首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin is the main hormone involved in the regulation of glycaemia, its impaired secretion is a hallmark of type I and type II diabetic individuals. Additionally, insulin is involved in lipogenesis and weight gain, provoking an anorexigenic action. The endocannabinoid system contributes to the physiological regulation of energy balance, food intake and lipid and glucose metabolisms. Despite that, an experimental link between the endocannabinoid system and the endocrine pancreas has not yet been described. Using quantitative real-time PCR and immunocytochemistry, we have demonstrated the existence of both CB1 and CB2 receptors in the endocrine pancreas. While the CB1 receptor is mainly expressed in non-beta-cells, the CB2 type exists in beta- and non-beta-cells within the islet. The endocannabinoid 2-arachidonylglycerol (2-AG) through CB2 receptors regulates [Ca(2+)](i) signals in beta-cells and as a consequence, it decreases insulin secretion. This effect may be a new component involved in the orexigenic effect of endocannabinoids and constitutes a potential target for pharmacologic manipulation of the energy balance.  相似文献   

2.
3.
4.
A mouse model carrying a null mutation in one copy of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase isoform 2 (SERCA2) gene, in which SERCA2 protein levels are reduced by approximately 35%, was used to investigate the effects of decreased SERCA2 level on intracellular Ca(2+) homeostasis and contractile properties in isolated cardiomyocytes. When compared with wild-type controls, SR Ca(2+) stores and Ca(2+) release in myocytes of SERCA2 heterozygous mice were decreased by approximately 40-60% and approximately 30-40%, respectively, and the rate of myocyte shortening and relengthening were each decreased by approximately 40%. However, the rate of Ca(2+) transient decline (tau) was not altered significantly, suggesting that compensation was occurring in the removal of Ca(2+) from the cytosol. Phospholamban, which inhibits SERCA2, was decreased by approximately 40% in heterozygous hearts, and basal phosphorylation of Ser-16 and Thr-17, which relieves the inhibition, was increased approximately 2- and 2.1-fold. These results indicate that reduced expression and increased phosphorylation of phospholamban provides compensation for decreased SERCA2 protein levels in heterozygous heart. Furthermore, both expression and current density of the sarcolemmal Na(+)-Ca(2+) exchanger were up-regulated. These results demonstrate that a decrease in SERCA2 levels can directly modify intracellular Ca(2+) homeostasis and myocyte contractility. However, the resulting deficit is partially compensated by alterations in phospholamban/SERCA2 interactions and by up-regulation of the Na(+)-Ca(2+) exchanger.  相似文献   

5.
Depolarization by a high K(+) concentration is a widely used experimental tool to stimulate insulin secretion. The effects occurring after the initial rise in secretion were investigated here. After the initial peak a fast decline occurred, which was followed by a slowly progressive decrease in secretion when a strong K(+) depolarization was used. At 40 mM KCl, but not at lower concentrations, the decrease continued when the glucose concentration was raised from 5 to 10 mM, suggesting an inhibitory effect of the K(+) depolarization. When tolbutamide was added instead of the glucose concentration being raised, a complete inhibition down to prestimulatory values was observed. Equimolar reduction of the NaCl concentration to preserve isoosmolarity enabled an increase in secretion in response to glucose. Unexpectedly, the same was true when the Na(+)-reduced media were made hyperosmolar by choline chloride or mannitol. The insulinotropic effect of tolbutamide was not rescued by the compensatory reduction of NaCl, suggesting a requirement for activated energy metabolism. These inhibitory effects could not be explained by a lack of depolarizing strength or by a diminished free cytosolic Ca(2+) concentration ([Ca(2+)](i)). Rather, the complexation of extracellular Ca(2+) concomitant with the K(+) depolarization markedly diminished [Ca(2+)](i) and attenuated the inhibitory action of 40 mM KCl. This suggests that a strong but not a moderate depolarization by K(+) induces a [Ca(2+)](i)-dependent, slowly progressive desensitization of the secretory machinery. In contrast, the decline immediately following the initial peak of secretion may result from the inactivation of voltage-dependent Ca(2+) channels.  相似文献   

6.
7.
Zhu LP  Yu XD  Ling S  Brown RA  Kuo TH 《Cell calcium》2000,28(2):107-117
Using distinct models of apoptosis and necrosis, we have investigated the effect of mitochondrial Ca(2+)(Ca(m)) homeostasis in the regulation of cell death in neuroblastoma cells as well as cardiac myocytes. The steady state level of Ca(m)was determined as the FCCP-releasable Ca(2+). Culturing cells with low concentration of extracellular Ca(2+)(Ca(o)) or with EGTA triggered an early reduction in both the Ca(m)store and the membrane potential (DeltaPsi(m)). This was followed by the detection of cytochrome c release, caspase activation, and apoptosis. Inhibitors of the mitochondrial permeability transition pore such as cyclosporin A and Bcl-2 blocked the release of Ca(m)and inhibited apoptosis. In contrast, mitochondrial Ca(2+)overload resulted in necrotic cell death. Culturing cells in the presence of excess Ca(o)led to increased Ca(m)load together with a decrease of DeltaPsi(m)that reached maximum at 1 h, with necrosis occurring at 2 h. While the decline of Ca(m)and DeltaPsi(m)was a coupled reaction for apoptosis, this relationship was uncoupled during necrosis. Clonazepam, a relatively specific inhibitor of the mitochondrial Na/Ca exchanger, was able to protect the cells from necrosis by reducing Ca(m)overload. Importantly, combination of clonazepam and cyclosporin showed a cooperative effect in further reducing the Ca(m)overload and abolished cell death. The data imply the participation of Ca(m)homeostasis in the regulation of apoptosis and necrosis.  相似文献   

8.
Type 2 diabetes, insulin secretion and beta-cell mass   总被引:4,自引:0,他引:4  
In nondiabetic subjects, insulin secretion is sufficiently increased as a compensatory adaptation to insulin resistance whereas in subjects with type 2 diabetes, the adaptation is insufficient. Evidences for the islet dysfunction in type 2 diabetes are a)impaired insulin response to various challenges such as glucose, arginine and isoproterenol, b)defective dynamic of insulin secretion resulting in preferential reduction on first phase insulin secretion and irregular oscillations of plasma insulin and c)defective conversion of proinsulin to insulin leading to elevated proinsulin to insulin ratio. In addition, recent studies have also presented evidence of a reduced beta cell mass in diabetes, caused predominantly by enhanced islet apoptosis, although this needs to be confirmed in more studies. These defects may be caused by primary beta cell defects, such as seen in the monogenic diabetes forms of MODY, or by secondary beta cell defects, caused by glucotoxicity, lipotoxicity or islet amyloid aggregation. The defects may also be secondary to defective beta cell stimulation by incretin hormones or the autonomic nerves. The appreciation of islet dysfunction as a key factor underlying the progression from an insulin resistant state into type 2 diabetes has therapeutic implications, since besides improvement of insulin sensitivity, treatment should also aim at improving the islet compensation. This may possibly be achieved by stimulating insulin secretion, supporting islet stimulating mechanisms, removing toxic beta-cell insults and inhibiting beta cell apoptosis.  相似文献   

9.
Multiple mechanisms that maintain Ca(2+) homeostasis and provide for Ca(2+) signalling operate in the somatas and neurohypophysial nerve terminals of supraoptic nucleus (SON) neurones. Here, we examined the Ca(2+) clearance mechanisms of SON neurones from adult rats by monitoring the effects of the selective inhibition of different Ca(2+) homeostatic molecules on cytosolic Ca(2+) ([Ca(2+)](i)) transients in isolated SON neurones. In addition, we measured somatodendritic vasopressin (AVP) release from intact SON tissue in an attempt to correlate it with [Ca(2+)](i) dynamics. When bathing the cells in a Na(+)-free extracellular solution, thapsigargin, cyclopiazonic acid (CPA), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the inhibitor of plasma membrane Ca(2+)-ATPase (PMCA), La(3+), all significantly slowed down the recovery of depolarisation (50 mM KCl)-induced [Ca(2+)](i) transients. The release of AVP was stimulated by 50 mM KCl, and the decline in the peptide release was slowed by Ca(2+) transport inhibitors. In contrast to previous reports, our results show that in the fully mature adult rats: (i) all four Ca(2+) homeostatic pathways, the Na(+)/Ca(2+) exchanger, the endoplasmic reticulum Ca(2+) pump, the plasmalemmal Ca(2+) pump and mitochondria, are complementary in actively clearing Ca(2+) from SON neurones; (ii) somatodendritic AVP release closely correlates with intracellular [Ca(2+)](i) dynamics; (iii) there is (are) Ca(2+) clearance mechanism(s) distinct from the four outlined above; and (iv) Ca(2+) homeostatic systems in the somatas of SON neurones differ from those expressed in their terminals.  相似文献   

10.
Wild-type (WT) and the double mutant D813A,D818A (ADA) of the L6-7 loop of SERCA1a were expressed in yeast, purified, and reconstituted into lipids. This allowed us to functionally study these ATPases by both kinetic and spectroscopic means, and to solve previous discrepancies in the published literature about both experimental facts and interpretation concerning the role of this loop in P-type ATPases. We show that in a solubilized state, the ADA mutant experiences a dramatic decrease of its calcium-dependent ATPase activity. On the contrary, reconstituted in a lipid environment, it displays an almost unaltered maximal calcium-dependent ATPase activity at high (millimolar) ATP, with an apparent affinity for Ca(2+) altered only moderately (3-fold). In the absence of ATP, the true affinity of ADA for Ca(2+) is, however, more significantly reduced (20-30-fold) compared with WT, as judged from intrinsic (Trp) or extrinsic (fluorescence isothiocyanate) fluorescence experiments. At low ATP, transient kinetics experiments reveal an overshoot in the ADA phosphorylation level primarily arising from the slowing down of the transition between the nonphosphorylated "E2" and "Ca(2)E1" forms of ADA. At high ATP, this slowing down is only partially compensated for, as ADA turnover remains more sensitive to orthovanadate than WT turnover. ADA ATPase also proved to have a reduced affinity for ATP in studies performed under equilibrium conditions in the absence of Ca(2+), highlighting the long range interactions between L6-7 and the nucleotide-binding site. We propose that these mutations in L6-7 could affect protonation-dependent winding and unwinding events in the nearby M6 transmembrane segment.  相似文献   

11.
Wilson JR  Ludowyke RI  Biden TJ 《FEBS letters》2001,492(1-2):101-106
The study addressed the functional link between remodelling of the actomyosin cytoskeleton in pancreatic beta-cells and the regulation of insulin secretion. Confocal microscopy revealed that myosin heavy chain (MHC) IIA co-localized very well with filamentous (F)-actin in RINm5F cells but MHCIIB did not. Subcellular localization of MHCIIB was not altered by stimulation with 30 mM KCl (which evokes Ca(2+)-dependent insulin secretion). In contrast MHCIIA redistributed in a manner similar to F-actin, especially towards the apical surface, but also away from peripheral regions towards cell contact points on the basal surface. Finally, Ca(2+)-dependent insulin secretion was inhibited by stabilization of actin filaments with jasplakinolide. The results support a role for the MHCIIA/actin cytoskeleton in regulating insulin secretion.  相似文献   

12.
The endoplasmic reticulum (ER) is a universal signalling organelle, which regulates a wide range of neuronal functional responses. Calcium release from the ER underlies various forms of intracellular Ca2+ signalling by either amplifying Ca2+ entry through voltage-gated Ca2+ channels by Ca2+-induced Ca2+ release (CICR) or by producing local or global cytosolic calcium fluctuations following stimulation of metabotropic receptors through inositol-1,4,5-trisphosphate-induced Ca2+ release (IICR). The ER Ca2+ store emerges as a single interconnected pool, thus allowing for a long-range Ca2+ signalling via intra-ER tunnels. The fluctuations of intra-ER free Ca2+ concentration regulate the activity of numerous ER resident proteins responsible for post-translational protein folding and modification. Disruption of ER Ca2+ homeostasis results in the developing of ER stress response, which in turn controls neuronal survival. Altered ER Ca2+ handling may be involved in pathogenesis of various, neurodegenerative diseases including brain ischemia and Alzheimer dementia.  相似文献   

13.
P/Q-type Ca(2+) channels, which are postulated to play major roles in synaptic transmission, are regulated in a variety of ways. Ca(2+) currents through P/Q-type Ca(2+) channels (Ca(v)2.1/beta(1a)/alpha(2)delta) heterologously expressed in mammalian cells were recorded using the whole-cell patch clamp method. The oxidant H(2)O(2) increased the current amplitude and the effect was reversed by the reducing agent dithiothreitol (DTT). The stimulatory effect of H(2)O(2) on the Ca(2+) current was mimicked by the NO donors, SNAP, and diethylamine NONOate, and reversed by the reducing agent DTT. The presence of a soluble guanylate cyclase inhibitor did not abolish the ability of SNAP to increase the Ca(2+) current. Adenovirus-mediated overexpression of nitric oxide synthase in combination with application of the Ca(2+) ionophore A23187 also increased the Ca(2+) current amplitude and the effect was again reversed by DTT. The NOS inhibitor L-NAME abolished the stimulatory effect of A23187, and A23187 did not change the Ca(2+) currents in the cells treated with control adenovirus particles. The time course of the decline of the Ca(2+) current, but not of the Ba(2+) current, in response to repeated depolarization was markedly slowed by adenovirus-mediated overexpression of nitric oxide synthase. The results demonstrate that nitric oxide enhances the channel activity by promoting oxidation and suggest that Ca(2+), nitric oxide synthase, and nitric oxide could constitute a positive feedback loop for regulation of voltage-gated P/Q-type Ca(2+) channels.  相似文献   

14.
Modulation of mitochondrial Ca(2+) homeostasis by Bcl-2   总被引:7,自引:0,他引:7  
We have investigated the role of mitochondrial Ca(2+) (Ca(m)) homeostasis in cell survival. Disruption of Ca(m) homeostasis via depletion of the mitochondrial Ca(2+) store was the earliest event that occurred during staurosporine-induced apoptosis in neuroblastoma cells (SH-SY5Y). The decrease of Ca(m) preceded activation of the caspase cascade and DNA fragmentation. Overexpression of the anti-apoptosis protein Bcl-2 led to increased Ca(m) load, increased mitochondrial membrane potential (DeltaPsi(m)), and inhibition of staurosporine-induced apoptosis. On the other hand, ectopic expression of the pro-apoptotic protein Bik led to decreased Ca(m) load and decreased DeltaPsi(m). Inhibition of calcium uptake into mitochondria by ruthenium red induced a dose-dependent apoptosis as determined by nuclear staining and DNA ladder assay. Similarly, reducing the Ca(m) load by lowering the extracellular calcium concentration also led to apoptosis. We suggest that the anti-apoptotic effect of Bcl-2 is related to its ability to maintain a threshold level of Ca(m) and DeltaPsi(m) while the pro-apoptotic protein Bik has the opposite effect. Furthermore, both ER and mitochondrial Ca(2+) stores are important, and the depletion of either one will result in apoptosis. Thus, our results, for the first time, provide evidence that the maintenance of Ca(m) homeostasis is essential for cell survival.  相似文献   

15.
To understand the role of the insulin receptor pathway in beta-cell function, we have generated stable beta-cells (betaIRS1-A) that overexpress by 2-fold the insulin receptor substrate-1 (IRS-1) and compared them to vector-expressing controls. IRS-1 overexpression dramatically increased basal cytosolic Ca2+ levels from 81 to 278 nM, but it did not affect Ca2+ response to glucose. Overexpression of the insulin receptor also caused an increase in cytosolic Ca2+. Increased cytosolic Ca2+ was due to inhibition of Ca2+ uptake by the endoplasmic reticulum, because endoplasmic reticulum Ca2+ uptake and content were reduced in betaIRS1-A cells. Fractional insulin secretion was significantly increased 2-fold, and there was a decrease in betaIRS1-A insulin content and insulin biosynthesis. Steady-state insulin mRNA levels and glucose-stimulated ATP were unchanged. High IRS-1 levels also reduced beta-cell proliferation. These data demonstrate a direct link between the insulin receptor signaling pathway and the Ca2+-dependent pathways regulating insulin secretion of beta-cells. We postulate that during regulated insulin secretion, released insulin binds the beta-cell insulin receptor and activates IRS-1, thus further increasing cytosolic Ca2+ by reducing Ca2+ uptake. We suggest the existence of a novel pathway of autocrine regulation of intracellular Ca2+ homeostasis and insulin secretion in the beta-cell of the endocrine pancreas.  相似文献   

16.
The effects of somatostatin (SRIF) are mediated through the seven transmembrane receptor family that signals via Gi/Go. To date, five distinct SRIF receptors have been characterized and designated SSTR1-5. We have characterized the SRIF receptor that mediates the increase in [Ca(2+)](i) and insulin secretion in HIT-T15 cells (Simian virus 40-transformed Syrian hamster islets) using high affinity, subtype selective agonists for SSTR1 (L-797,591), SSTR2 (L-779,976), SSTR3 (L-796,778), SSTR4 (L-803,087), SSTR5 (L-817,818) and PRL-2903, a specific SSTR2 antagonist. In the presence of arginine vasopressin (AVP), SRIF increased [Ca(2+)](i) and insulin secretion. Treatment with the SSTR2 agonist L-779,976 resulted in similar responses to SRIF. In addition, L-779,976 increased both [Ca(2+)](i) and insulin secretion in a dose-dependent manner. Treatment with L-779,976 alone did not alter [Ca(2+)](i) or basal insulin secretion. In the presence of AVP, all other SRIF receptor agonists failed to increase [Ca(2+)](i) and insulin secretion. The effects of SRIF and L-779,976 were abolished by the SSTR2 antagonist PRL-2903. Our results suggest that the mechanism underlying SRIF-induced insulin secretion in HIT-T15 cells be mediated through the SSTR2.  相似文献   

17.
Vascular smooth muscle shows both plasticity and heterogeneity with respect to Ca(2+) signaling. Physiological perturbations in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) may take the form of a uniform maintained rise, a transient uniform [Ca(2+)](i) elevation, a transient localized rise in [Ca(2+)](i) (also known as spark and puff), a transient propagated wave of localized [Ca(2+)](i) elevation (Ca(2+) wave), recurring asynchronous Ca(2+) waves, or recurring synchronized Ca(2+) waves dependent on the type of blood vessel and the nature of stimulation. In this overview, evidence is presented which demonstrates that interactions of ion transporters located in the membranes of the cell, sarcoplasmic reticulum, and mitochondria form the basis of this plasticity of Ca(2+) signaling. We focus in particular on how the junctional complexes of plasmalemma and superficial sarcoplasmic reticulum, through the generation of local cytoplasmic Ca(2+) gradients, maintain [Ca(2+)](i) oscillations, couple these to either contraction or relaxation, and promote Ca(2+) cycling during homeostasis.  相似文献   

18.
The purpose of the present work was to study the possible role of the epithelial Ca(2+) channel (ECaC) in the Ca(2+) uptake mechanism in developing zebrafish (Danio rerio). With rapid amplification of cDNA ends, full-length cDNA encoding the ECaC of zebrafish (zECaC) was cloned and sequenced. The cloned zECaC was 2,578 bp in length and encoded a protein of 709 amino acids that showed up to 73% identity with previously described vertebrate ECaCs. The zECaC was found to be expressed in all tissues examined and began to be expressed in the skin covering the yolk sac of embryos at 24 h postfertilization (hpf). zECaC-expressing cells expanded to cover the skin of the entire yolk sac after embryonic development and began to occur in the gill filaments at 96 hpf, and thereafter zECaC-expressing cells rapidly increased in both gills and yolk sac skin. Corresponding to ECaC expression profile, the Ca(2+) influx and content began to increase at 36-72 hpf. Incubating zebrafish embryos in low-Ca(2+) (0.02 mM) freshwater caused upregulation of the whole body Ca(2+) influx and zECaC expression in both gills and skin. Colocalization of zECaC mRNA and the Na(+)-K(+)-ATPase alpha-subunit (a marker for mitochondria-rich cells) indicated that only a portion of the mitochondria-rich cells expressed zECaC mRNA. These results suggest that the zECaC plays a key role in Ca(2+) absorption in developing zebrafish.  相似文献   

19.
Arginine vasopressin (AVP), bombesin, and ACh increase cytosolic free Ca(2+) and potentiate glucose-induced insulin release by activating receptors linked to phospholipase C (PLC). We examined whether tolbutamide and diazoxide, which close or open ATP-sensitive K(+) channels (K(ATP) channels), respectively, interact with PLC-linked Ca(2+) signals in HIT-T15 and mouse beta-cells and with PLC-linked insulin secretion from HIT-T15 cells. In the presence of glucose, the PLC-linked Ca(2+) signals were enhanced by tolbutamide (3-300 microM) and inhibited by diazoxide (10-100 microM). The effects of tolbutamide and diazoxide on PLC-linked Ca(2+) signaling were mimicked by BAY K 8644 and nifedipine, an activator and inhibitor of L-type voltage-sensitive Ca(2+) channels, respectively. Neither tolbutamide nor diazoxide affected PLC-linked mobilization of internal Ca(2+) or store-operated Ca(2+) influx through non-L-type Ca(2+) channels. In the absence of glucose, PLC-linked Ca(2+) signals were diminished or abolished; this effect could be partly antagonized by tolbutamide. In the presence of glucose, tolbutamide potentiated and diazoxide inhibited AVP- or bombesin-induced insulin secretion from HIT-T15 cells. Nifedipine (10 microM) blocked both the potentiating and inhibitory actions of tolbutamide and diazoxide on AVP-induced insulin release, respectively. In glucose-free medium, AVP-induced insulin release was reduced but was again potentiated by tolbutamide, whereas diazoxide caused no further inhibition. Thus tolbutamide and diazoxide regulate both PLC-linked Ca(2+) signaling and insulin secretion from pancreatic beta-cells by modulating K(ATP) channels, thereby determining voltage-sensitive Ca(2+) influx.  相似文献   

20.
The sarco/endoplasmic reticulum (SR) Ca(2+)-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca(2+) reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca(2+) handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6-N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/dt(max), and dP/dt(min) in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT (P < 0.05). In parallel, a 1.4-fold higher V(max) value of homogenate SR Ca(2+) uptake was observed in hypothyroid TG (P < 0.05 vs. hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by -24% was markedly less than the decrease of -49% in WT (P < 0.05). A linear relationship was observed between the SERCA2a/PLB mRNA ratio values and the V(max) values of SR Ca(2+) uptake when the respective data of all experimental groups were plotted together (r = 0.90). The data show that expression of the TH-insensitive SERCA2a minigene compensates for loss of expressional activity of the TH-responsive native SERCA2a gene in the female hypothyroid rat heart. However, SR Ca(2+) uptake and in vivo heart function were only partially rescued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号