal domain that spans the outer membrane by eight amphiphilic beta strands and a C-terminal domain that apparently serves as an anchoring protein to the peptidoglycan layer. The results also indicate that HMP-AB belongs to the eight transmembrane beta-strand family of outer membrane proteins.  相似文献   

19.
Role of lysines in ion selectivity of bacterial outer membrane porins   总被引:3,自引:0,他引:3  
The epsilon-amino groups of available lysine residues of the OmpC, OmpF and PhoE porin proteins of Escherichia coli and of the protein P porin of Pseudomonas aeruginosa, were modified by the bulky reagent trinitrobenzenesulphonic acid. Approximately 78% of the lysines of the anion-selective protein P and PhoE porins were modified whereas only 40-50% of the lysines of the cation selective OmpF and OmpC porins were altered. After modification, the three E. coli porins had very similar high selectivities for cations over anions, in contrast to the native porins which varied 86-fold in ion selectivity. Despite the large size of the trinitrophenyl group attached to modified lysines (i.e., a disc of approx. 0.86 nm diameter X 0.36 nm high) relative to the reported size of the constrictions of the E. coli porins (1.0-1.2 nm diameter), only the anion-selective PhoE porin was substantially blocked after trinitrophenylation. The protein P porin channel was relatively unaffected by trinitrophenylation, in contrast to previous data showing dramatic effects of acetylation of lysines on protein P conductance and selectivity. This favoured a model in which the critical lysines involved in anion binding by protein P were present in a constriction of the channel that was too small for trinitrobenzenesulphonic acid to enter. Overall, the data suggest that both the number and relative position of charged lysines are major determinants of ion selectivity.  相似文献   

20.
Helicobacter pylori is a causative agent of gastritis in humans and is correlated with gastric ulcer formation. Infections with this bacterium have proven difficult to treat with antimicrobial agents. To better understand how this bacterium transports compounds such as antimicrobial agents across its outer membrane, identification of porin proteins is important. We have recently identified a family of H. pylori porins (HopA to HopD) (M. M. Exner, P. Doig, T. J. Trust, and R. E. W. Hancock, Infect. Immun. 63:1567-1572, 1995). Here, we report on an unrelated porin species (HopE) from this bacterium. This protein had a apparent molecular mass of 31 kDa and was seen to form 50- and 90-kDa aggregates that were designated putative dimeric and trimeric forms, respectively. The protein was purified to homogeneity and, with a model planar lipid membrane system, was shown to act as a nonselective pore with a single channel conductance in 1.0 M KCl of 1.5 nS, similarly to other bacterial nonspecific porins. An internal peptide sequence of HopE shared homology with the P2 porin of Haemophilus influenzae. HopE was also shown to be antigenic in vivo as assessed by sera taken from H. pylori-infected individuals and was immunologically conserved with both patient sera and specific monoclonal antibodies. From these data, it appears that HopE is a major nonselective porin of H. pylori. The implications of these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号