首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple method for the detoxification of ultrafiltration concentrates of wastewaters for rotavirus assay by the indirect immunofluorescence technique has been developed. Polyacrylamide (Bio-Gel) or dextran (Sephadex G50) beads were mixed with concentrates (0.5 g/10 ml, wt/vol) of wastewaters seeded with simian rotavirus SA11 and allowed to stand for 2 h. The supernatant was decontaminated with antibiotics and then assayed for rotaviruses. Concentrates from raw sewage and treated effluents seeded with SA11 were used to infect MA104 or LLC MK2 cell lines. The concentrates, particularly those from raw sewage and anaerobic waste stabilization ponds, were very toxic to the tissue culture cells. These toxic effects were determined by the detachment and subsequent loss of cells after incubation with concentrates and assay medium for 24 h. They were either completely eliminated or were reduced by greater than 80% after treatment with beads.  相似文献   

2.
A simple method for the detoxification of ultrafiltration concentrates of wastewaters for rotavirus assay by the indirect immunofluorescence technique has been developed. Polyacrylamide (Bio-Gel) or dextran (Sephadex G50) beads were mixed with concentrates (0.5 g/10 ml, wt/vol) of wastewaters seeded with simian rotavirus SA11 and allowed to stand for 2 h. The supernatant was decontaminated with antibiotics and then assayed for rotaviruses. Concentrates from raw sewage and treated effluents seeded with SA11 were used to infect MA104 or LLC MK2 cell lines. The concentrates, particularly those from raw sewage and anaerobic waste stabilization ponds, were very toxic to the tissue culture cells. These toxic effects were determined by the detachment and subsequent loss of cells after incubation with concentrates and assay medium for 24 h. They were either completely eliminated or were reduced by greater than 80% after treatment with beads.  相似文献   

3.
Rotaviruses utilize integrins during virus-cell interactions that lead to infection. Cell binding and infection by simian rotavirus SA11 were inhibited by antibodies (Abs) to the inserted (I) domain of the alpha2 integrin subunit. To determine directly which integrins or other proteins bind rotaviruses, cell surface proteins precipitated by rotaviruses were compared with those precipitated by anti-alpha2beta1 Abs. Two proteins precipitated by SA11 and rhesus rotavirus RRV from MA104 and Caco-2 cells migrated indistinguishably from alpha2beta1 integrin, and SA11 precipitated beta1 from alpha2beta1-transfected CHO cells. These viruses specifically precipitated two MA104 cell proteins only, but an additional 160- to 165-kDa protein was precipitated by SA11 from Caco-2 cells. The role of the alpha2 I domain in rotavirus binding, infection, and growth was examined using CHO cell lines expressing wild-type or mutated human alpha2 or alpha2beta1. Infectious SA11 and RRV, but not human rotavirus Wa, specifically bound CHO cell-expressed human alpha2beta1 and, to a lesser extent, human alpha2 combined with hamster beta1. Binding was inhibited by anti-alpha2 I domain monoclonal Abs (MAbs), but not by non-I domain MAbs to alpha2, and required the presence of the alpha2 I domain. Amino acid residues 151, 221, and 254 in the metal ion-dependent adhesion site of the alpha2 I domain that are necessary for type I collagen binding to alpha2beta1 were not essential for rotavirus binding. Rotavirus-alpha2beta1 binding led to increased virus infection and RRV growth. SA11 and RRV require the alpha2 I domain for binding to alpha2beta1, and their binding to this integrin is distinguishable from that of collagen.  相似文献   

4.
The nonpolyadenylated mRNAs of rotavirus are templates for the synthesis of protein and the segmented double-stranded RNA (dsRNA) genome. During serial passage of simian SA11 rotaviruses in cell culture, two variants emerged with gene 5 dsRNAs containing large (1.1 and 0.5 kb) sequence duplications within the open reading frame (ORF) for NSP1. Due to the sequence rearrangements, both variants encoded only C-truncated forms of NSP1. Comparison of these and other variants encoding defective NSP1 with their corresponding wild-type viruses indicated that the inability to encode authentic NSP1 results in a small-plaque phenotype. Thus, although nonessential, NSP1 probably plays an active role in rotavirus replication in cell culture. In determining the sequences of the gene 5 dsRNAs of the SA11 variants and wild-type viruses, it was unexpectedly found that their 3' termini ended with 5'-UGAACC-3' instead of the 3' consensus sequence 5'-UGACC-3', which is present on the mRNAs of nearly all other group A rotaviruses. Cell-free assays indicated that the A insertion into the 3' consensus sequence interfered with its ability to promote dsRNA synthesis and to function as a translation enhancer. The results provide evidence that the 3' consensus sequence of the gene 5 dsRNAs of SA11 rotaviruses has undergone a mutation causing it to operate suboptimally in RNA replication and in the expression of NSP1 during the virus life cycle. Indeed, just as rotavirus variants which encode defective NSP1 appear to have a selective advantage over those encoding wild-type NSP1 in cell culture, it may be that the atypical 3' end of SA11 gene 5 has been selected for because it promotes the expression of lower levels of NSP1 than the 3' consensus sequence.  相似文献   

5.
The simian rotavirus SA11 was used to develop a simple, reliable, and efficient method to concentrate rotavirus from tap water, treated sewage, and raw sewage by absorption to and elution from Filterite fiberglass-epoxy filters. SA11 adsorbed optimally to Filterite filters from water containing 0.5 mM AlCl3 at pH 3.5. Filter-bound virus was eluted with 0.05 M glycine-NaOH supplemented with 10% tryptose phosphate broth at pH 10. SA11 was quantitated by plaque assay, whereas human rotavirus was detected by immunofluorescence. The method was applied to detect rotavirus in raw and treated sewage at two Houston, Tex., sewage treatment plants. The sewage isolates were identified as rotavirus, probably a human strain, based on several criteria. The sewage isolates were detectable by an immunofluorescence test, using anti-SA11 serum which would detect the simian, human bovine, and porcine rotaviruses. No reaction was noted by immunofluorescence with the reoviruses or several common enteroviruses. The sewage isolates were neutralized by convalescent sera from a human adult and infant who had been infected by rotavirus as well as by a hyperimmune serum prepared in guinea pigs against purified human rotavirus. Preimmune or preillness sera did not react with the isolates by neutralization or immunofluorescence. The natural isolates were sensitive to pH 11 and other inactivating agents, similar to SA11. The buoyant density of the sewage isolates in CsCl gradients was 1.36 g/cm3, which is the value usually reported for complete, infectious rotavirus particles. The double-shelled particle diameter was 67.1 +/- 2.4 nm. Finally, electron micrographs of cell lysates inoculated with the sewage isolate showed particles displaying characteristic rotavirus morphology.  相似文献   

6.
The simian rotavirus SA11 was used to develop a simple, reliable, and efficient method to concentrate rotavirus from tap water, treated sewage, and raw sewage by absorption to and elution from Filterite fiberglass-epoxy filters. SA11 adsorbed optimally to Filterite filters from water containing 0.5 mM AlCl3 at pH 3.5. Filter-bound virus was eluted with 0.05 M glycine-NaOH supplemented with 10% tryptose phosphate broth at pH 10. SA11 was quantitated by plaque assay, whereas human rotavirus was detected by immunofluorescence. The method was applied to detect rotavirus in raw and treated sewage at two Houston, Tex., sewage treatment plants. The sewage isolates were identified as rotavirus, probably a human strain, based on several criteria. The sewage isolates were detectable by an immunofluorescence test, using anti-SA11 serum which would detect the simian, human bovine, and porcine rotaviruses. No reaction was noted by immunofluorescence with the reoviruses or several common enteroviruses. The sewage isolates were neutralized by convalescent sera from a human adult and infant who had been infected by rotavirus as well as by a hyperimmune serum prepared in guinea pigs against purified human rotavirus. Preimmune or preillness sera did not react with the isolates by neutralization or immunofluorescence. The natural isolates were sensitive to pH 11 and other inactivating agents, similar to SA11. The buoyant density of the sewage isolates in CsCl gradients was 1.36 g/cm3, which is the value usually reported for complete, infectious rotavirus particles. The double-shelled particle diameter was 67.1 +/- 2.4 nm. Finally, electron micrographs of cell lysates inoculated with the sewage isolate showed particles displaying characteristic rotavirus morphology.  相似文献   

7.
One-step growth determinations were performed with five strains of rotavirus in HepG2, a cell line derived from human liver. Three virus strains (SA11-C13, SA11-C14, and RRV) replicated in HepG2 cells and attained yields 10- to 100-fold above input titers. Two virus strains (B223 and SA11-4F) failed to replicate above input titer. Analysis of reassortants that segregated the genes of parental virus pairs able and unable to replicate revealed that the HepG2 cell growth phenotype segregated with genome segment 4. Immunofluorescence analysis of infected HepG2 cells showed that the production of detectable antigen correlated with the growth phenotype and also segregated with genome segment 4. Thus, we conclude that (i) some virus strains were capable of replication in cultured liver cells while other strains could not replicate under identical conditions and that (ii) the inability of some virus strains to replicate resulted from a segment 4-associated block in replication before protein synthesis. These results are discussed in terms of what is known of the functions of VP4.  相似文献   

8.
Biliary atresia is a devastating disorder of the newborn in which afflicted infants develop inflammation and fibrosis of the extrahepatic biliary tract, resulting in cirrhosis and end-stage liver disease. Infection with a virus is thought to be a contributing factor in the etiology of biliary atresia. In the murine model of biliary atresia, perinatal exposure to rhesus rotavirus (RRV) results in biliary epithelial cell infection causing bile duct obstruction. The purpose of this study was to determine if tropism for the biliary epithelial cell was unique to RRV. Newborn mice underwent intraperitoneal injection with five strains of rotavirus: RRV (simian), SA11-FM (simian/bovine), SA11-SM (simian), EDIM (murine), and Wa (human). RRV and SA11-FM caused clinical manifestations of bile duct obstruction and high mortality. SA11-SM caused clinical signs of hepatobiliary injury but the mortality was markedly reduced. EDIM and Wa caused no sign of hepatobiliary disease. The systemic and temporal distribution of viral protein and live virus varied according to the injected strain. Immunohistochemistry revealed that RRV and SA11-FM targeted the biliary epithelial cells. In contrast, SA11-SM was found in the liver but in not in the biliary epithelium. These results indicate that strain-specific characteristics dictate tropism for cells of hepatobiliary origin which in turn impact the ability to induce the murine model of biliary atresia.  相似文献   

9.
To better understand mechanisms of persistent rotavirus infections of cultured cells, we established independent, persistently infected cultures of MA104 cells, using rotavirus strain SA11. The cultures were either passaged when the cells reached confluence or supplemented with fresh medium every 7 days. Viral titers in culture lysates varied from 104 to 107 PFU per ml during 350 days of culture maintenance. Trypan blue staining indicated that 72 to 100% of cells in the cultures were viable, and immunocytochemical staining using a monoclonal antibody directed against viral protein VP6 demonstrated that 38 to 63% of the cells contained rotavirus antigen. We tested the capacity of rotaviruses isolated from the persistently infected cultures (PI viruses) to infect cells cured of persistent infection. Although wild-type (wt) and PI viruses produced equivalent yields in parental MA104 cells, PI viruses produced greater yields than wt virus in cured cells, which indicates that viruses and cells coevolve during persistent rotavirus infections of MA104 cells. To determine whether mutations in viruses and cells selected during these persistent infections affect viral entry, we tested the effect of trypsin treatment of the viral inoculum on growth of wt and PI viruses. Trypsin pretreatment is required for postattachment penetration of rotavirus virions into cells. In contrast to the case with wt virus, PI viruses produced equivalent yields with and without trypsin pretreatment in parental MA104 cells. However, PI viruses required trypsin pretreatment for efficient growth in cured cells. These results indicate that mutant viruses and cells are selected during maintenance of persistent rotavirus infections of MA104 cells and suggest that mutations in each affect trypsin-dependent steps in rotavirus entry.  相似文献   

10.
By co-electrophoresis in polyacrylamide gels, the segmented double-standed RNA genome of the simian rotavirus, SA 11, was compared with those of human and bovine rotaviruses. A comparison between SA 11 virus and the Northern Ireland cell culture adapted bovine virus showed that the electrophoretic mobilities of each of the 11 corresponding segments differed. In other comparisons, four to seven segment variations were more common. When the genomes of various bovine rotaviruses were compared, eight different electropherotypes were detected. Four of these electropherotypes were obtained from one property during a single outbreak of disease. In view of such genetic diversity, a scheme for the systematic designation of different rotavirus samples is proposed. The significance of the variations in relation to the molecular epidemiology of bovine rotavirus infections is discussed.  相似文献   

11.
Derivation of Neutralizing Monoclonal Antibodies Against Rotavirus   总被引:12,自引:5,他引:7       下载免费PDF全文
Monoclonal antibodies were derived against the SA11 simian, NIC bovine, and Wa human rotavirus strains and characterized by enzyme-linked immunosorbent assay, plaque neutralization, and hemagglutination inhibition. Several strain SA11-specific antibodies were found to have neutralizing and hemagglutination-inhibiting capacity.  相似文献   

12.
To identify the rotavirus protein which mediates attachment to cells in culture, viral reassortants between the simian rotavirus strain RRV and the murine strains EHP and EW or between the simian strain SA-11 and the human strain DS-1 were isolated. These parental strains differ in the requirement for sialic acid to bind and infect cells in culture. Infectivity and binding assays with the parental and reassortant rotaviruses indicate that gene 4 encodes the rotavirus protein which mediates attachment to cells in culture for both sialic acid-dependent and -independent strains. Using ligated intestinal segments of newborn mice and reassortants obtained between the murine strain EW and RRV, we developed an in vivo infectivity assay. In this system, the infectivity of EW was not affected by prior treatment of the enterocytes with neuraminidase, while neuraminidase treatment reduced the infectivity of a reassortant carrying gene 4 from RRV on an EW background more than 80% relative to the controls. Thus, VP4 appears to function as the cell attachment protein in vivo as well as in vitro.  相似文献   

13.
The rates of inactivation of human rotavirus type 2 (strain Wa) (HRV-Wa) and poliovirus type 1 (strain CHAT) were compared in polluted waters (creek water and secondary effluent before chlorination) and nonpolluted waters (lake water, groundwater, and chlorinated tap water). Viral infectivity titers were determined by plaque assays, while HRV-Wa antigenicity also was monitored by an enzyme-linked immunosorbent assay. Both viruses persisted longest in lake water and shortest in tap water. The actual inactivation times (i.e., times required for two-log10 reductions of initial viral titers) for the two viruses were significantly different in all waters except tap water. With the exception of the groundwater and secondary effluent results, the HRV-Wa inactivation times in the fresh waters tested were significantly different. Owing perhaps to aggregation, HRV-Wa appeared less susceptible to the effects of chlorine than previously reported for this virus and for the simian rotavirus SA11. HRV-Wa displayed prolonged survival in lake water and groundwater exceeding that previously reported for the SA11 virus. The HRV-Wa infectivity reduction rate (ki) was significantly correlated with the water pH (i.e., as pH increased, ki increased). The water pH may have influenced viral aggregation and thereby HRV-Wa susceptibility to other virucidal factors in the water. Enzyme-linked immunosorbent assay results showed similar inactivation patterns with the most significant reduction in HRV-Wa antigenicity occurring in polluted waters and tap water. In all waters, particularly tap water, infectivity declined at a faster rate than antigenicity. It is proposed that HRV-Wa can be used as a model for future studies of rotaviral persistence in the aquatic environment.  相似文献   

14.
The rates of inactivation of human rotavirus type 2 (strain Wa) (HRV-Wa) and poliovirus type 1 (strain CHAT) were compared in polluted waters (creek water and secondary effluent before chlorination) and nonpolluted waters (lake water, groundwater, and chlorinated tap water). Viral infectivity titers were determined by plaque assays, while HRV-Wa antigenicity also was monitored by an enzyme-linked immunosorbent assay. Both viruses persisted longest in lake water and shortest in tap water. The actual inactivation times (i.e., times required for two-log10 reductions of initial viral titers) for the two viruses were significantly different in all waters except tap water. With the exception of the groundwater and secondary effluent results, the HRV-Wa inactivation times in the fresh waters tested were significantly different. Owing perhaps to aggregation, HRV-Wa appeared less susceptible to the effects of chlorine than previously reported for this virus and for the simian rotavirus SA11. HRV-Wa displayed prolonged survival in lake water and groundwater exceeding that previously reported for the SA11 virus. The HRV-Wa infectivity reduction rate (ki) was significantly correlated with the water pH (i.e., as pH increased, ki increased). The water pH may have influenced viral aggregation and thereby HRV-Wa susceptibility to other virucidal factors in the water. Enzyme-linked immunosorbent assay results showed similar inactivation patterns with the most significant reduction in HRV-Wa antigenicity occurring in polluted waters and tap water. In all waters, particularly tap water, infectivity declined at a faster rate than antigenicity. It is proposed that HRV-Wa can be used as a model for future studies of rotaviral persistence in the aquatic environment.  相似文献   

15.
The glycosphingolipid binding specificities of neuraminidase-sensitive (simian SA11 and bovine NCDV) and neuraminidase-insensitive (bovine UK) rotavirus strains were investigated using the thin-layer chromatogram binding assay. Both triple-layered and double-layered viral particles of SA11, NCDV, and UK bound to nonacid glycosphingolipids, including gangliotetraosylceramide (GA1; also called asialo-GM1) and gangliotriaosylceramide (GA2; also called asialo-GM2). Binding to gangliosides was observed with triple-layered particles but not with double-layered particles. The neuraminidase-sensitive and neuraminidase-insensitive rotavirus strains showed distinct ganglioside binding specificities. All three strains bound to sialylneolactotetraosylceramide and GM2 and GD1a gangliosides. However, NeuAc-GM3 and the GM1 ganglioside were recognized by rotavirus strain UK but not by strains SA11 and NCDV. Conversely, NeuGc-GM3 was bound by rotaviruses SA11 and NCDV but not by rotavirus UK. Thus, neuraminidase-sensitive strains bind to external sialic acid residues in gangliosides, while neuraminidase-insensitive strains recognize gangliosides with internal sialic acids, which are resistant to neuraminidase treatment. By testing a panel of gangliosides with triple-layered particles of SA11 and NCDV, the terminal sequence sialyl-galactose (NeuGc/NeuAcalpha3-Galbeta) was identified as the minimal structural element required for the binding of these strains. The binding of triple-layered particles of SA11 and NCDV to NeuGc-GM3, but not to NeuAc-GM3, suggested that the sequence NeuGcalpha3Galbeta is preferred to NeuAcalpha3Galbeta. Further dissection of this binding epitope showed that the carboxyl group and glycerol side chain of sialic acid played an important role in the binding of such triple-layered particles.  相似文献   

16.
The influence of inoculum size and cell culture density on virus titer by cytopathic effect or plaque assay was studied using poliovirus type 1 and BGM (Buffalo green monkey) cells as a model for this evaluation. With a plaque assay system, a linear relationship was observed for an inoculum size of up 1 mL/25 cm2; a marked decrease in the number of plaques was observed when over 1 mL of sample was inoculated on this surface area. Cell culture density also affected virus titer; maximal titers were observed when cells were seeded at 25 000 to 75 000 cells/mL and incubated for 6 days before infection with the virus. Viral density, evaluated as most-probable-number and measured by cytopathic effect under liquid overlay, revealed that the viral titer was similar up to 1 mL inoculum and increased only when over 1 mL was inoculated. Cell density had no significant effect on the viral titer measured by the most-probable-number method and cytopathic effect. Inactivation of inoculum due to an incubation temperature of 37 degrees C for a short period was shown to be minimal for poliovirus type 1, reovirus type 2, coxsackievirus B-5, and the simian rotavirus SA-11. Longer inactivation time led to a 2 logs reduction of the infectious titer of coxsackievirus B-5 (in 48 h) while the other viruses showed a significant reduction in titer only after 96 h.  相似文献   

17.
Group A rotaviruses are major pathogens causing acute gastroenteritis in children and animals. To determine if group A rotavirus replicates and induces disease in rats, antibody-negative Lewis neonatal or adult rats were inoculated orally with tissue culture-adapted human (Wa, WI61, and HAL1166), simian (rhesus rotavirus [RRV] and SA11), bovine (WC3), lapine (ALA), or porcine (OSU) rotavirus strains, wild-type murine (EC(wt)) rotavirus strain, or phosphate-buffered saline (PBS). Rotavirus infection in rats was evaluated by (i) clinical findings, (ii) virus antigen shedding or infectious virus titers in the feces or intestinal contents measured by enzyme-linked immunosorbent assay or fluorescent-focus assay, (iii) histopathological changes in the small intestine, (iv) distribution of rotavirus antigen in small-intestine sections by immunofluorescence, and (v) growth rate. Rotavirus infection of 5-day-old but not > or =21-day-old rats resulted in diarrhea that lasted from 1 to 10 days postinoculation. The severity of disease and spread of infection to naIve littermates differed depending on the virus strain used for inoculation. The duration of virus antigen shedding following infection was considerably prolonged (up to 10 days) in neonatal rats compared to that in 21-day-old rats (1 or 2 days). Based on lack of virus antigen shedding and disease induction, the murine EC(wt) rotavirus was the only strain tested that did not infect rats. Histopathological changes in the small-intestine mucosa of 5-day-old RRV-inoculated rats but not of PBS-inoculated rats was limited to extensive enterocyte vacuolation in the ileum. In RRV-inoculated neonatal rats, rotavirus antigen was detected in the epithelial cells on the upper half of the intestinal villi of the jejunum and ileum. In addition, infection of neonatal rats with RRV but not with PBS resulted in reduced weight gain. Rats infected with group A rotaviruses provide a new animal model with unique features amenable to investigate rotavirus pathogenesis and the molecular mechanisms of intestinal development, including physiological factors that may regulate age-dependent rotavirus-induced diarrhea.  相似文献   

18.
Cell entry of rotaviruses is a complex process, which involves sequential interactions with several cell surface molecules. Among the molecules implicated are gangliosides, glycosphingolipids with one or more sialic acid (SA) residues. The role of gangliosides in rotavirus cell entry was studied by silencing the expression of two key enzymes involved in their biosynthesis—the UDP-glucose:ceramide glucosyltransferase (UGCG), which transfers a glucose molecule to ceramide to produce glucosylceramide GlcCer, and the lactosyl ceramide-α-2,3–sialyl transferase 5 (GM3-s), which adds the first SA to lactoceramide-producing ganglioside GM3. Silencing the expression of both enzymes resulted in decreased ganglioside levels (as judged by GM1a detection). Four rotavirus strains tested (human Wa, simian RRV, porcine TFR-41, and bovine UK) showed a decreased infectivity in cells with impaired ganglioside synthesis; however, their replication after bypassing the entry step was not affected, confirming the importance of gangliosides for cell entry of the viruses. Interestingly, viral binding to the cell surface was not affected in cells with inhibited ganglioside synthesis, but the infectivity of all strains tested was inhibited by preincubation of gangliosides with virus prior to infection. These data suggest that rotaviruses can attach to cell surface in the absence of gangliosides but require them for productive cell entry, confirming their functional role during rotavirus cell entry.  相似文献   

19.
Clearance of chronic murine rotavirus infection in SCID mice can be demonstrated by adoptive transfer of immune CD8+ T lymphocytes from histocompatible donor mice immunized with a murine homotypic rotavirus (T. Dharakul, L. Rott, and H.B. Greenberg, J. Virol 64:4375-4382, 1990). The present study focuses on the protein specificity and heterotypic nature of cell-mediated clearance of chronic murine rotavirus infection in SCID mice. Heterotypic cell-mediated clearance was demonstrated in SCID mice infected with EDIM (murine) rotavirus after adoptive transfer of CD8+ T lymphocytes from BALB/c mice that were immunized with a variety of heterologous (nonmurine) rotaviruses including Wa (human, serotype 1), SA11 and RRV (simian, serotype 3), and NCDV and RF (bovine, serotype 6). This finding indicates the serotypic independence of T-cell-mediated rotavirus clearance. To further identify the rotavirus proteins that are capable of generating CD8+ T cells that mediate virus clearance, donor mice were immunized with SF-9 cells infected with a baculovirus recombinant expressing one of the following rotavirus proteins: VP1, VP2, NS53 (from RF), VP4, VP7, NS35 (from RRV), VP6, and NS28 (from SA11). SCID mice stopped shedding rotavirus after receiving CD8+ T cells from mice immunized with VP1, VP4, VP6, and VP7 but not with VP2, NS53, NS35, NS28, or wild-type baculovirus. These results suggest that heterotypic cell-mediated clearance of rotavirus in SCID mice is mediated by three of the major rotavirus structural proteins and by a putative polymerase protein.  相似文献   

20.
The effects of various physical and chemical treatments on the stability of a human serotype 1 rotavirus and simian agent 11 (SA11) were compared by using a fluorescence focus assay. The infectivity of both strains was retained after storage at room temperature for 14 days, 4 degree C for 22 days, and -20 degree C for 32 days; lyophilization; and treatment at pH 3 to 11. Both viruses were inactivated at pH 12, as was the human virus at pH 2, although this pH resulted in only partial inactivation of SA11. The human virus also appeared to be more sensitive than SA11 to the action of ether and chloroform. The infectivity of both viruses was lost after UV irradiation for 15 min and after treatment with 8% formaldehyde for 5 min, 70% (vol/vol) ethanol for 30 min, and 2% lysol, 2% phenol, and 1% H2O2 for 1 h each.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号