首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The outputs of prostaglandin (PG) F-2 alpha, PGE-2 and 6-keto-PGF-1 alpha from Day-7 and Day-15 guinea-pig endometrium in culture were reduced by the inclusion of actinomycin D, cycloheximide and puromycin in the culture medium, with the output of PGF-2 alpha from Day-15 endometrium being particularly affected during the first 6 h of culture. The intrauterine administration of actinomycin D on Day 10 decreased the outputs of PGF-2 alpha and PGE-2, but not of 6-keto-PGF-1 alpha, from Day-15 endometrium in culture without affecting PG output from Day-15 myometrium in culture. Actinomycin D, cycloheximide and puromycin did not reduce PG output when superfused over the Day-7 and Day-15 guinea-pig uterus in vitro for 20 min, indicating that these compounds do not have a rapid inhibitory effect on endometrial PG synthesis. In fact, they tended to stimulate PG output during this 20-min period, with cycloheximide having a pronounced effect on PGE-2 output. The synthesis of secreted proteins, but not of cellular proteins, was greater by Day-15 than by Day-7 endometrium in culture. Actinomycin D, cycloheximide and puromycin inhibited the synthesis of secreted and cellular proteins by Day-7 and Day-15 endometrium in culture. Protein synthesis and PG synthesis in the endometrium were both inhibited to a greater extent by cycloheximide and puromycin than by actinomycin D. The intrauterine administration of actinomycin D on Day 10 reduced the syntheses of secreted and cellular proteins by Day-15 endometrium in culture. These findings indicate that the endometrial synthesis of PGs, particularly of PGF-2 alpha towards the end of the oestrous cycle, is dependent upon endometrial protein synthesis.  相似文献   

2.
Jugular venous concentrations of oxytocin and progesterone changed in parallel during the oestrous cycle in the ewe, falling at luteal regression and rising with formation of the new corpus luteum. These fluctuations in the circulating concentration of oxytocin were not caused by changes in its metabolic clearance rate. On Days 6-9 of the cycle circulating oxytocin concentrations exhibited a diurnal rhythm, peaking at 09:00 h; this rhythm was absent on Days 11-14. Although there was no evidence for increased production of oxytocin at or preceding luteal regression in samples taken daily, more frequent sampling revealed that two thirds of detected surges of uterine secretion of prostaglandin (PG) F-2 alpha were accompanied by raised levels of oxytocin. This oxytocin was not of pituitary origin. Luteal regression induced with cloprostenol on Day 8 after oestrus caused a decrease in circulating progesterone level followed after 24 h by a fall in oxytocin. Measurements of oxytocin in the ovary and other organs before and after treatment with cloprostenol identified the corpora lutea as a major potential source of oxytocin, and suggested that 98% of luteal oxytocin was available for secretion in response to prostaglandin stimulation. The data are consistent with a role for ovarian secretion of oxytocin in response to uterine release of PGF-2 alpha in the control of luteal regression.  相似文献   

3.
Continuous intravenous infusion of oxytocin (3 micrograms/h) between Days 13 and 21 after oestrus delayed return to oestrus by 7 days (length of cycle 23.3 +/- 0.6 days compared to 16.6 +/- 0.2 days in control ewes). At a lower infusion rate (0.3 micrograms/h) oxytocin delayed luteolysis in only 2 of 5 ewes. Treatment from Day 14, when luteolysis had already begun, was ineffective. Delay of luteal regression by oxytocin had no effect on the length of subsequent cycles. Measurement of circulating progesterone concentrations and luteal weight showed that prolongation of the oestrous cycle was due to prevention of luteal regression. Luteal regression and behavioural oestrus were induced during continuous oxytocin administration begun on Day 13 when cloprostenol was given on Day 15 (mean cycle length, 17.3 +/- 0.21 days). Continuous oxytocin infusion from Day 13 blocked the rise in uterine oxytocin receptor concentrations which normally precedes oestrus. Mean receptor concentrations in caruncular and intercaruncular endometrium and in myometrium were 76, 36 and 9 fmol/mg protein on Day 17 in ewes receiving continuous oxytocin (3 micrograms/h); in control ewes these values were 675, 638 and 130 fmol/mg protein respectively at oestrus. Receptor concentrations on the day of oestrus in ewes receiving oxytocin and cloprostenol were not significantly different from those in control ewes (649, 852, and 109 fmol/mg protein respectively). Since cloprostenol, a PGF-2 alpha analogue, overcame the antiluteolytic action of oxytocin, it is suggested that continuous oxytocin treatment may inhibit uterine production of PGF-2 alpha, possibly by down regulating the uterine oxytocin receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
N L Poyser 《Prostaglandins》1987,33(1):101-112
Hydrocortisone (10 micrograms/ml) had no effect on the basal outputs and A23187-stimulated outputs of PGF2 alpha, PGE2 and 6-keto-PGF1 alpha from the Day 15 guinea-pig uterus superfused in vitro. These findings indicate that the high output of PGF2 alpha from the guinea-pig uterus during the last one-third of the oestrous cycle is not modulated by the adrenal glucocorticoid hormones. Progesterone (10 micrograms/ml) had no effect on the A23187-induced increases in PG output from the Day 15 guinea-pig uterus. However, oestradiol (10 micrograms/ml but not 1 microgram/ml) significantly reduced the increases in outputs of PGF2 alpha, PGE2 and 6-keto-PGF1 alpha induced by A23187 from the Day 15 guinea-pig uterus, without affecting basal PG outputs. The increase in uterine tone induced by A23187 in the Day 15 guinea-pig uterus was reduced by 20-50% by oestradiol (10 micrograms/ml). The addition of oestradiol (10 micrograms/ml) and progesterone together (10 micrograms/ml) produced the same effects on the Day 15 guinea-pig uterus as oestradiol alone. Oestradiol (10 micrograms/ml) also reduced the A23187-induced increases in PG output from the Day 7 guinea-pig uterus, but did not reduce the increase in uterine tone. Oestradiol (10 micrograms/ml) reduced the increases in outputs of PGF2 alpha, PGE2 and 6-keto-PGF1 alpha induced by exogenous arachidonic acid from the Day 7 and Day 15 guinea-pig uterus. Previous studies have shown that oestradiol is not a cyclo-oxygenase inhibitor. The present findings suggest that oestradiol, at a relatively high concentration, may interfere with the access of arachidonic acid to the cyclo-oxygenase enzyme. This action of oestradiol may explain its anti-luteolytic action when administered to guinea-pigs in large doses after Day 9 of the cycle.  相似文献   

5.
Ovarian and luteal blood flow rates were studied using radioactive microspheres in guinea-pigs between Day 6 of the oestrous cycle and Day 1 of the following cycle. Peripheral plasma progesterone levels were measured by radioimmunoassay on the same days of the oestrous cycle. Ovarian blood flow was greatest between Days 9 and 12 and had fallen by Day 16 both in absolute (ml . min-1) and relative (ml.min-1.g-1) terms. Luteal weight and blood flow were also greatest between Days 9 and 12 and had fallen sharply by Day 16. The highest mean (+/- s.d.) luteal flows measured were 0.10 +/- 0.04 ml.min-1 per corpus luteum, and 24.26 +/- 9.3 ml.min-1.g-1 luteal tissue on Day 10 of the cycle. Mean peripheral plasma progesterone levels reached a maximum of 3.66 +/- 1.1 ng/ml at Day 12 of the cycle and fell thereafter, reaching 0.74 +/- 0.5 ng/ml by Day 1 of the following cycle. Plasma progesterone levels declined significantly between Days 12 and 14 of the cycle, whereas no significant drop in luteal blood flow was demonstrable until after Day 14. These data do not support the idea that declining luteal blood flow is an initiating mechanism in luteal regression in the guinea-pig.  相似文献   

6.
Prostaglandin (PG) E2 was the major PG released from the superfused guinea-pig uterus on Day 7, followed by in descending order 6-oxo-PGF1 alpha, thromboxane (TX) B2 and PGF2 alpha. However, the outputs of all four substances were low and were very similar. By Day 15, PGF2 alpha output from the superfused uterus had increased 21.9-fold, whereas the outputs of PGE2, 6-oxo-PGF1 alpha and TXB2 had increased only 1.8-, 2.9- and 1.2-fold, respectively. A mechanism is apparently "switched on" between Days 7 and 15 which causes a fairly specific increase in the release of PGF2 alpha from the uterus. Progesterone and/or estradiol had no effect on PG or TX release when superfused over the uterus on Day 7, nor did they have any effect on PG and TX release from the Day 15 uterus when administered separately. When administered together, however, they significantly inhibited PGF2 alpha, PGE2 and 6-oxo-PGF1 alpha, but not TXB2, release from the Day 15 uterus. Oxytocin had no effect on PG release from the Day 7 or Day 15 uterus, while A23187 stimulated PGF2 alpha, 6-oxo-PGF1 alpha and, to a lesser extent, PGE2 release from the uterus on both Days 7 and 15. Oxytocin is apparently not important for stimulating PGF2 alpha release from the guinea-pig uterus in relation to luteolysis, whereas increasing intracellular free Ca++ levels may be part of the mechanism for "switching on" uterine PG synthesis. Furthermore, changes in intracellular free Ca++ levels in the endometrium may be responsible for the pulsatile nature of PGF2 alpha release from the uterus.  相似文献   

7.
In this study, we investigated production of prostaglandin (PG) F2alpha and its metabolite, PGFM, by uterine tissues from tammar wallabies in late pregnancy. Endometrial explants were prepared from gravid and nongravid uteri of tammars between Day 18 of gestation (primitive streak) and Day 26.5 (term) and were incubated in Ham's F-10 medium supplemented with glutamine and antibiotics for 20 h. PGF2alpha and PGFM in the medium were assayed by specific, validated RIAs. Control tissues (leg muscle) did not produce detectable amounts of either PG. Both gravid and nongravid endometria secreted PGF2alpha, and production increased significantly in both gravid and nongravid uteri towards term. PGFM was produced in small amounts by both gravid and nongravid uteri, and the rate of production did not increase. Neither oxytocin nor dexamethasone stimulated PG production in vitro in any tissue at any stage. Thus, the surge in peripheral plasma PGFM levels seen at parturition may arise from increased uterine PG production, but further study is needed to define what triggers this release.  相似文献   

8.
The outputs of prostaglandin (PG) F-2 alpha and PGE-2, but not of 6-oxo-PGF-1 alpha, from the guinea-pig uterus were significantly lower on Days 7 and 15 of pregnancy than on the corresponding days of the cycle. Uterine PGF-2 alpha output increased 28-fold between Days 7 and 15 of the cycle but only 4- to 5-fold between these same days of pregnancy. Uterine PGE-2 and 6-oxo-PGF-1 alpha outputs increased 2- to 3-fold between Days 7 and 15 of the cycle and of pregnancy. Endometrial PGF-2 alpha synthesizing capacity was 60-70% lower on Days 7 and 15 of pregnancy than on the corresponding days of the cycle, although it increased 2-fold and 2.5-fold between these days of pregnancy and of the cycle, respectively. Endometrial PGE-2 and 6-oxo-PGF-1 alpha synthesizing capacities showed no significant variation amongst Days 7 and 15 of the cycle and of pregnancy, except that endometrial PGE-2 synthesizing capacity was lower on Day 7 of the cycle. Oestradiol treatment (10 micrograms s.c. daily from Days 10 to 14 of pregnancy) did not affect plasma progesterone concentrations, uterine 6-oxo-PGF-1 alpha output, and endometrial PGF-2 alpha, PGE-2 and 6-oxo-PGF-1 alpha synthesizing capacities in 9/12 guinea-pigs when examined on Day 15. Uterine PGF-2 alpha and PGE-2 outputs increased 3- and 1.5-fold, respectively, in these guinea-pigs, but were still much lower than the outputs from the Day-15 non-pregnant uterus. The pregnancies appeared unaffected in these oestradiol-treated guinea-pigs. In the other 3 oestradiol-treated animals, uterine PGF-2 alpha output was 20- to 30-fold higher than in untreated, pregnant guinea-pigs on Day 15, and 2- to 3-fold higher than in Day-15 non-pregnant guinea-pigs. Uterine PGE-2 and 6-oxo-PGF-1 alpha outputs also tended to be higher in these treated guinea-pigs. In these 3 guinea-pigs, endometrial PGF-2 alpha, PGE-2 and 6-oxo-PGF-1 alpha synthesizing capacities were 4.0-, 3.4- and 2.5-fold higher, respectively, than in untreated, pregnant guinea-pigs on Day 15, and tended to be higher than in Day-15 non-pregnant guinea-pigs. Plasma progesterone concentrations were much lower in these 3 animals than in the other 9 treated with oestradiol, and also much lower than in untreated, pregnant guinea-pigs on Day 15.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Endometrial biopsy or endometrial biopsy and uterine culture taken on Day 4 after oestrus induced lysis of the corpus luteum (CL), resulting in a sharp decline in serum progesterone concentration and shortened the interoestrous interval in 8/12 and 32/33 oestrous cycles, respectively, during 2 experiments. Cervical dilatation 4 days after oestrus shortened the interoestrus interval in 5/10 and 0/5 oestrous cycles. Endometrial biopsy and culture on Days 1 and 3 after oestrus also induced CL lysis during 4 of 7 cycles. Total oestrogen (oestrone plus oestradiol) concentrations increased at the onset of the subsequent oestrus in mares biopsied on Day 4 of dioestrus or in control cycle oestrous periods. Endometrial biopsy also induced lysis of the CL in mares with persistent luteal function. It is postulated that intracervical or intrauterine manipulations during the luteal phase of the oestrous cycle may directly, or indirectly, stimulate the release of an endogenous luteolysin (prostaglandin) resulting in CL regression, followed by oestrus and ovulation in the mare.  相似文献   

10.
This study examines differences in intracellular responses to cloprostenol, a prostaglandin (PG)F(2alpha) analog, in porcine corpora lutea (CL) before (Day 9 of estrous cycle) and after (Day 17 of pseudopregnancy) acquisition of luteolytic capacity. Pigs on Day 9 or Day 17 were treated with saline or 500 microgram cloprostenol, and CL were collected 10 h (experiment I) or 0.5 h (experiment III) after treatment. Some CL were cut into small pieces and cultured to measure progesterone and PGF(2alpha) secretion. In experiment I, progesterone remained high and PGF(2alpha) low in luteal incubations from either Day 9 or Day 17 saline-treated pigs. Cloprostenol increased PGF(2alpha) production 465% and decreased progesterone production 87% only from Day 17 luteal tissue. Cloprostenol induced prostaglandin G/H synthase (PGHS)-2 mRNA (0.5 h) and protein (10 h) in both groups. In cell culture, cloprostenol or phorbol 12, 13-didecanoate (PDD) (protein kinase C activator), induced PGHS-2 mRNA in luteal cells from both groups. However, acute cloprostenol treatment (10 min) decreased progesterone production and increased PGF(2alpha) production only from Day 17 luteal cells. Thus, PGF(2alpha) production is induced by cloprostenol in porcine CL with luteolytic capacity (Day 17) but not in CL without luteolytic capacity (Day 9). However, this change in PGF(2alpha) production is not explained by a difference in induction of PGHS-2 mRNA or protein.  相似文献   

11.
Ewes (N = 32) were bled every 2 h from 5 days before expected oestrus until the end of oestrus. Plasma concentrations were determined for progesterone to monitor luteal activity and for the prostaglandin F-2 alpha (PGF-2 alpha) metabolites, 15-keto-13,14-dihydro-PGF-2 alpha and 11-ketotetranor-PGF to determine uterine synthesis and release of PGF-2 alpha. Most of the variation in cycle length was associated with the time of onset of luteolysis, the timing of events after luteolysis being constant and not related to cycle length. The time of occurrence of the first PGF-2 alpha pulse and the interval between this pulse and the start of luteolysis were the two main determinants responsible for oestrous cycle length. Several PGF-2 alpha pulses with interpulse intervals of 15.9 h occurred before the onset of functional luteolysis compared with 7.7 h for pulses associated with luteolysis. The numbers of PGF-2 alpha pulses and interpulse intervals were similar for oestrous cycles of different lengths. While a gradual decline in progesterone concentrations was observed before functional luteolysis in the ewes with longer cycles, this did not appear to be an integral part of the stimulus which initiates the pulse frequency of PGF-2 alpha required for luteolysis. We therefore suggest that differences in oestrous cycle length in the ewe are determined by the time of the onset of PGF-2 alpha pulsatile release, and especially by the time of increased pulse frequency.  相似文献   

12.
The uterine luteal phase in T. vulpecula is not dependent upon the secretions of the CL throughout its duration. Ablation of the CL or ovariectomy after Day 7 of the 26-day oestrous cycle does not result in the termination of the uterine secretory phase. The dependence of the luteal phase on the secretions of the CL is demonstrated by ablation of the CL or ovariectomy on Days 2, 4, 8, 12 and 24 of the oestrous cycle. Ablation of the CL before Day 8 resulted in the inhibition of the impending luteal phase, and the commencement of a follicular phase resulting in oestrus 8 to 9 days later. Removal of the CL or ovariectomy on Days 8 or 12 does not completely inhibit the uterine luteal phase since sufficient precursor of uterine milk is stored in the uterine basal glandular epithelium, thus enabling the endometrium to maintain the secretion of uterine milk.  相似文献   

13.
Prostaglandin (PG) and thromboxane (TX) synthesis by uterine homogenates was measured at 4-h intervals during the 4-day oestrous cycle of rats. Production was in the order of 6-oxo-PGF-1 alpha (which reflects PGI-2 synthesis) greater than PGF-2 alpha greater than TXB-2 (which reflects TXA-2 synthesis) greater than or equal to PGE-2. Peak production occurred at 02:00 h on the day of oestrus, after which production gradually decreased, with some fluctuation on the day of metoestrus, to reach a minimum between 22:00 and 06:00 h on the days of dioestrus and oestrus, respectively. Separation of the uterine tissues showed that, on a unit weight basis, the endometrium had a much higher PG and TX synthesizing ability than did the myometrium, although this was compensated for on a total weight basis by the much greater mass of myometrium. Endometrial PG and TX production was in the order of PGF-2 alpha greater than TXB-2 greater than or equal to 6-oxo-PGD-1 alpha identical to PGE-2, with PGF-2 alpha and TXB-2 productions showing the greatest increases between 10:00 and 02:00 h on the days of pro-oestrus and oestrus, respectively. Myometrial PG and TX production was in the order of 6-oxo-PGF-1 alpha greater than PGF-2 alpha greater than PGE-2 identical to TXB-2, with 6-oxo-PGF-1 alpha and PGF-2 alpha productions showing small increases between 10:00 and 02:00 h on the days of pro-oestrus and oestrus, respectively. Myometrial PGE-2 production decreased between these two times.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Binding of [3H]oxytocin to uterine subcellular preparations ('oxytocin receptor concentrations') was measured in uterine tissue of heifers and multiparous dairy cows at various stages of the oestrous cycle and during early pregnancy. A method for the assay of ovine uterine oxytocin receptors was optimized for use on bovine tissue. Oxytocin receptor concentrations were increased in cyclic animals around the period of luteolysis and oestrus, rising on Day 15 in endometrium and on Day 17 in myometrium while pregnant animals showed no comparable rise. Receptor concentrations then declined on Day 3 after oestrus in myometrium and on Day 5 in endometrium. Some cyclic animals did not show the expected rise in receptors in the late luteal phase; these animals had abnormally high progesterone concentrations for this stage of the cycle. In animals slaughtered on Day 18 after oestrus and/or insemination which had low oxytocin receptor levels, plasma progesterone concentrations were consistently high; while all animals showing the late luteal phase elevation in receptor values had low progesterone concentrations. Oxytocin receptor and progesterone concentrations were negatively correlated (P less than 0.05). These data support the hypothesis that oxytocin receptor level is a key factor in the process of luteolysis in cattle and that in pregnancy there is suppression of uterine oxytocin receptor at the expected time of luteolysis. We suggest that uterine oxytocin receptor levels are partly controlled by circulating steroid hormones and are suppressed during early pregnancy.  相似文献   

15.
N L Poyser 《Prostaglandins》1988,36(5):645-653
The ratios of the concentrations of PGF2 alpha, PGE2 and 6-keto-PGF1 alpha in guinea-pig uterine horns, which were removed and placed in ethanol in 1.5 to 2 min, were 0.3:1.0:0.6 on day 7 and 13.8:1.0:0.8 on day 15 of the oestrous cycle. Adding indomethacin (10 micrograms/ml) to the ethanol had no significant effect on the tissue levels observed. These ratios were similar to the ratios of the outputs of PGF2 alpha, PGE2 and 6-keto-PGF1 alpha from the guinea-pig uterus (0.6:1.0:0.9 on day 7 and 7.6:1.0:1.5 on day 15), but were different (particularly on day 7, but only for 6-keto-PGF1 alpha on day 15) to the ratios of the amounts of the three PGs synthesized by homogenates of the guinea-pig uterus (7.2:1.0:2.4 on day 7 and 11.7:1.0:3.3 on day 15). Consequently, the measurement of tissue levels of PGs in the guinea-pig uterus reflects PG synthesis by intact tissue and changes in this synthesis, rather than PG synthesis by homogenates (broken cell preparations). Therefore, it appears meaningful to measure levels of PGs in the guinea-pig uterus since they reflect uterine PG output. Separation of the endometrium from the myometrium, which involved handling and mild trauma, stimulated uterine PG levels, but the ratio of the levels of PGF2 alpha, PGE2 and 6-keto-PGF1 alpha in the endometrium was still similar to that found in the non-separated uterus.  相似文献   

16.
Maternal heat stress in cattle may disrupt pregnancy by elevating uterine prostaglandin F(2alpha) (PGF(2alpha)) secretion. The objectives of this study were to determine the effects of elevated temperature (42 degrees C) in vitro upon 1) prostaglandin secretion by endometrial tissue; 2) the actions of extracellular regulators of uterine PGF [conceptus secretory proteins (bCSPs) and platelet-activating factor, (PAF)]; 3) the activity of the cyclooxygenase-endoperoxidase enzyme complex (PG synthetase); and 4) the activity of the endometrial PG synthesis inhibitor present in the endometrium from pregnant cattle. Endometrial explants at Day 17 of the estrous cycle produced more PGF than PGE(2) while elevated temperature caused increased PGF secretion but did not affect PGE(2) secretion. Elevated temperature did not reduce the ability of bCSPs or PAF to suppress release of PGF. The heat shock-induced increase in PGF at Day 17 was not due to the direct effects on PG synthetase, because PGF production from a cell-free cotyledonary microsomal enzyme preparation was reduced at elevated temperature. The activity of the cytosolic inhibitor of cyclooxygenase present in the endometrium of Day-17 pregnant cows could be reduced but not eliminated at 42 degrees C. We conclude that in vitro heat stress induces PGF secretion from the bovine uterine endometrium at Day 17 after estrus. This increase is not accompanied by the loss of regulatory capacity of conceptus products or increased activity of PG synthetase.  相似文献   

17.
Luteolysis was induced by an injection of 500 micrograms cloprostenol (a prostaglandin (PG) analogue) in pregnant (P) Holstein heifers on Days 17 or 24 of gestation and in non-pregnant (NP) Holstein heifers on Day 17 of the oestrous cycle (oestrus = Day 0). Heifers in Groups P-17 (N = 8) and P-24 (N = 8) were inseminated twice whereas those in Group NP-17 (N = 8) were not inseminated. Immediately after PG injection, embryos were recovered by uterine flushing (400 ml) to confirm pregnancy in Groups P-17 and P-24. Uterine flushing with an equivalent volume of physiological saline was also done in Group NP-17. The interval from PG injection to oestrus and to the peak of luteinizing hormone (LH) as well as profile of increase in plasma oestradiol concentrations during that period did not differ (P greater than 0.1) among the groups. However, the proportion of heifers exhibiting abnormal luteal phases (primarily of short duration) during the oestrous cycle after PG injection was greater (P less than 0.01) in Group P-24 than in Groups NP-17 + P-17 pooled (6/8 vs 3/16). These results suggest that the previous presence of a conceptus did not have any effect on the onset of oestrus, or on plasma concentrations of oestradiol and LH after PG-induced luteolysis on Days 17 or 24 of gestation. However, luteal function during the subsequent oestrous cycle was impaired if heifers were 24 days pregnant when luteolysis was induced.  相似文献   

18.
Platelet-activating factor (PAF) significantly increased the output of prostaglandin (PG) F2 alpha from the guinea-pig uterus during the mid-cycle phase (Days 6-10), but only had a small, non-significant stimulatory effect on the outputs of PGE2 and 6-keto-PGF1 alpha. PAF significantly increased the outputs of PGF2 alpha, PGE2 and 6-keto-PGF1 alpha from the guinea-pig uterus during the later phase of the cycle (Days 15-17). Lack of extracellular calcium did not affect the stimulatory effect of PAF on uterine PG output. However, TMB-8 (an intracellular calcium antagonist) prevented the increases in uterine PG output produced by PAF at both phases of the cycle. These results suggest that the stimulatory effect of PAF on uterine PG output in the guinea-pig is dependent upon the mobilization of intracellular calcium but is not dependent upon the uptake of extracellular calcium. Also, the weak stimulatory effect of PAF on PGE2 output from the uterus during the mid-cycle phase indicates that, if PAF is involved in implantation in guinea-pigs, it probably does not act via PGE2. Also, the lack of an inhibitory effect of PAF on uterine PGF2 alpha synthesis and release suggests that PAF is not the anti-luteolytic factor produced by the guinea-pig conceptus during early pregnancy.  相似文献   

19.
20.
We examined the responsiveness of large luteal cells (LLC), small luteal cells (SLC), and endothelial cells of the Day 4 and Day 10 bovine corpus luteum (CL) to prostaglandin (PG) F2alpha and endothelin (ET)-1. Using a single-cell approach, we tested the ability of each agonist to increase the cytoplasmic concentration of calcium ions ([Ca2+]i) as function of luteal development. All tested concentrations of agonists significantly (P = 0.05) increased [Ca2+]i in all cell populations isolated from Day 4 and Day 10 CL. Day 10 steroidogenic cells were more responsive than Day 4 cells to PGF2alpha and ET-1. Response amplitudes and number of responding cells were affected significantly by agonist concentration, luteal development, and cell type. Response amplitudes were greater in LLC than in SLC; responses of maximal amplitude were elicited with lower agonist concentrations in Day 10 cells than in Day 4 cells. Furthermore, on Day 10, as the concentration of PGF2alpha increased, larger percentages of SLC responded. Endothelial cells responded maximally, regardless of agonist concentration and luteal development. In experiment 2, we tested the developmental responsiveness of total dispersed and steroidogenic-enriched cells to the inhibitory actions of PGF2alpha and ET-1 on basal and LH-stimulated progesterone accumulation. The potency of PGF2alpha steroidogenic-enriched cells on Day 4 was lower than on Day 10; in contrast, the potency of ET-1 was not different. Therefore, ET-1 was a tonic inhibitor of progesterone accumulation rather than a mediator of PGF2alpha action. The lower efficacy of PGF2alpha in the early CL more likely is related to signal transduction differences associated with its receptor at these two developmental stages than to the inability of PGF2alpha to up-regulate ET-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号