首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We previously reported that vascular endothelial growth factor (VEGF) increases vascular permeability through the synthesis of endothelial platelet-activating factor (PAF), while others reported the contribution of nitric oxide (NO). Herein, we addressed the contribution of VEGF receptors and the role played by PAF and NO in VEGF-induced plasma protein extravasation. Using a modified Miles assay, intradermal injection in mice ears of VEGF-A(165), VEGF-A(121), and VEGF-C (1 microM) which activate VEGFR-2 (Flk-1) receptor increased vascular permeability, whereas a treatment with VEGFR-1 (Flt-1) analogs; PlGF and VEGF-B (1 microM) had no such effect. Pretreatment of mice with PAF receptor antagonist (LAU8080) or endothelial nitric oxide synthase (eNOS) inhibitor (L-NAME) abrogated protein extravasation mediated by VEGF-A(165). As opposed to PAF (0.01-1 microM), treatment with acetylcholine (ACh; up to 100 microM; inducer of NO synthesis) or sodium nitroprusside (SNP; up to 1 microM; NO donor) did not induce protein leakage. Simultaneous pretreatment of mice with eNOS and protein kinase A (PKA) inhibitors restored VEGF-A(165) vascular hyperpermeability suggesting that endogenous NO synthesis leads to PKA inhibition, which support maintenance of vascular integrity. Our data demonstrate that VEGF analogs increase vascular permeability through VEGFR-2 activation, and that both endogenous PAF and NO synthesis contribute to VEGF-A(165)-mediated vascular permeability. However, PAF but not NO directly increases vascular permeability per se, thereby, suggesting that PAF is a direct inflammatory mediator, whereas NO serves as a cofactor in VEGF-A(165) proinflammatory activities.  相似文献   

2.
Vascular endothelial growth factor receptor-1 (VEGFR-1, also known as Flt-1) is involved in complex biological processes often associated to severe pathological conditions like cancer, inflammation, and metastasis formation. Consequently, the search for antagonists of Flt-1 has recently gained a growing interest. Here we report the identification of a tetrameric tripeptide from a combinatorial peptide library built using non-natural amino acids, which binds Flt-1 and inhibits in vitro its interaction with placental growth factor (PlGF) and vascular endothelial growth factor (VEGF) A and B (IC(50) approximately 10 microm). The peptide is stable in serum for 7 days and prevents both Flt-1 phosphorylation and the capillary-like tube formation of human primary endothelial cells stimulated by PlGF or VEGF-A. Conversely, the identified peptide does not interfere in VEGF-induced VEGFR-2 activation. In vivo, this peptide inhibits VEGF-A- and PlGF-induced neoangiogenesis in the chicken embryo chorioallantoic membrane assay. In contrast, in the cornea, where avascularity is maintained by high levels of expression of the soluble form of Flt-1 receptor (sFlt-1) that prevents the VEGF-A activity, the peptide is able to stimulate corneal mouse neovascularization in physiological condition, as reported previously for others neutralizing anti-Flt-1 molecules. This tetrameric tripeptide represents a new, promising compound for therapeutic approaches in pathologies where Flt-1 activation plays a crucial role.  相似文献   

3.
The angiogenic molecule placenta growth factor (PlGF) is a member of the cysteine-knot family of growth factors. In this study, a mature isoform of the human PlGF protein, PlGF-1, was crystallized as a homodimer in the crystallographic asymmetric unit, and its crystal structure was elucidated at 2.0 A resolution. The overall structure of PlGF-1 is similar to that of vascular endothelial growth factor (VEGF) with which it shares 42% amino acid sequence identity. Based on structural and biochemical data, we have mapped several important residues on the PlGF-1 molecule that are involved in recognition of the fms-like tyrosine kinase receptor (Flt-1, also known as VEGFR-1). We propose a model for the association of PlGF-1 and Flt-1 domain 2 with precise shape complementarity, consider the relevance of this assembly for PlGF-1 signal transduction, and provide a structural basis for altered specificity of this molecule.  相似文献   

4.
Vascular endothelial growth factor (VEGF) displays neurotrophic and neuroprotective activities, but the mechanisms underlying these effects have not been defined. Neuropilin-1 (NP-1) is a receptor for VEGF165 and placental growth factor-2 (PlGF-2), but the role of NP-1 in VEGF-dependent neurotrophic actions is unclear. Dorsal root ganglion (DRG) neurons expressed high levels of NP-1 mRNA and protein, much lower levels of KDR, and no detectable Flt-1. VEGF165 and PlGF-2 promoted DRG growth cone formation with an effect similar to that of nerve growth factor, whereas the Flt-1-specific ligand, PlGF-1, and the KDR/Flt-4 ligand, VEGF-D, had no effect. The chemorepellent NP-1 ligand, semaphorin 3A, antagonized the response to VEGF and PlGF-2. The specific KDR inhibitor, SU5614, did not affect the anti-chemorepellent effects of VEGF and PlGF-2, whereas a novel, specific antagonist of VEGF binding to NP-1, called EG3287, prevented inhibition of growth cone collapse. VEGF stimulated prostacyclin and prostaglandin E2 production in DRG cultures that was blocked by inhibitors of cyclooxygenases; the anti-chemorepellent activities of VEGF and PlGF-2 were abrogated by cyclooxygenase inhibitors, and a variety of prostacyclin analogues and prostaglandins strikingly inhibited growth cone collapse. These findings support a specific role for NP-1 in mediating neurotrophic actions of VEGF family members and also identify a novel role for prostanoids in the inhibition of neuronal chemorepulsion.  相似文献   

5.
In hypoxic/ischemic conditions, astrocytes are involved in neuroprotection and angiogenesis. Vascular endothelial growth factor (VEGF) induces angiogenesis and exhibits neuroprotective and neurotrophic properties. However, the role of placental growth factor (PlGF), a VEGF homolog, in these processes is unclear. Therefore, proliferation and survival studies were performed on PlGF knockout (PlGF-/-) and wild-type (PlGF+/+) mouse astrocytes. A significant increase in cell proliferation and survival to oxygen and glucose deprivation (OGD) was observed in PlGF-/- compared to PlGF+/+ astrocytes. Interestingly, no PlGF protein expression was detected in PlGF+/+ astrocytes and no changes in VEGF protein levels were observed between the two genotypes. Real-time PCR and immunocytochemistry showed over-expression of VEGF receptor-2 (VEGFR-2) in PlGF-/- compared with PlGF+/+ astrocytes. Confocal microscopy revealed nuclear, membrane, and cytoplasmic localization of VEGFR-2. In vivo over-expression of VEGFR-2 mRNA was also detected in PlGF-/- compared with PlGF+/+ astrocytes. Stimulation with VEGF165 resulted in increased proliferation in PlGF-/- compared with PlGF+/+ astrocytes. This effect was blocked by the VEGFR-2 antagonist, VEGF165b. The enhanced proliferation of PlGF-/- astrocytes correlated with increased phospho-extracellular-signal-regulated kinase-1/2 levels, while the resistance to OGD was independent of the phosphatidylinositol 3'-kinase/Akt pathway. These results suggest that VEGFR-2 mediates the enhanced proliferative/OGD resistant phenotype observed in PlGF-/- astrocytes.  相似文献   

6.
Endothelial cells express two related vascular endothelial growth factor (VEGF) receptor tyrosine kinases, KDR (kinase-insert domain containing receptor, or VEGFR-2) and Flt-1 (fms-like tyrosine kinase, or VEGFR-1). Although considerable experimental evidence links KDR activation to endothelial cell mitogenesis, there is still significant uncertainty concerning the role of individual VEGF receptors for other biological effects such as vascular permeability. VEGF mutants that bind to either KDR or Flt-1 with high selectivity were used to determine which of the two receptors serves to mediate different VEGF functions. In addition to mediating mitogenic signaling, selective KDR activation was sufficient for the activation of intracellular signaling pathways implicated in cell migration. KDR stimulation caused tyrosine phosphorylation of both phosphatidylinositol 3-kinase and phospholipase Cgamma in primary endothelial cells and stimulated cell migration. KDR-selective VEGF was also able to induce angiogenesis in the rat cornea to an extent indistinguishable from wild type VEGF. We also demonstrate that KDR, but not Flt-1, stimulation is responsible for the induction of vascular permeability by VEGF.  相似文献   

7.
We previously reported that vascular endothelial growth factor (VEGF)-A(165) inflammatory effect is mediated by acute platelet-activating factor synthesis from endothelial cells upon the activation of VEGF receptor-2 (VEGFR-2) and its coreceptor, neuropilin-1 (NRP-1). In addition, VEGF-A(165) promotes the release of other endothelial mediators including nitric oxide and prostacyclin (PGI(2)). However, it is unknown whether VEGF-A(165) is mediating PGI(2) synthesis through VEGF receptor-1 (VEGFR-1) and/or VEGF receptor-2 (VEGFR-2) activation and whether the coreceptor NRP-1 potentiates VEGF-A(165) activity. In this study, PGI(2) synthesis in bovine aortic endothelial cells (BAEC) was assessed by quantifying its stable metabolite (6-keto prostaglandin F(1alpha), 6-keto PGF(1alpha)) by enzyme-linked immunosorbent assay. Treatment of BAEC with VEGF analogs, VEGF-A(165) (VEGFR-1, VEGFR-2 and NRP-1 agonist) and VEGF-A(121) (VEGFR-1 and VEGFR-2 agonist) (up to 10(-9) m), increased PGI(2) synthesis by 70- and 40-fold within 15 min. Treatment with VEGFR-1 (placental growth factor and VEGF-B) or VEGFR-2 (VEGF-C) agonist did not increase PGI(2) synthesis. The combination of VEGFR-1 and VEGFR-2 agonists did not increase PGI(2) release. Pretreatment with a VEGFR-2 inhibitor abrogated PGI(2) release mediated by VEGF-A(165) and VEGF-A(121), and pretreatment of BAEC with antisense oligomers targeting VEGFR-1 or VEGFR-2 mRNA reduced PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121) up to 79%. In summary, our data demonstrate that the activation of VEGFR-1 and VEGFR-2 heterodimer (VEGFR-1/R-2) is essential for PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121), which cannot be reproduced by the parallel activation of VEGFR-1 and VEGFR-2 homodimers with corresponding agonists. In addition, the binding of VEGF-A(165) to NRP-1 potentiates its capacity to promote PGI(2) synthesis.  相似文献   

8.
The development of blood vessels (angiogenesis) is critical throughout embryogenesis and in some normal postnatal physiological processes. Pathological angiogenesis has a pivotal role in sustaining tumour growth and chronic inflammation. Vascular endothelial growth factor-B (VEGF-B) is a member of the VEGF family of growth factors that regulate blood vessel and lymphatic angiogenesis. VEGF-B is closely related to VEGF-A and placenta growth factor (PlGF), but unlike VEGF-A, which binds to two receptor tyrosine kinases VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1/KDR), VEGF-B and PlGF bind to VEGFR-1 and not VEGFR-2. There is growing evidence of a role for VEGF-B in physiological and pathological blood vessel angiogenesis. VEGF-B may provide novel therapeutic strategies for the treatment of vascular disease and be a potential therapeutic target in aberrant vessel formation. To help understand at the molecular level the differential receptor binding profile of the VEGF family of growth factors we have determined the crystal structure of human VEGF-B(10-108) at 2.48 Angstroms resolution. The overall structure is very similar to that of the previously determined cysteine-knot motif growth factors: VEGF-A, PlGF and platelet-derived growth factor-B (PDGF-B). We also present a predicted model for the association of VEGF-B with the second domain of its receptor, VEGFR-1. Based on this interaction and the present structural data of the native protein, we have identified several putative residues that could play an important role in receptor recognition and specificity.  相似文献   

9.
10.
Neuropilin-1 (NRP-1) is present on the cell surface of endothelial cells, or as a soluble truncated variant. Membrane NRP-1 is proposed to enhance angiogenesis by promoting the formation of a signaling complex between vascular endothelial growth factor-A(165) (VEGF-A(165)), VEGF receptor-2 (VEGFR-2) and heparan sulfate, whereas the soluble NRP-1 is thought to act as an antagonist of signaling complex formation. We have analyzed the angiogenic potential of a chimera comprising the entire extracellular NRP-1 region dimerized through an Fc IgG domain and a monomeric truncated NRP-1 variant. Both NRP-1 proteins stimulated tubular morphogenesis and cell migration in HDMECs and HUVECs. Fc rNRP-1 was able to induce VEGFR-2 phosphorylation and expression of the VEGFR-2 specific target, regulator of calcineurin-1 (RCAN1.4). siRNA mediated gene silencing of VEGFR-2 revealed that VEGFR-2 was required for Fc rNRP-1 mediated activation of the intracellular signaling proteins PLC-γ, AKT, and MAPK and tubular morphogenesis. The stimulatory activity was independent of VEGF-A(165). This was evidenced by depleting the cell culture of exogenous VEGF-A(165), and using instead for routine culture VEGF-A(121), which does not interact with NRP-1, and by the inability of VEGF-A sequestering antibodies to inhibit the angiogenic activity of the NRP proteins. Analysis of angiogenesis over a period of 6 days in an in vitro fibroblast/endothelial co-culture model revealed that Fc rNRP-1 could induce endothelial cell tubular morphogenesis. Thus, we conclude that soluble Fc rNRP-1 is a VEGF-A(165)-independent agonist of VEGFR-2 and stimulates angiogenesis in endothelial cells.  相似文献   

11.
Placenta growth factor (PlGF) belongs to the vascular endothelial growth factor (VEGF) family and represents a key regulator of angiogenic events in pathological conditions. PlGF exerts its biological function through the binding and activation of the seven immunoglobulin-like domain receptor Flt-1, also known as VEGFR-1. Here, we report the first detailed mutagenesis studies that provide a basis for understanding molecular recognition between PlGF-1 and Flt-1, highlighting some of the residues that are critical for receptor recognition. Mutagenesis analysis, performed on the basis of a structural model of interaction between PlGF and the minimal binding domain of Flt-1, has led to the identification of several PlGF-1 residues involved in Flt-1 recognition. The two negatively charged residues, Asp-72 and Glu-73, located in the beta3-beta4 loop, are critical for Flt-1 binding. Other mutations, which bring about a significant decrease in PlGF binding activity, are Gln-27, located in the N-terminal alpha-helix, and Pro-98 and Tyr-100 on the beta6 strand. The mutation of one of the two glycosylated residues of PlGF, Asn-84, generates a PlGF variant with reduced binding activity. This indicates that, unlike in VEGF, glycosylation plays an important role in Flt-1 binding. The double mutation of residues Asp-72 and Glu-73 generates a PlGF variant unable to bind and activate the receptor molecules on the cell surface. This variant failed to induce in vitro capillary-like tube formation of primary endothelial cells or neo-angiogenesis in an in vivo chorioallantoic membrane assay.  相似文献   

12.
VEGF-A has been implicated in regulating the initial angiogenic invasion events that are essential for endochondral bone formation. VEGF-A mRNA expression was indeed found in the sclerotome of the developing somite and in the limb-bud mesenchyme at E10.5 in mouse development but declined during chondrogenesis and became upregulated in hypertrophic chondrocytes prior to angiogenic invasion. To determine the functional importance of VEGF-A expression in the developing chondrogenic tissues, VEGF-A was conditionally inactivated during early embryonic development using Collagen2a1-Cre transgenic lines. Deletion of a single VEGF-A allele in Collagen2a1-Cre-expressing cells results in embryonic lethality around E10.5. This lethality is characterized by aberrant development of the dorsal aorta and intersomitic blood vessels, along with defects in the developing endocardial and myocardial layers of the heart. A small percentage of VEGF(Flox)/+, Collagen2a1-Cre fetuses survive until E17.5, show aberrant endochondral bone formation and develop a heart phenotype resembling a dilated form of ischemic cardiomyopathy. These results provide insights into the function of VEGF-A in heart and endochondral bone formation and underscore the importance of tightly controlled levels of VEGF-A during development.  相似文献   

13.
The vascular endothelial growth factor (VEGF) family plays important roles in angiogenesis and vascular permeability. Novel members of the VEGF family encoded in the Orf virus genome, VEGF-E, function as potent angiogenic factors by specifically binding and activating VEGFR-2 (KDR). VEGF-E is about 45% homologous to VEGF-A at amino acid levels, however, the amino acid residues in VEGF-A crucial for the VEGFR-2-binding are not conserved in VEGF-E. To understand the molecular basis of the biological activity of VEGF-E, we have functionally mapped residues important for interaction of VEGF-E with VEGFR-2 by exchanging the domains between VEGF-E(NZ-7) and PlGF, which binds only to VEGFR-1 (Flt-1). Exchange on the amino- and carboxyl-terminal regions had no suppressive effect on biological activity. However, exchange on either the loop-1 or -3 region of VEGF-E(NZ-7) significantly reduced activities. On the other hand, introduction of the loop-1 and -3 of VEGF-E(NZ-7) to placenta growth factor rescued the biological activities. The chimera between VEGF-A and VEGF-E(NZ-7) gave essentially the same results. These findings strongly suggest that a common rule exists for VEGFR-2 ligands (VEGF-E(NZ-7) and VEGF-A) that they build up the binding structure for VEGFR-2 through the appropriate interaction between loop-1 and -3 regions.  相似文献   

14.
The role of the vascular endothelial growth factor receptor-1 (VEGFR-1) in endothelial cell function is unclear. We have previously identified four tyrosine phosphorylation sites in the C-terminal tail of this receptor. We now show that the wild type VEGFR-1 expressed in porcine aortic endothelial (PAE/VEGFR-1) cells was able to transduce signals for increased DNA synthesis and proliferation. Tyrosine phosphorylation of phospholipase Cgamma (PLCgamma), tyrosine phosphatase SHP-2, Crk, and extracellular regulated kinases 1 and 2 (Erk1/2) was registered in response to VEGF-A treatment of the PAE/VEGFR-1 cells. VEGFR-1 mutated at Y1213, Y1242, and Y1333 were constructed and expressed in PAE cells, to the same level as that of PAE/VEGFR-1 cells. The affinities of the wild type and mutated receptors for VEGF-A(165) binding were similar. The mutated VEGFR-1 Y1213F expressed in PAE cells was kinase inactive. PAE cells expressing the mutated VEGFR-1 Y1242F and Y1333F receptors mediated increased tyrosine phosphorylation of PLCgamma in response to VEGF-A stimulation. However, these two mutant VEGFR-1 failed to mediate increased mitogenesis and were unable to stimulate increased tyrosine phosphorylation of SHP-2, Crk, and Erk1/2, indicating that the mutations lead to a perturbation in VEGF-A-induced signal transduction.  相似文献   

15.
The proangiogenic members of VEGF family and related receptors play a central role in the modulation of pathological angiogenesis. Recent insights indicate that, due to the strict biochemical and functional relationship between VEGFs and related receptors, the development of a new generation of agents able to target contemporarily more than one member of VEGFs might amplify the antiangiogenic response representing an advantage in term of therapeutic outcome. To identify molecules that are able to prevent the interaction of VEGFs with related receptors, we have screened small molecule collections consisting of >100 plant extracts. Here, we report the isolation and identification from an extract of the Malian plant Chrozophora senegalensis of the biflavonoid amentoflavone as an antiangiogenic bioactive molecule. Amentoflavone can to bind VEGFs preventing the interaction and phosphorylation of VEGF receptor 1 and 2 (VEGFR-1,VEGFR-2) and to inhibit endothelial cell migration and capillary-like tube formation induced by VEGF-A or placental growth factor 1 (PlGF-1) at low μm concentration. In vivo, amentoflavone is able to inhibit VEGF-A-induced chorioallantoic membrane neovascularization as well as tumor growth and associated neovascularization, as assessed in orthotropic melanoma and xenograft colon carcinoma models. In addition structural studies performed on the amentoflavone·PlGF-1 complex have provided evidence that this biflavonoid effectively interacts with the growth factor area crucial for VEGFR-1 receptor recognition. In conclusion, our results demonstrate that amentoflavone represents an interesting new antiangiogenic molecule that is able to prevent the activity of proangiogenic VEGF family members and that the biflavonoid structure is a new chemical scaffold to develop powerful new antiangiogenic molecules.  相似文献   

16.
17.
Angiogenesis is a multistep complex phenomenon critical for several inflammatory and neoplastic disorders. Basophils, normally confined to peripheral blood, can infiltrate the sites of chronic inflammation. In an attempt to obtain insights into the mechanism(s) underlying human basophil chemotaxis and its role in inflammation, we have characterized the expression and function of vascular endothelial growth factors (VEGFs) and their receptors in these cells. Basophils express mRNA for three isoforms of VEGF-A (121, 165, and 189) and two isoforms of VEGF-B (167 and 186). Peripheral blood and basophils in nasal polyps contain VEGF-A localized in secretory granules. The concentration of VEGF-A in basophils was 144.4 +/- 10.8 pg/10(6) cells. Immunologic activation of basophils induced the release of VEGF-A. VEGF-A (10-500 ng/ml) induced basophil chemotaxis. Supernatants of activated basophils induced an angiogenic response in the chick embryo chorioallantoic membrane that was inhibited by an anti-VEGF-A Ab. The tyrosine kinase VEGFR-2 (VEGFR-2/KDR) mRNA was expressed in basophils. These cells also expressed mRNA for the soluble form of VEGFR-1 and neuropilin (NRP)1 and NRP2. Flow cytometric analysis indicated that basophils express epitopes recognized by mAbs against the extracellular domains of VEGFR-2, NRP1, and NRP2. Our data suggest that basophils could play a role in angiogenesis and inflammation through the expression of several forms of VEGF and their receptors.  相似文献   

18.
We have previously reported that MAPK phosphatase-1 (MKP-1/CL100) is a thrombin-responsive gene in endothelial cells (ECs). We now show that VEGF is another efficacious activator of MKP-1 expression in human umbilical vein ECs. VEGF-A and VEGF-E maximally induced MKP-1 expression in ECs; however, the other VEGF subtypes had no effect. Using specific neutralizing antibodies, we determined that VEGF induced MKP-1 specifically through VEGF receptor 2 (VEGFR-2), leading to the downstream activation of JNK. The VEGF-A(165) isoform stimulated MKP-1 expression, whereas the VEGF-A(162) isoform induced the gene to a lesser extent, and the VEGF-A(121) isoform had no effect. Furthermore, specific blocking antibodies against neuropilins, VEGFR-2 coreceptors, blocked MKP-1 induction. A Src kinase inhibitor (PP1) completely blocked both VEGF- and thrombin-induced MKP-1 expression. A dominant negative approach revealed that Src kinase was required for VEGF-induced MKP-1 expression, whereas Fyn kinase was critical for thrombin-induced MKP-1 expression. Moreover, VEGF-induced MKP-1 expression required JNK, whereas ERK was critical for thrombin-induced MKP-1 expression. In ECs treated with short interfering (si)RNA targeting MKP-1, JNK, ERK, and p38 phosphorylation were prolonged following VEGF stimulation. An ex vivo aortic angiogenesis assay revealed a reduction in VEGF- and thrombin-induced sprout outgrowth in segments from MKP-1-null mice versus wild-type controls. MKP-1 siRNA also significantly reduced VEGF-induced EC migration using a transwell assay system. Overall, these results demonstrate distinct MAPK signaling pathways for thrombin versus VEGF induction of MKP-1 in ECs and point to the importance of MKP-1 induction in VEGF-stimulated EC migration.  相似文献   

19.
Evidence accumulating over the last decade has established the fundamental role of vascular endothelial growth factor (VEGF) as a key regulator of normal and abnormal angiogenesis. The biological effects of VEGF are mediated by two tyrosine kinase receptors, Flt-1 (VEGFR-1) and KDR (VEGFR-2). The signaling and biological properties of these two receptors are strikingly different. VEGF is essential for early development of the vasculature to the extent that inactivation of even a single allele of the VEGF gene results in embryonic lethality. VEGF is also required for female reproductive functions and endochondral bone formation. Substantial evidence also implicates VEGF as an angiogenic mediator in tumors and intraocular neovascular syndromes, and numerous clinical trials are presently testing the hypothesis that inhibition of VEGF may have therapeutic value.  相似文献   

20.
Neuropilin-1 (NP-1) is a receptor for vascular endothelial growth factor-A165 (VEGF-A165) in endothelial cells. To define the role of NP-1 in the biological functions of VEGF, we developed a specific peptide antagonist of VEGF binding to NP-1 based on the NP-1 binding site located in the exon 7- and 8-encoded VEGF-A165 domain. The bicyclic peptide, EG3287, potently (K(i) 1.2 microM) and effectively (>95% inhibition at 100 microM) inhibited VEGF-A165 binding to porcine aortic endothelial cells expressing NP-1 (PAE/NP-1) and breast carcinoma cells expressing only NP-1 receptors for VEGF-A, but had no effect on binding to PAE/KDR or PAE/Flt-1. Molecular dynamics calculations, a nuclear magnetic resonance structure of EG3287, and determination of stability in media, indicated that it constitutes a stable subdomain very similar to the corresponding region of native VEGF-A165. The C terminus encoded by exon 8 and the three-dimensional structure were both critical for EG3287 inhibition of NP-1 binding, whereas modifications at the N terminus had little effect. Although EG3287 had no direct effect on VEGF-A165 binding to KDR receptors, it inhibited cross-linking of VEGF-A165 to KDR in human umbilical vein endothelial cells co-expressing NP-1, and inhibited stimulation of KDR and PLC-gamma tyrosine phosphorylation, activation of ERKs1/2 and prostanoid production. These findings characterize the first specific antagonist of VEGF-A165 binding to NP-1 and demonstrate that NP-1 is essential for optimum KDR activation and intracellular signaling. The results also identify a key role for the C-terminal exon 8 domain in VEGF-A165 binding to NP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号